AMP-Inspired Deep Networks for Sparse Linear Inverse Problems

Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem, where one seeks to recover a sparse signal from a few noisy linear measurements. In this paper, we propose two novel...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 65; no. 16; pp. 4293 - 4308
Main Authors: Borgerding, Mark, Schniter, Philip, Rangan, Sundeep
Format: Journal Article
Language:English
Published: IEEE 15.08.2017
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem, where one seeks to recover a sparse signal from a few noisy linear measurements. In this paper, we propose two novel neural-network architectures that decouple prediction errors across layers in the same way that the approximate message passing (AMP) algorithms decouple them across iterations: through Onsager correction. First, we propose a "learned AMP" network that significantly improves upon Gregor and LeCun's "learned ISTA." Second, inspired by the recently proposed "vector AMP" (VAMP) algorithm, we propose a "learned VAMP" network that offers increased robustness to deviations in the measurement matrix from i.i.d. Gaussian. In both cases, we jointly learn the linear transforms and scalar nonlinearities of the network. Interestingly, with i.i.d. signals, the linear transforms and scalar nonlinearities prescribed by the VAMP algorithm coincide with the values learned through back-propagation, leading to an intuitive interpretation of learned VAMP. Finally, we apply our methods to two problems from 5G wireless communications: compressive random access and massive-MIMO channel estimation.
AbstractList Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse linear inverse problem, where one seeks to recover a sparse signal from a few noisy linear measurements. In this paper, we propose two novel neural-network architectures that decouple prediction errors across layers in the same way that the approximate message passing (AMP) algorithms decouple them across iterations: through Onsager correction. First, we propose a "learned AMP" network that significantly improves upon Gregor and LeCun's "learned ISTA." Second, inspired by the recently proposed "vector AMP" (VAMP) algorithm, we propose a "learned VAMP" network that offers increased robustness to deviations in the measurement matrix from i.i.d. Gaussian. In both cases, we jointly learn the linear transforms and scalar nonlinearities of the network. Interestingly, with i.i.d. signals, the linear transforms and scalar nonlinearities prescribed by the VAMP algorithm coincide with the values learned through back-propagation, leading to an intuitive interpretation of learned VAMP. Finally, we apply our methods to two problems from 5G wireless communications: compressive random access and massive-MIMO channel estimation.
Author Schniter, Philip
Borgerding, Mark
Rangan, Sundeep
Author_xml – sequence: 1
  givenname: Mark
  surname: Borgerding
  fullname: Borgerding, Mark
  email: borgerding.7@osu.edu
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
– sequence: 2
  givenname: Philip
  surname: Schniter
  fullname: Schniter, Philip
  email: schniter.1@osu.edu
  organization: Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA
– sequence: 3
  givenname: Sundeep
  surname: Rangan
  fullname: Rangan, Sundeep
  email: srangan@nyu.edu
  organization: Dept. of Electr. & Comput. Eng., New York Univ., New York, NY, USA
BookMark eNp9j0tLw0AUhQepYFvdC27yB1LvZCbzWLgo9RWoWmgFd2EyuQOjbRJmguK_t6HFhQtX99zFdw7fhIyatkFCLinMKAV9vVmvZhlQOcskKOBwQsZUc5oCl2K0z5CzNFfy7YxMYnwHoJxrMSY386dVWjSx8wHr5BaxS56x_2rDR0xcG5J1Z0LEZOkbNCEpmk8c3lVoqy3u4jk5dWYb8eJ4p-T1_m6zeEyXLw_FYr5MbSZYn6JiyrEaLeOVhVrXvKKobW4sCkO1yxxDpTMlgdnKWlVTWelcKldpqKlzbErg0GtDG2NAV3bB70z4LimUg3651y8H_fKov0fEH8T63vS-bfpg_PY_8OoAekT83ZGacRCC_QCkOGoR
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JSYST_2022_3175658
crossref_primary_10_1109_JSAC_2021_3087243
crossref_primary_10_1109_TGRS_2020_2982490
crossref_primary_10_3390_rs15174126
crossref_primary_10_1109_TIT_2019_2947487
crossref_primary_10_1109_JSAC_2020_3036959
crossref_primary_10_1109_ACCESS_2020_2974479
crossref_primary_10_1093_jge_gxac041
crossref_primary_10_1109_TSP_2023_3334396
crossref_primary_10_1109_JSEN_2021_3090948
crossref_primary_10_1109_LWC_2024_3361916
crossref_primary_10_1109_TPAMI_2021_3125041
crossref_primary_10_1109_TMC_2022_3207164
crossref_primary_10_1109_TWC_2024_3380638
crossref_primary_10_1109_TWC_2024_3376381
crossref_primary_10_1109_TGRS_2022_3165541
crossref_primary_10_1109_LCOMM_2021_3123368
crossref_primary_10_1016_j_eswa_2022_119220
crossref_primary_10_1016_j_dsp_2022_103867
crossref_primary_10_1088_2040_8986_ad08dc
crossref_primary_10_1109_TCI_2023_3277629
crossref_primary_10_1109_TGRS_2023_3237660
crossref_primary_10_1109_JSAC_2023_3240781
crossref_primary_10_1109_JIOT_2021_3097133
crossref_primary_10_1121_10_0017882
crossref_primary_10_1109_TSP_2021_3076900
crossref_primary_10_1109_MWC_008_2200157
crossref_primary_10_1109_TCOMM_2020_3031613
crossref_primary_10_1109_TWC_2023_3326952
crossref_primary_10_1109_TWC_2022_3153106
crossref_primary_10_1109_TPAMI_2022_3172214
crossref_primary_10_1109_TIP_2019_2944270
crossref_primary_10_1109_ACCESS_2018_2886471
crossref_primary_10_1109_JSAC_2021_3087269
crossref_primary_10_1016_j_dsp_2020_102680
crossref_primary_10_1109_TCSII_2020_3024912
crossref_primary_10_1109_TPAMI_2024_3406473
crossref_primary_10_1016_j_future_2019_01_041
crossref_primary_10_1109_TWC_2021_3120926
crossref_primary_10_1109_TSP_2019_2912879
crossref_primary_10_1109_JSAC_2021_3078500
crossref_primary_10_1109_TVT_2023_3291693
crossref_primary_10_1002_dac_5400
crossref_primary_10_1109_TIP_2022_3195319
crossref_primary_10_7717_peerj_cs_2582
crossref_primary_10_1109_TAP_2024_3361664
crossref_primary_10_1109_LCOMM_2020_3011571
crossref_primary_10_1088_1742_6596_1607_1_012101
crossref_primary_10_1137_20M1353368
crossref_primary_10_1109_TIP_2022_3211473
crossref_primary_10_1109_TWC_2023_3324679
crossref_primary_10_1109_JSTARS_2020_3014696
crossref_primary_10_1016_j_acha_2024_101719
crossref_primary_10_1109_TGRS_2021_3093307
crossref_primary_10_1007_s11425_023_2293_3
crossref_primary_10_1145_3412360
crossref_primary_10_1109_TSP_2020_3035832
crossref_primary_10_1109_TAES_2023_3235746
crossref_primary_10_3390_jimaging8070178
crossref_primary_10_1016_j_sigpro_2020_107699
crossref_primary_10_1109_TCOMM_2024_3506912
crossref_primary_10_1109_TWC_2021_3067903
crossref_primary_10_1109_TVT_2023_3323677
crossref_primary_10_1109_TGRS_2023_3268132
crossref_primary_10_1109_MWC_001_1900491
crossref_primary_10_3390_s22103938
crossref_primary_10_1137_23M1625846
crossref_primary_10_1109_TCOMM_2022_3218630
crossref_primary_10_1109_TVT_2021_3111081
crossref_primary_10_1109_TGRS_2021_3110579
crossref_primary_10_1016_j_sigpro_2023_109198
crossref_primary_10_1109_LWC_2022_3200123
crossref_primary_10_3390_rs15225320
crossref_primary_10_1109_TSP_2018_2873548
crossref_primary_10_1016_j_knosys_2023_110963
crossref_primary_10_1109_LCOMM_2021_3116878
crossref_primary_10_1109_TSP_2023_3272286
crossref_primary_10_1109_JSAC_2022_3143260
crossref_primary_10_3390_s21196551
crossref_primary_10_1109_TCI_2024_3507645
crossref_primary_10_1109_TIP_2021_3078058
crossref_primary_10_1002_dac_6007
crossref_primary_10_3390_app10175909
crossref_primary_10_1109_ACCESS_2020_3029518
crossref_primary_10_1109_JIOT_2020_3021724
crossref_primary_10_1109_LCOMM_2020_2974199
crossref_primary_10_1109_JSEN_2020_3025053
crossref_primary_10_1109_LSP_2019_2929869
crossref_primary_10_1109_TCOMM_2023_3294957
crossref_primary_10_1109_TWC_2020_3026471
crossref_primary_10_1109_JIOT_2025_3555802
crossref_primary_10_3390_rs13214429
crossref_primary_10_1109_TSP_2022_3143372
crossref_primary_10_1109_ACCESS_2019_2942204
crossref_primary_10_3390_s21041442
crossref_primary_10_1109_TWC_2020_3033334
crossref_primary_10_1109_TGRS_2021_3073123
crossref_primary_10_1109_TWC_2022_3187790
crossref_primary_10_1109_TIM_2025_3588970
crossref_primary_10_1109_TVT_2018_2883669
crossref_primary_10_1109_JSAC_2021_3087233
crossref_primary_10_1109_TWC_2022_3145399
crossref_primary_10_1016_j_phycom_2023_102018
crossref_primary_10_1109_TIP_2020_3044472
crossref_primary_10_1109_COMST_2023_3300664
crossref_primary_10_1109_LGRS_2024_3367717
crossref_primary_10_1109_TIP_2021_3104168
crossref_primary_10_1016_j_neunet_2022_11_011
crossref_primary_10_1109_TIP_2020_3014729
crossref_primary_10_1007_s10915_023_02315_1
crossref_primary_10_1088_1361_6420_ad9d73
crossref_primary_10_1109_LCOMM_2020_2989672
crossref_primary_10_1109_LWC_2021_3069199
crossref_primary_10_1109_COMST_2023_3315374
crossref_primary_10_1109_TWC_2023_3327995
crossref_primary_10_3390_rs15010013
crossref_primary_10_1109_TWC_2023_3258405
crossref_primary_10_1109_TGRS_2021_3111901
crossref_primary_10_1109_TSP_2022_3207269
crossref_primary_10_1109_TCCN_2023_3247756
crossref_primary_10_1007_s11277_025_11767_7
crossref_primary_10_1109_LCOMM_2020_3045763
crossref_primary_10_1109_LSP_2022_3188446
crossref_primary_10_1109_TWC_2022_3186084
crossref_primary_10_1088_1742_5468_ab321a
crossref_primary_10_1016_j_icte_2021_03_011
crossref_primary_10_1109_TWC_2023_3330816
crossref_primary_10_1109_TIM_2022_3154803
crossref_primary_10_3390_acoustics4040050
crossref_primary_10_1109_TGRS_2022_3177927
crossref_primary_10_1109_ACCESS_2021_3118608
crossref_primary_10_1214_21_AOS2101
crossref_primary_10_1109_TSP_2020_2976585
crossref_primary_10_1109_TCI_2023_3315853
crossref_primary_10_1049_tje2_12120
crossref_primary_10_1162_neco_a_01715
crossref_primary_10_1109_TWC_2023_3271521
crossref_primary_10_1109_TCI_2019_2892123
crossref_primary_10_1109_TSP_2021_3086593
crossref_primary_10_1109_ACCESS_2020_3035726
crossref_primary_10_1109_TGRS_2025_3560140
crossref_primary_10_3390_rs14143472
crossref_primary_10_1109_TSP_2024_3510623
crossref_primary_10_1109_JIOT_2025_3542398
crossref_primary_10_1016_j_dsp_2025_105287
crossref_primary_10_1109_TGRS_2021_3068405
crossref_primary_10_1109_COMST_2019_2904897
crossref_primary_10_1109_LCOMM_2022_3208031
crossref_primary_10_1109_COMST_2023_3326399
crossref_primary_10_1109_LGRS_2024_3509520
crossref_primary_10_1109_MWC_2019_1900027
crossref_primary_10_1109_JSAC_2021_3126071
crossref_primary_10_1109_TCOMM_2020_3027027
crossref_primary_10_1109_JIOT_2022_3163593
crossref_primary_10_1109_TIP_2021_3091834
crossref_primary_10_1109_TNNLS_2021_3093818
crossref_primary_10_1002_stc_2979
crossref_primary_10_1109_TCI_2022_3181473
crossref_primary_10_1109_ACCESS_2021_3064927
crossref_primary_10_1109_TWC_2025_3563104
crossref_primary_10_1016_j_dsp_2020_102862
crossref_primary_10_3390_s22155533
crossref_primary_10_1016_j_image_2018_03_017
crossref_primary_10_1109_TSP_2020_2978615
crossref_primary_10_1109_LWC_2021_3123579
crossref_primary_10_1109_LCOMM_2024_3371105
crossref_primary_10_1109_ACCESS_2020_2978237
crossref_primary_10_1109_MCOM_004_2200164
crossref_primary_10_1016_j_neucom_2022_08_034
crossref_primary_10_1109_TSP_2024_3381749
crossref_primary_10_1109_TGRS_2022_3205628
crossref_primary_10_1016_j_sigpro_2020_107729
crossref_primary_10_1109_TVT_2020_2977733
crossref_primary_10_1109_TWC_2021_3133296
crossref_primary_10_1016_j_hspr_2024_11_007
crossref_primary_10_3390_a16010060
crossref_primary_10_1007_s11432_021_3470_1
crossref_primary_10_1109_ACCESS_2021_3128721
crossref_primary_10_1109_JSTSP_2020_2977507
crossref_primary_10_3390_app11178117
crossref_primary_10_1088_1361_6501_acfb2a
crossref_primary_10_1109_TIT_2021_3077471
crossref_primary_10_3390_rs17071253
crossref_primary_10_54097_p90khg63
crossref_primary_10_1109_JIOT_2018_2876152
crossref_primary_10_1109_TCI_2022_3233185
crossref_primary_10_3390_rs14153509
crossref_primary_10_1109_JSAC_2022_3191124
crossref_primary_10_1109_TWC_2021_3100500
crossref_primary_10_1109_ACCESS_2023_3293637
crossref_primary_10_1109_TCOMM_2024_3440875
crossref_primary_10_1109_ACCESS_2024_3447652
crossref_primary_10_1109_TIP_2021_3069296
crossref_primary_10_1109_TWC_2023_3296218
crossref_primary_10_1007_s10851_019_00889_w
crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_1007_s10462_022_10259_5
crossref_primary_10_1109_TIT_2025_3535923
crossref_primary_10_1109_TITS_2020_3009223
crossref_primary_10_1109_TWC_2023_3328437
crossref_primary_10_1109_TWC_2024_3416375
crossref_primary_10_1016_j_hcc_2023_100125
crossref_primary_10_1109_ACCESS_2021_3057621
Cites_doi 10.1109/79.799930
10.1109/ICASSP.2017.7952957
10.1109/TIT.2009.2016018
10.1109/ICASSP.2015.7178325
10.1109/ITWKSPS.2010.5503193
10.1137/080716542
10.1109/ISIT.2009.5205769
10.1214/14-AAP1010
10.1111/j.2517-6161.1996.tb02080.x
10.1109/LSP.2016.2548245
10.1002/ett.2633
10.1109/ACSSC.2016.7869633
10.1002/cpa.20042
10.1109/CVPR.2014.349
10.1109/ALLERTON.2015.7447163
10.1109/CVPR.2016.55
10.1109/ISIT.2017.8006899
10.1109/TWC.2014.2365813
10.1109/TPAMI.2015.2439281
10.1109/TSP.2014.2386294
10.1137/S1064827596304010
10.1109/TSP.2015.2408569
10.1109/CVPR.2013.142
10.1109/TSP.2012.2217334
10.1109/GlobalSIP.2016.7905837
10.1017/CBO9780511794308.010
10.1109/TSP.2002.803324
10.1109/TIT.2013.2250578
10.1109/TSP.2013.2272287
10.1109/JSAC.2014.2328098
10.1109/ICASSP.2017.7952561
10.1109/CVPR.2012.6247952
10.1017/CBO9780511794308
10.1109/83.661182
10.1002/cpa.20124
10.1109/ACCESS.2015.2407194
10.1109/ISIT.2011.6033942
10.1109/ICCV.2015.50
10.1109/MSP.2011.2178495
10.1109/TIT.2010.2094817
10.1073/pnas.0909892106
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2017.2708040
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 4308
ExternalDocumentID 10_1109_TSP_2017_2708040
7934066
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1527162; 1539960; 1302336; 1547332; 1564142
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-e838f3dec34bc0d9d4b1e9c5ace6a19f2f3e8928703cbcc8d17b9578fb90d1ff3
IEDL.DBID RIE
ISICitedReferencesCount 322
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404286900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Sat Nov 29 07:53:59 EST 2025
Tue Nov 18 21:09:03 EST 2025
Tue Aug 26 17:00:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-e838f3dec34bc0d9d4b1e9c5ace6a19f2f3e8928703cbcc8d17b9578fb90d1ff3
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSP_2017_2708040
ieee_primary_7934066
crossref_citationtrail_10_1109_TSP_2017_2708040
PublicationCentury 2000
PublicationDate 2017-Aug.15,-15
2017-8-15
PublicationDateYYYYMMDD 2017-08-15
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug.15,-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref53
ref52
ref11
ref54
ref10
abadi (ref40) 2015
ref17
gregor (ref4) 2010
ref19
ref18
goodfellow (ref3) 2016
ref51
ref50
xin (ref32) 2016
ref46
ref45
ref48
ref47
ref42
ref44
ref43
ref49
ref7
kingma (ref41) 2015
veit (ref14) 2016
ref9
hershey (ref27) 2014
ref6
ref35
ref34
ref37
ref31
ref30
ref33
ref2
wang (ref8) 2016
ref1
ref39
ref38
iliadis (ref36) 2016
tibshirani (ref16) 1996; 58
ref24
ref23
ref26
ref25
ref20
ref22
ref21
srivastava (ref15) 2015
ref28
sprechmann (ref5) 2012
he (ref13) 2015
ref29
rangan (ref12) 2016
References_xml – ident: ref38
  doi: 10.1109/79.799930
– ident: ref25
  doi: 10.1109/ICASSP.2017.7952957
– ident: ref46
  doi: 10.1109/TIT.2009.2016018
– ident: ref24
  doi: 10.1109/ICASSP.2015.7178325
– ident: ref23
  doi: 10.1109/ITWKSPS.2010.5503193
– ident: ref10
  doi: 10.1137/080716542
– ident: ref44
  doi: 10.1109/ISIT.2009.5205769
– ident: ref22
  doi: 10.1214/14-AAP1010
– volume: 58
  start-page: 267
  year: 1996
  ident: ref16
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J Roy Statist Soc B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref6
  doi: 10.1109/LSP.2016.2548245
– ident: ref45
  doi: 10.1002/ett.2633
– ident: ref51
  doi: 10.1109/ACSSC.2016.7869633
– ident: ref19
  doi: 10.1002/cpa.20042
– ident: ref30
  doi: 10.1109/CVPR.2014.349
– ident: ref33
  doi: 10.1109/ALLERTON.2015.7447163
– ident: ref34
  doi: 10.1109/CVPR.2016.55
– ident: ref49
  doi: 10.1109/ISIT.2017.8006899
– ident: ref48
  doi: 10.1109/TWC.2014.2365813
– year: 2015
  ident: ref40
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– ident: ref31
  doi: 10.1109/TPAMI.2015.2439281
– start-page: 615
  year: 2012
  ident: ref5
  article-title: Learning efficient structured-sparse models
  publication-title: Proc Int Conf Mach Learn
– ident: ref52
  doi: 10.1109/TSP.2014.2386294
– ident: ref17
  doi: 10.1137/S1064827596304010
– ident: ref37
  doi: 10.1109/TSP.2015.2408569
– ident: ref29
  doi: 10.1109/CVPR.2013.142
– year: 2016
  ident: ref3
  publication-title: Deep Learning
– start-page: 550
  year: 2016
  ident: ref14
  article-title: Residual networks behave like ensembles of relatively shallow networks
  publication-title: Proc Neural Inf Process Syst Conf
– year: 2016
  ident: ref36
  article-title: Deep fully-connected networks for video compressive sensing
– ident: ref53
  doi: 10.1109/TSP.2012.2217334
– start-page: 399
  year: 2010
  ident: ref4
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc Int Conf Mach Learn
– start-page: 2194
  year: 2016
  ident: ref8
  article-title: Learning deep $\ell _0$ encoders
  publication-title: Proc AAAI Conf Artif Intell
– year: 2015
  ident: ref41
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Representations
– ident: ref1
  doi: 10.1109/GlobalSIP.2016.7905837
– ident: ref20
  doi: 10.1017/CBO9780511794308.010
– ident: ref54
  doi: 10.1109/TSP.2002.803324
– ident: ref26
  doi: 10.1109/TIT.2013.2250578
– ident: ref39
  doi: 10.1109/TSP.2013.2272287
– year: 2016
  ident: ref12
  article-title: Vector approximate message passing
– ident: ref42
  doi: 10.1109/JSAC.2014.2328098
– year: 2014
  ident: ref27
  article-title: Deep unfolding: Model-based inspiration of novel deep architectures
  publication-title: Tech Rep
– ident: ref35
  doi: 10.1109/ICASSP.2017.7952561
– ident: ref28
  doi: 10.1109/CVPR.2012.6247952
– ident: ref2
  doi: 10.1017/CBO9780511794308
– ident: ref9
  doi: 10.1109/83.661182
– ident: ref18
  doi: 10.1002/cpa.20124
– ident: ref43
  doi: 10.1109/ACCESS.2015.2407194
– ident: ref50
  doi: 10.1109/ISIT.2011.6033942
– year: 2015
  ident: ref13
  article-title: Deep residual learning for image recognition
– start-page: 2377
  year: 2015
  ident: ref15
  article-title: Training very deep networks
  publication-title: Proc Neural Inf Process Syst Conf
– ident: ref7
  doi: 10.1109/ICCV.2015.50
– start-page: 4340
  year: 2016
  ident: ref32
  article-title: Maximal sparsity from deep networks?
  publication-title: Proc Neural Inf Process Syst
– ident: ref47
  doi: 10.1109/MSP.2011.2178495
– ident: ref21
  doi: 10.1109/TIT.2010.2094817
– ident: ref11
  doi: 10.1073/pnas.0909892106
SSID ssj0014496
Score 2.6753018
Snippet Deep learning has gained great popularity due to its widespread success on many inference problems. We consider the application of deep learning to the sparse...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4293
SubjectTerms approximate message passing
Approximation algorithms
compressive sensing
Deep learning
Inverse problems
Machine learning
massive MIMO
Message passing
Probability density function
random access
Signal processing algorithms
Transforms
Title AMP-Inspired Deep Networks for Sparse Linear Inverse Problems
URI https://ieeexplore.ieee.org/document/7934066
Volume 65
WOSCitedRecordID wos000404286900011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF7a4kEPvqpYX-TgRTBtNrvJ7h48FLXowRJohd7CPmZBkLT04e93N0lDDyJ4CUnYCeHLhJmd14fQnWRcpiDT0AjqW3ISHEpBcZjYREaKuEOsSrIJNh7z2UxkLfTQ9MIAQFl8Bn1_WubyzVxvfKhs4HTJ2Z-0jdqMsapXq8kYUFpycTl3gYQJZ7NtSjISg-kk8zVcrB8z5x_5MMeOCdrhVClNyujofy9zjA5r1zEYVt_6BLWgOEUHOwMFu-hx-J6Fb4XPnoMJngEWwbiq814FzjsNJgu3j4XAbUCdggd-xoa_zCpSmdUZ-hi9TJ9ew5ogIdRxStYhcMItMaAJVToywlCFQehEakglFja2BLjwqUyildbcYKaE-0WtEpHB1pJz1CnmBVygADMrsKYSnAdA3dMUN9qJx4lKE8Nt2kODLWa5rqeHexKLr7zcRUQidyjnHuW8RrmH7huJRTU544-1XQ9ws67G9vL321do3wv7yC5OrlFnvdzADdrT3-vP1fK2VIsfh4K1FQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MC6gP3qZ4tw--CHZrmqRNHnwQL2yoY-CEvZUmOQFBurFNf79J2409iOBLaUsSwtdTzsm5fQBXeSryBPMkNJL5khxOwlwyEnLL80hRd4lVSTaR9npiOJT9BtwsamEQsUw-w5a_LWP5ZqS_vKus7WTJ6Z9kBdY4YzGpqrUWMQPGSjYuZzDQkIt0OA9KRrI9eOv7LK60FafOQvKOjiUltMSqUiqVp53_bWcXtmvjMbirvvYeNLDYh62lloJNuL177YfdwsfP0QQPiOOgV2V6TwNnnwZvY3eSxcAdQZ2IB77Lhn_sV7Qy0wN4f3oc3HfCmiIh1HFCZyEKKiw1qClTOjLSMEVQap5rTHIibWwpCumDmVQrrYUhqZLuJ7VKRoZYSw9htRgVeAQBSa0kmuXobADmVlPCaDc95irhRtjkGNpzzDJd9w_3NBafWXmOiGTmUM48ylmN8jFcL2aMq94Zf4xteoAX42psT35_fQkbncHrS_bS7T2fwqZfyPt5CT-D1dnkC89hXX_PPqaTi1JEfgAgs7hc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMP-Inspired+Deep+Networks+for+Sparse+Linear+Inverse+Problems&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Borgerding%2C+Mark&rft.au=Schniter%2C+Philip&rft.au=Rangan%2C+Sundeep&rft.date=2017-08-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=65&rft.issue=16&rft.spage=4293&rft.epage=4308&rft_id=info:doi/10.1109%2FTSP.2017.2708040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2017_2708040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon