Nonlinear mode decomposition with convolutional neural networks for fluid dynamics

We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number $Re_{D}=100$ as a test case. The flow...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of fluid mechanics Ročník 882
Hlavní autori: Murata, Takaaki, Fukami, Kai, Fukagata, Koji
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge Cambridge University Press 10.01.2020
Predmet:
ISSN:0022-1120, 1469-7645
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number $Re_{D}=100$ as a test case. The flow attributes are mapped into two modes in the latent space and then these two modes are visualized in the physical space. Because the MD-CNN-AEs with nonlinear activation functions show lower reconstruction errors than the proper orthogonal decomposition (POD), the nonlinearity contained in the activation function is considered the key to improving the capability of the model. It is found by applying POD to each field decomposed using the MD-CNN-AE with hyperbolic tangent activation such that a single nonlinear MD-CNN-AE mode contains multiple orthogonal bases, in contrast to the linear methods, i.e. POD and MD-CNN-AE with linear activation. We further assess the proposed MD-CNN-AE by applying it to a transient process of a circular cylinder wake in order to examine its capability for flows containing high-order spatial modes. The present results suggest a great potential for the nonlinear MD-CNN-AE to be used for feature extraction of flow fields in lower dimensions than POD, while retaining interpretable relationships with the conventional POD modes.
AbstractList We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number \(Re_{D}=100\) as a test case. The flow attributes are mapped into two modes in the latent space and then these two modes are visualized in the physical space. Because the MD-CNN-AEs with nonlinear activation functions show lower reconstruction errors than the proper orthogonal decomposition (POD), the nonlinearity contained in the activation function is considered the key to improving the capability of the model. It is found by applying POD to each field decomposed using the MD-CNN-AE with hyperbolic tangent activation such that a single nonlinear MD-CNN-AE mode contains multiple orthogonal bases, in contrast to the linear methods, i.e. POD and MD-CNN-AE with linear activation. We further assess the proposed MD-CNN-AE by applying it to a transient process of a circular cylinder wake in order to examine its capability for flows containing high-order spatial modes. The present results suggest a great potential for the nonlinear MD-CNN-AE to be used for feature extraction of flow fields in lower dimensions than POD, while retaining interpretable relationships with the conventional POD modes.
We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number $Re_{D}=100$ as a test case. The flow attributes are mapped into two modes in the latent space and then these two modes are visualized in the physical space. Because the MD-CNN-AEs with nonlinear activation functions show lower reconstruction errors than the proper orthogonal decomposition (POD), the nonlinearity contained in the activation function is considered the key to improving the capability of the model. It is found by applying POD to each field decomposed using the MD-CNN-AE with hyperbolic tangent activation such that a single nonlinear MD-CNN-AE mode contains multiple orthogonal bases, in contrast to the linear methods, i.e. POD and MD-CNN-AE with linear activation. We further assess the proposed MD-CNN-AE by applying it to a transient process of a circular cylinder wake in order to examine its capability for flows containing high-order spatial modes. The present results suggest a great potential for the nonlinear MD-CNN-AE to be used for feature extraction of flow fields in lower dimensions than POD, while retaining interpretable relationships with the conventional POD modes.
ArticleNumber A13
Author Murata, Takaaki
Fukagata, Koji
Fukami, Kai
Author_xml – sequence: 1
  givenname: Takaaki
  surname: Murata
  fullname: Murata, Takaaki
– sequence: 2
  givenname: Kai
  surname: Fukami
  fullname: Fukami, Kai
– sequence: 3
  givenname: Koji
  orcidid: 0000-0003-4805-238X
  surname: Fukagata
  fullname: Fukagata, Koji
BookMark eNptkMtKAzEUhoNUsFZ3PkDArVNzMplLllK8QdGFug5pLpg6k9RkxtK38Vl8MmesK3H1w-H7D-d8x2jigzcInQGZA4Hqcm3bOSXA5zWlB2gKrORZVbJigqaEUJoBUHKEjlNaEwI54dUUPT0E3zhvZMRt0AZro0K7Ccl1Lni8dd0rVsF_hKYfB7LB3vTxJ7ptiG8J2xCxbXqnvz71zsvWqXSCDq1skjn9zRl6ubl-Xtxly8fb-8XVMlO0zLtsZUypoAaykrom3BRK05UuKee6AK4qaxWzpiBMlobmDAoJNWUDZioOTKp8hs73ezcxvPcmdWId-jgcmQTNi5xUhAEdKLqnVAwpRWOFcp0cv-midI0AIkZ5YpAnRnlikDeULv6UNtG1Mu7-x78B5Wt1jg
CitedBy_id crossref_primary_10_3390_en15041513
crossref_primary_10_1016_j_physd_2023_133857
crossref_primary_10_1016_j_physrep_2023_10_005
crossref_primary_10_3390_electronics11244159
crossref_primary_10_1007_s11071_022_07733_8
crossref_primary_10_1063_5_0194598
crossref_primary_10_1017_jfm_2021_812
crossref_primary_10_1088_2632_2153_abdaf8
crossref_primary_10_1186_s40323_024_00273_3
crossref_primary_10_3390_app15147720
crossref_primary_10_1016_j_engappai_2025_110463
crossref_primary_10_1038_s43588_022_00264_7
crossref_primary_10_1016_j_icheatmasstransfer_2024_107271
crossref_primary_10_1142_S0217984925502008
crossref_primary_10_1017_dce_2022_2
crossref_primary_10_1017_jfm_2024_16
crossref_primary_10_1063_5_0244416
crossref_primary_10_1016_j_ymssp_2024_111376
crossref_primary_10_1016_j_cpc_2023_109022
crossref_primary_10_1109_ACCESS_2025_3542173
crossref_primary_10_1088_1873_7005_ade8a2
crossref_primary_10_1017_jfm_2022_908
crossref_primary_10_1016_j_rinp_2023_106540
crossref_primary_10_3390_s25165149
crossref_primary_10_1016_j_oceaneng_2023_114823
crossref_primary_10_1137_22M1521407
crossref_primary_10_1016_j_cma_2025_118045
crossref_primary_10_1063_5_0224262
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127351
crossref_primary_10_1063_5_0238413
crossref_primary_10_1063_5_0236511
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1016_j_jbiomech_2023_111759
crossref_primary_10_1007_s11831_025_10231_w
crossref_primary_10_1016_j_jcp_2021_110666
crossref_primary_10_1038_s41467_023_42213_6
crossref_primary_10_3390_en15228719
crossref_primary_10_1016_j_cma_2023_116155
crossref_primary_10_1016_j_ast_2025_110407
crossref_primary_10_1016_j_ast_2024_109255
crossref_primary_10_1051_e3sconf_202339601044
crossref_primary_10_1007_s11071_025_10953_3
crossref_primary_10_1080_19942060_2022_2044383
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1063_5_0190452
crossref_primary_10_1088_1361_6463_ada167
crossref_primary_10_1007_s00162_019_00512_z
crossref_primary_10_1088_1873_7005_ade338
crossref_primary_10_1016_j_eswa_2022_117038
crossref_primary_10_1016_j_cmpb_2024_108466
crossref_primary_10_1051_matecconf_202235503009
crossref_primary_10_1007_s00162_020_00528_w
crossref_primary_10_1007_s10915_022_02059_4
crossref_primary_10_1063_5_0211680
crossref_primary_10_1007_s10489_024_06074_w
crossref_primary_10_1016_j_cma_2022_114800
crossref_primary_10_1016_j_oceaneng_2023_113935
crossref_primary_10_3390_fluids6090332
crossref_primary_10_1016_j_cma_2024_116983
crossref_primary_10_1016_j_jcp_2023_112475
crossref_primary_10_1088_1742_6596_2694_1_012009
crossref_primary_10_1063_5_0065637
crossref_primary_10_3390_math12070998
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1016_j_jocs_2022_101750
crossref_primary_10_1017_jfm_2022_1052
crossref_primary_10_2514_1_J063360
crossref_primary_10_1016_j_buildenv_2025_113309
crossref_primary_10_1109_JMMCT_2023_3301978
crossref_primary_10_3390_jmse10091285
crossref_primary_10_1016_j_ces_2022_117795
crossref_primary_10_1088_1873_7005_abb91d
crossref_primary_10_1137_20M1344263
crossref_primary_10_2514_1_J059424
crossref_primary_10_1016_j_buildenv_2024_112287
crossref_primary_10_1016_j_physd_2022_133454
crossref_primary_10_1177_0954410021999864
crossref_primary_10_1016_j_pnucene_2025_105874
crossref_primary_10_1017_jfm_2021_697
crossref_primary_10_1063_5_0221740
crossref_primary_10_1088_1361_6439_adf650
crossref_primary_10_1103_PhysRevFluids_8_094605
crossref_primary_10_1007_s00162_020_00518_y
crossref_primary_10_1016_j_ast_2022_107931
crossref_primary_10_1016_j_cpc_2025_109501
crossref_primary_10_3390_aerospace10121029
crossref_primary_10_1016_j_cma_2025_117782
crossref_primary_10_1016_j_apm_2022_09_034
crossref_primary_10_1063_5_0087977
crossref_primary_10_1016_j_oceaneng_2024_117284
crossref_primary_10_3390_app15158418
crossref_primary_10_1108_HFF_10_2023_0659
crossref_primary_10_1016_j_engappai_2025_111752
crossref_primary_10_1063_5_0077768
crossref_primary_10_1007_s00162_021_00580_0
crossref_primary_10_1063_5_0220129
crossref_primary_10_1016_j_physd_2024_134470
crossref_primary_10_1016_j_rineng_2025_107165
crossref_primary_10_1016_j_ces_2023_118933
crossref_primary_10_1016_j_ast_2023_108354
crossref_primary_10_1038_s41467_024_45578_4
crossref_primary_10_1103_PhysRevFluids_8_064401
crossref_primary_10_1007_s10596_024_10320_y
crossref_primary_10_1016_j_ast_2023_108198
crossref_primary_10_1016_j_paerosci_2021_100725
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1007_s00521_021_06799_6
crossref_primary_10_1063_5_0221595
crossref_primary_10_1007_s10409_023_22491_x
crossref_primary_10_1007_s42979_024_02602_0
crossref_primary_10_1016_j_cma_2025_117790
crossref_primary_10_3390_aerospace9020096
crossref_primary_10_1063_5_0266302
crossref_primary_10_1016_j_oceaneng_2024_117551
crossref_primary_10_2514_1_B38780
crossref_primary_10_1016_j_oceaneng_2024_118089
crossref_primary_10_2514_1_J064790
crossref_primary_10_1007_s00521_021_06633_z
crossref_primary_10_1007_s00158_025_04052_5
crossref_primary_10_1063_5_0280421
crossref_primary_10_1016_j_ijheatfluidflow_2022_108997
crossref_primary_10_1016_j_compfluid_2023_106047
crossref_primary_10_1038_s41598_022_07515_7
crossref_primary_10_3390_rs14133228
crossref_primary_10_1177_03019233241278460
crossref_primary_10_1038_s41598_023_31677_7
crossref_primary_10_1177_14680874251330354
crossref_primary_10_1088_2632_2153_ad63f4
crossref_primary_10_1063_5_0223064
crossref_primary_10_1007_s11071_023_09232_w
crossref_primary_10_1017_dce_2024_31
crossref_primary_10_1016_j_engappai_2023_105978
crossref_primary_10_1016_j_cpc_2025_109728
crossref_primary_10_1016_j_flowmeasinst_2024_102682
crossref_primary_10_1017_jfm_2023_716
crossref_primary_10_1063_5_0265738
crossref_primary_10_1016_j_jmapro_2022_02_053
crossref_primary_10_1016_j_future_2024_05_005
crossref_primary_10_1016_j_jcp_2023_112537
crossref_primary_10_2514_1_J061647
crossref_primary_10_1017_jfm_2020_948
crossref_primary_10_1017_jfm_2023_154
crossref_primary_10_3390_app122312075
crossref_primary_10_1007_s42979_021_00867_3
crossref_primary_10_1007_s10915_023_02176_8
crossref_primary_10_1016_j_aitf_2025_100003
crossref_primary_10_1016_j_cma_2022_115771
crossref_primary_10_1016_j_compfluid_2023_105883
crossref_primary_10_1063_5_0179132
crossref_primary_10_1109_ACCESS_2021_3139622
crossref_primary_10_3390_aerospace11070506
crossref_primary_10_1016_j_compfluid_2025_106815
crossref_primary_10_1017_dce_2024_46
crossref_primary_10_1088_1742_6596_2311_1_012023
crossref_primary_10_3390_en14051310
crossref_primary_10_1016_j_ast_2022_107629
crossref_primary_10_1017_jfm_2020_817
crossref_primary_10_1017_jfm_2023_720
crossref_primary_10_1109_ACCESS_2020_2993562
crossref_primary_10_1080_10407790_2024_2379006
crossref_primary_10_2514_1_J062629
Cites_doi 10.2514/1.J058462
10.1017/jfm.2018.980
10.1063/1.3210772
10.1146/annurev-fluid-010816-060042
10.1103/PhysRevFluids.4.064603
10.1098/rspa.2006.1785
10.1146/annurev-fluid-010719-060214
10.1016/S0893-6080(98)00010-0
10.1017/9781108380690
10.1017/jfm.2016.678
10.1146/annurev-fluid-010518-040547
10.1098/rspa.2020.0097
10.1017/S0022112010001217
10.1063/1.5067313
10.1126/science.290.5500.2323
10.1103/PhysRevFluids.4.054603
10.1063/1.2033624
10.2514/1.J056060
10.1016/0893-6080(89)90014-2
10.1006/jcph.2002.7146
10.1017/jfm.2016.615
10.1017/S0022112007005204
10.1126/science.1127647
10.1017/jfm.2016.803
10.1017/jfm.2017.637
10.1017/jfm.2019.238
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2019.822
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2019_822
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
AAYXX
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABQTM
ABQWD
ABROB
ABTCQ
ABUFD
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ABZCX
ACBEA
ACBMC
ACDLN
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACUIJ
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADKIL
ADMLS
ADOVH
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEUYN
AFFHD
AFFUJ
AFKQG
AFKRA
AFLOS
AFLVW
AFRAH
AFUTZ
AFZFC
AGABE
AGBYD
AGJUD
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
AKMAY
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CITATION
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WYP
ZYDXJ
~02
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c263t-bee6c1810bad809e5cd2bd6299d519c7ffc4fe504a6e23415a1824e5ce7914ac3
IEDL.DBID BENPR
ISICitedReferencesCount 256
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506238300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Sat Aug 16 15:21:01 EDT 2025
Sat Nov 29 04:24:22 EST 2025
Tue Nov 18 21:53:56 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-bee6c1810bad809e5cd2bd6299d519c7ffc4fe504a6e23415a1824e5ce7914ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4805-238X
PQID 2353070412
PQPubID 34769
ParticipantIDs proquest_journals_2353070412
crossref_citationtrail_10_1017_jfm_2019_822
crossref_primary_10_1017_jfm_2019_822
PublicationCentury 2000
PublicationDate 2020-01-10
PublicationDateYYYYMMDD 2020-01-10
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-10
  day: 10
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationYear 2020
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References S002211201900822X_r28
S002211201900822X_r29
S002211201900822X_r26
S002211201900822X_r27
LeCun (S002211201900822X_r16) 1998; 86
S002211201900822X_r1
S002211201900822X_r2
S002211201900822X_r3
S002211201900822X_r4
S002211201900822X_r20
S002211201900822X_r21
S002211201900822X_r6
S002211201900822X_r7
Loiseau (S002211201900822X_r18) 2020
S002211201900822X_r24
S002211201900822X_r8
S002211201900822X_r9
S002211201900822X_r25
S002211201900822X_r22
S002211201900822X_r23
S002211201900822X_r17
Kor (S002211201900822X_r14) 2017; 12
S002211201900822X_r15
Lumley (S002211201900822X_r19) 1967
S002211201900822X_r31
S002211201900822X_r10
S002211201900822X_r32
San (S002211201900822X_r30) 2018; 97
S002211201900822X_r13
S002211201900822X_r33
Brunton (S002211201900822X_r5) 2015; 67
S002211201900822X_r11
S002211201900822X_r34
S002211201900822X_r12
References_xml – ident: S002211201900822X_r34
  doi: 10.2514/1.J058462
– ident: S002211201900822X_r28
  doi: 10.1017/jfm.2018.980
– volume-title: Model Order Reduction
  year: 2020
  ident: S002211201900822X_r18
– ident: S002211201900822X_r22
  doi: 10.1063/1.3210772
– ident: S002211201900822X_r27
  doi: 10.1146/annurev-fluid-010816-060042
– ident: S002211201900822X_r11
  doi: 10.1103/PhysRevFluids.4.064603
– ident: S002211201900822X_r1
  doi: 10.1098/rspa.2006.1785
– ident: S002211201900822X_r6
  doi: 10.1146/annurev-fluid-010719-060214
– ident: S002211201900822X_r25
  doi: 10.1016/S0893-6080(98)00010-0
– ident: S002211201900822X_r8
– ident: S002211201900822X_r4
  doi: 10.1017/9781108380690
– ident: S002211201900822X_r23
  doi: 10.1017/jfm.2016.678
– ident: S002211201900822X_r7
  doi: 10.1146/annurev-fluid-010518-040547
– ident: S002211201900822X_r9
  doi: 10.1098/rspa.2020.0097
– ident: S002211201900822X_r31
  doi: 10.1017/S0022112010001217
– ident: S002211201900822X_r24
  doi: 10.1063/1.5067313
– ident: S002211201900822X_r26
  doi: 10.1126/science.290.5500.2323
– volume: 86
  start-page: 2278
  year: 1998
  ident: S002211201900822X_r16
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– ident: S002211201900822X_r32
  doi: 10.1103/PhysRevFluids.4.054603
– volume: 97
  year: 2018
  ident: S002211201900822X_r30
  article-title: Extreme learning machine for reduced order modeling of turbulent geophysical flows
  publication-title: Phys. Rev. E
– ident: S002211201900822X_r3
  doi: 10.1063/1.2033624
– volume: 67
  year: 2015
  ident: S002211201900822X_r5
  article-title: Closed-loop turbulence control: progress and challenges
  publication-title: Appl. Mech. Rev.
– volume: 12
  year: 2017
  ident: S002211201900822X_r14
  article-title: A unified interpolation stencil for ghost-cell immersed boundary method for flow around complex geometries
  publication-title: J. Fluid Sci. Technol.
– ident: S002211201900822X_r33
  doi: 10.2514/1.J056060
– ident: S002211201900822X_r2
  doi: 10.1016/0893-6080(89)90014-2
– ident: S002211201900822X_r21
  doi: 10.1006/jcph.2002.7146
– ident: S002211201900822X_r17
  doi: 10.1017/jfm.2016.615
– ident: S002211201900822X_r29
  doi: 10.1017/S0022112007005204
– ident: S002211201900822X_r12
  doi: 10.1126/science.1127647
– ident: S002211201900822X_r15
  doi: 10.1017/jfm.2016.803
– volume-title: Atmospheric Turbulence and Radio Wave Propagation
  year: 1967
  ident: S002211201900822X_r19
– ident: S002211201900822X_r20
  doi: 10.1017/jfm.2017.637
– ident: S002211201900822X_r10
  doi: 10.1017/jfm.2019.238
– ident: S002211201900822X_r13
SSID ssj0013097
Score 2.6959298
Snippet We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Activation
Artificial neural networks
Circular cylinders
Computational fluid dynamics
Cylinders
Decomposition
Dimensions
Feature extraction
Fields
Flow mapping
Fluid dynamics
Fluid flow
Fluid mechanics
Hydrodynamics
Machine learning
Methods
Modes
Neural networks
Nonlinear systems
Nonlinearity
Proper Orthogonal Decomposition
Reynolds number
Velocity
Title Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
URI https://www.proquest.com/docview/2353070412
Volume 882
WOSCitedRecordID wos000506238300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RAhIMPAqIQkEeYEIRjuvEyYQAtWKAUvGQKpYocWypCJXStPx-7hKXxwALizPEUqLc-b6z78t3AEdGRBxDr4-ZG-5VpdHGizKhPItwr2KNiJ6WOrPXqteLBoO47w7cCkernMfEMlDnr5rOyE9FOyD3lL44G7951DWKqquuhUYNFkmpTNZh8aLT69991RF4rOZ64ZhZcEd9J9HoZ0s_ovvoKkL8BKWfMbkEmu76f19xA9ZcisnOK5_YhAUzasC6SzeZW8xFA1a_aRE2YLnkgupiC-56lXxGOmHUJ4flhnjnjtzF6OCWEVfd-Sw-iTQxy0vJKC8Y5sHMvsyGOcurfvfFNjx2Ow-XV55rveBpEbanXmZMqBH8eZbmEY9NoHOR5SFiV44pn1bWamlNwGUaGoFAGKS4T5E4zajYl6lu70B99Doyu8CM0VHM28LqMJPKhFFMxVZuZShsxJVqwsn82yfa6ZJTe4yXpCKgqQQtlZClErRUE44_Z48rPY5f5rXmNkrcqiySLwPt_X17H1YE7as50f1aUJ9OZuYAlvT7dFhMDp2THULtRtyWY59GdY9jP3j6AE8h36I
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTuQwEC2xiuHA0gMadh_ghCLcbnecHBBCLALRtBACiVtInLLECBqm08yIn5pvpCpxWA5w48Aph1iOEr9UPdvPrwDWUUWSQm-TmBvNVTVaDKJMmcBRujexpYyelj6zHdPtRldX8dkQ_K_PwrCsso6JZaDO7y2vkW-pVpvhqZtq5-FPwFWjeHe1LqFRweIEn_7RlK3YPt6n8d1Q6vDgYu8o8FUFAqvC1iDIEENLeU1maR7JGNs2V1keUljOic1Y45zVDttSpyEqivHtlCi4pmZo4qZObYv6HYZRTTMh_q9O1dnrroWMTe1OTjxGeqE9W1T_dnzsvUnAVOp9CnyfAcq0djj93T7IDEx5Ai12K8TPwhD2GjDtybTwoapowOQbp8UGjJdKV1v8hPNuZQ6S9gVXARI5sqreS9cEL0sLVuL7P5KexI6f5aXUyxeCWL5wt483ucifeukddToHl1_yxvMw0rvv4S8QiDaKZUs5G2baYBjFvJUsnQ6Vi6QxC7BZj3Vives6F_-4TSp5nUkIGQkjIyFkLMDGS-uHym3kg3bLNSYSH3OK5BUQi5_fXoOJo4vTTtI57p4swQ_FKwiShY3LMDLoP-IKjNm_g5uiv1rCW8D1V8PnGaMbOMo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+mode+decomposition+with+convolutional+neural+networks+for+fluid+dynamics&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Murata%2C+Takaaki&rft.au=Fukami%2C+Kai&rft.au=Fukagata%2C+Koji&rft.date=2020-01-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=882&rft_id=info:doi/10.1017%2Fjfm.2019.822
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon