Random Coordinate Descent Algorithms for Multi-Agent Convex Optimization Over Networks
In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints over networks and prove that they obtain in expectation an ε accurate solution in at most O(1/λ 2 (Q)ϵ) iterations, where λ 2 (Q) is the sec...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 58; číslo 8; s. 2001 - 2012 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2013
|
| Témata: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints over networks and prove that they obtain in expectation an ε accurate solution in at most O(1/λ 2 (Q)ϵ) iterations, where λ 2 (Q) is the second smallest eigenvalue of a matrix Q that is defined in terms of the probabilities and the number of blocks. However, the computational complexity per iteration of our methods is much simpler than the one of a method based on full gradient information and each iteration can be computed in a completely distributed way. We focus on how to choose the probabilities to make these randomized algorithms to converge as fast as possible and we arrive at solving a sparse SDP. Analysis for rate of convergence in probability is also provided. For strongly convex functions our distributed algorithms converge linearly. We also extend the main algorithm to a more general random coordinate descent method and to problems with more general linearly coupled constraints. Preliminary numerical tests confirm that on very large optimization problems our method is much more numerically efficient than methods based on full gradient. |
|---|---|
| AbstractList | In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints over networks and prove that they obtain in expectation an ε accurate solution in at most O(1/λ 2 (Q)ϵ) iterations, where λ 2 (Q) is the second smallest eigenvalue of a matrix Q that is defined in terms of the probabilities and the number of blocks. However, the computational complexity per iteration of our methods is much simpler than the one of a method based on full gradient information and each iteration can be computed in a completely distributed way. We focus on how to choose the probabilities to make these randomized algorithms to converge as fast as possible and we arrive at solving a sparse SDP. Analysis for rate of convergence in probability is also provided. For strongly convex functions our distributed algorithms converge linearly. We also extend the main algorithm to a more general random coordinate descent method and to problems with more general linearly coupled constraints. Preliminary numerical tests confirm that on very large optimization problems our method is much more numerically efficient than methods based on full gradient. |
| Author | Necoara, Ion |
| Author_xml | – sequence: 1 givenname: Ion surname: Necoara fullname: Necoara, Ion email: ion.necoara@acse.pub.ro organization: Dept. of Autom. Control & Syst. Eng., Univ. Politeh. Bucharest, Bucharest, Romania |
| BookMark | eNp9kMtOwzAQRS1UJNrCHomNfyDFj_iRZRSeUqESKmwjN50UQxJXtimPryelFQsWrEajuWd0dUZo0LkOEDqlZEIpyc7neTFhhPIJY4IQRQ_QkAqhEyYYH6AhIVQnGdPyCI1CeOlXmaZ0iJ4eTLd0LS6c80vbmQj4AkIFXcR5s3Lexuc24Np5fPfWRJvkq-2pcN0GPvBsHW1rv0y0rsOzDXh8D_Hd-ddwjA5r0wQ42c8xery6nBc3yXR2fVvk06RikscEtMiUURXnRi2UMDVjlSI1CGrYkpGULPqiItVEsAUTStWZlmldARjDTSY1HyO5-1t5F4KHuqxs_OkTvbFNSUm5tVP2dsqtnXJvpwfJH3DtbWv853_I2Q6xAPAbl6miSnD-DfQ_cgA |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1137_22M148700X crossref_primary_10_1016_j_sysconle_2015_06_006 crossref_primary_10_1049_gtd2_12142 crossref_primary_10_1080_10556788_2020_1750013 crossref_primary_10_1007_s11431_018_9451_4 crossref_primary_10_1007_s10898_014_0151_9 crossref_primary_10_1109_TAC_2016_2615066 crossref_primary_10_1109_TNSM_2025_3561269 crossref_primary_10_1109_TCNS_2019_2925267 crossref_primary_10_1109_TAC_2024_3394349 crossref_primary_10_1109_LCSYS_2020_2976311 crossref_primary_10_1016_j_neucom_2019_11_086 crossref_primary_10_1109_TSG_2020_2989828 crossref_primary_10_1109_TSMC_2020_3005169 crossref_primary_10_1109_TSP_2021_3114978 crossref_primary_10_1109_TCYB_2022_3178929 crossref_primary_10_1109_ACCESS_2018_2888855 crossref_primary_10_1109_TAC_2020_3041248 crossref_primary_10_1007_s10957_016_1058_z crossref_primary_10_1137_130950288 crossref_primary_10_1007_s10915_025_02992_0 crossref_primary_10_1093_imanum_draa018 crossref_primary_10_1109_TNSE_2023_3248267 crossref_primary_10_1109_TAC_2016_2604373 crossref_primary_10_1109_TAC_2016_2607023 crossref_primary_10_1109_LCSYS_2021_3084531 crossref_primary_10_1287_moor_2023_0044 crossref_primary_10_1109_TAC_2015_2390551 crossref_primary_10_1016_j_ifacol_2022_07_244 crossref_primary_10_1016_j_eswa_2022_118099 crossref_primary_10_1109_TAC_2017_2673240 crossref_primary_10_1016_j_engappai_2020_104115 crossref_primary_10_1016_j_sysconle_2016_11_006 crossref_primary_10_1016_j_automatica_2023_111339 crossref_primary_10_1007_s10107_020_01599_7 crossref_primary_10_1007_s10287_018_0303_3 crossref_primary_10_1109_TSMC_2024_3349407 crossref_primary_10_1109_TSMC_2021_3112691 crossref_primary_10_1016_j_automatica_2021_109739 crossref_primary_10_1007_s10589_019_00082_0 crossref_primary_10_1109_MCS_2014_2308672 crossref_primary_10_1016_j_automatica_2019_02_003 crossref_primary_10_1137_20M1328014 crossref_primary_10_1007_s10589_016_9824_2 crossref_primary_10_1109_TAC_2020_3027647 crossref_primary_10_1007_s40747_022_00785_8 crossref_primary_10_1109_TCNS_2017_2774010 crossref_primary_10_1016_j_automatica_2023_111051 |
| Cites_doi | 10.1007/s10589-009-9251-8 10.2307/2296432 10.1109/TSP.2009.2039825 10.1137/090780705 10.1137/100802001 10.1017/CBO9780511752940.002 10.1007/s10107-007-0170-0 10.1007/978-1-4419-8853-9 10.1007/s10107-012-0614-z 10.1110/ps.0242703 10.1109/32.92917 10.1007/978-1-4613-0163-9 10.1007/s10107-003-0471-x 10.3934/ipi.2009.3.487 10.1109/12.24272 10.1007/s10957-006-9080-1 10.1007/s10957-008-9458-3 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAC.2013.2250071 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 2012 |
| ExternalDocumentID | 10_1109_TAC_2013_2250071 6471753 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION |
| ID | FETCH-LOGICAL-c263t-e8597a7c33a7b75af22c70fe51a2d2040b001548052b2577f9864fceeaa3a9683 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000322364300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9286 |
| IngestDate | Tue Nov 18 22:41:40 EST 2025 Sat Nov 29 02:26:00 EST 2025 Wed Aug 27 02:48:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-e8597a7c33a7b75af22c70fe51a2d2040b001548052b2577f9864fceeaa3a9683 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_6471753 crossref_primary_10_1109_TAC_2013_2250071 crossref_citationtrail_10_1109_TAC_2013_2250071 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-08-01 |
| PublicationDateYYYYMMDD | 2013-08-01 |
| PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2013 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref12 godsil (ref5) 2001 ref14 qin (ref19) 2010 nesterov (ref15) 2004 knuth (ref10) 1981 ho (ref7) 1980; 1 ref2 ref17 ref16 ref18 wei (ref22) 2011 chang (ref3) 2008; 9 bertsekas (ref1) 1999 ref23 ref26 ref25 ref20 wright (ref21) 2010 li (ref11) 2009; 3 necoara (ref13) 2011 ref8 ref9 ref4 yuan (ref24) 2011 ref6 |
| References_xml | – year: 1999 ident: ref1 publication-title: Nonlinear Programming – ident: ref25 doi: 10.1007/s10589-009-9251-8 – year: 1981 ident: ref10 publication-title: The art of computer programming – ident: ref6 doi: 10.2307/2296432 – ident: ref18 doi: 10.1109/TSP.2009.2039825 – volume: 9 start-page: 1369 year: 2008 ident: ref3 article-title: Coordinate descent method for large-scale <tex Notation="TeX">$l_{2}$</tex>-loss linear support vector machines publication-title: J Mach Learn Res – ident: ref4 doi: 10.1137/090780705 – ident: ref14 doi: 10.1137/100802001 – ident: ref8 doi: 10.1017/CBO9780511752940.002 – year: 2011 ident: ref13 publication-title: ?A random coordinate descent method on large optimization problems with linear constraints ? – ident: ref12 doi: 10.1007/s10107-007-0170-0 – year: 2011 ident: ref22 publication-title: ?A distributed newton method for network utility maximization ? – year: 2004 ident: ref15 publication-title: Introductory Lectures on Convex Optimization A Basic Course doi: 10.1007/978-1-4419-8853-9 – ident: ref16 doi: 10.1007/s10107-012-0614-z – ident: ref2 doi: 10.1110/ps.0242703 – ident: ref20 doi: 10.1109/32.92917 – year: 2001 ident: ref5 publication-title: Algebraic Graph Theory doi: 10.1007/978-1-4613-0163-9 – ident: ref26 doi: 10.1007/s10107-003-0471-x – volume: 3 start-page: 487 year: 2009 ident: ref11 article-title: Coordinate descent optimization for <tex Notation="TeX">$l_{1}$</tex> minimization with application to compressed sensing; A greedy algorithm publication-title: Inverse Problems Imag doi: 10.3934/ipi.2009.3.487 – volume: 1 start-page: 51 year: 1980 ident: ref7 article-title: A class of center-free resource allocation algorithms publication-title: Large Scale Syst – year: 2010 ident: ref21 publication-title: ?Accelerated block coordinate relaxation for regularized optimization ? – ident: ref9 doi: 10.1109/12.24272 – ident: ref23 doi: 10.1007/s10957-006-9080-1 – year: 2011 ident: ref24 publication-title: ?Recent advances of large-scale linear classification ? – ident: ref17 doi: 10.1007/s10957-008-9458-3 – year: 2010 ident: ref19 publication-title: ?Efficient block-coordinate descent algorithms for the group lasso ? |
| SSID | ssj0016441 |
| Score | 2.4178247 |
| Snippet | In this paper, we develop randomized block-coordinate descent methods for minimizing multi-agent convex optimization problems with linearly coupled constraints... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2001 |
| SubjectTerms | Algorithm design and analysis Convergence Convex functions Distributed control Eigenvalues and eigenfunctions Linear programming linearly coupled constraints Optimization random coordinate descent rate of convergence resource allocation problems smooth convex optimization Vectors |
| Title | Random Coordinate Descent Algorithms for Multi-Agent Convex Optimization Over Networks |
| URI | https://ieeexplore.ieee.org/document/6471753 |
| Volume | 58 |
| WOSCitedRecordID | wos000322364300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7a4kEPvqpYX-zBi2Da7W6S3RxDVTxIK1Klt7DZ7GqhTaRNiz_f2SSGCiJ4C2ECYTKPb7LzzSB0RV1JmUeMYxKXOa7vxY6Iwa8kYHuiOGBYVRCFH_lwKCaT4KmBbmoujNa6aD7TXXtZnOUnmVrZX2U9HyIpwOsmanLul1yt-sTA5vUy6oIDU1EfSZKgNw4HtoeLdcF2bUr9kYI2dqoUKeV-738vs492K-iIw_JbH6CGTg_RzsZAwTZ6fZZpks3xIIOacpoCjsS35bwmHM7essU0f58vMeBUXBBvndASq0A6XetPPILoMa9omXgEJo6HZY_48gi93N-NBw9OtTnBUdRnuaMF1AmSK8Ykj7knDaWKE6O9vqQJBb-tahXi0Rh8lhs7pN1AvpSSycAX7Bi10izVJwi73IjE10RoI13h274Ukrj9wAAOI4zLDup9KzNS1Vhxu91iFhXlBQkiUH9k1R9V6u-g6_qJj3Kkxh-ybav5Wq5S-unvt8_QNi22Vdj-vHPUyhcrfYG21DqfLheXhb18AXN6vDQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDb7E-9-BFMO26m2STY6hKxRpFqvQWtsmuFmwifeHPdzaJQUEEbyFMIEzm8U12vhmAU2ZLxh2qLZ3Y3LJdZ2B5A_QridiexgIxbJwThbsiDL1-33-owXnFhVFK5c1nqmku87P8JItn5ldZy8VIivB6ARYd22a0YGtVZwYmsxdxF12YedWhJPVbvaBturh4E63XJNUfSejbVpU8qVyv_-91NmCtBI8kKL72JtRUugWr30YKbsPzo0yTbETaGVaVwxSRJLksJjaR4O0lGw-nr6MJQaRKcuqtFRhqFUqnc_VB7jF-jEpiJrlHIydh0SU-2YGn66teu2OVuxOsmLl8aikPKwUpYs6lGAhHasZiQbVyLiRLGHpuWa1Qhw3Qa4U2Y9o1ZkwpufRdj-9CPc1StQfEFtpLXEU9paXtuaYzhSb2ha8RiVEuZANaX8qM4nKwuNlv8RblBQb1I1R_ZNQflepvwFn1xHsxVOMP2W2j-UquVPr-77dPYLnTu-tG3Zvw9gBWWL67wnTrHUJ9Op6pI1iK59PhZHyc284na3S_ew |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Coordinate+Descent+Algorithms+for+Multi-Agent+Convex+Optimization+Over+Networks&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Necoara%2C+Ion&rft.date=2013-08-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=58&rft.issue=8&rft.spage=2001&rft.epage=2012&rft_id=info:doi/10.1109%2FTAC.2013.2250071&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2013_2250071 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |