Nonlinear mode decomposition with convolutional neural networks for fluid dynamics
We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number $Re_{D}=100$ as a test case. The flow...
Uloženo v:
| Vydáno v: | Journal of fluid mechanics Ročník 882 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge
Cambridge University Press
10.01.2020
|
| Témata: | |
| ISSN: | 0022-1120, 1469-7645 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number
$Re_{D}=100$
as a test case. The flow attributes are mapped into two modes in the latent space and then these two modes are visualized in the physical space. Because the MD-CNN-AEs with nonlinear activation functions show lower reconstruction errors than the proper orthogonal decomposition (POD), the nonlinearity contained in the activation function is considered the key to improving the capability of the model. It is found by applying POD to each field decomposed using the MD-CNN-AE with hyperbolic tangent activation such that a single nonlinear MD-CNN-AE mode contains multiple orthogonal bases, in contrast to the linear methods, i.e. POD and MD-CNN-AE with linear activation. We further assess the proposed MD-CNN-AE by applying it to a transient process of a circular cylinder wake in order to examine its capability for flows containing high-order spatial modes. The present results suggest a great potential for the nonlinear MD-CNN-AE to be used for feature extraction of flow fields in lower dimensions than POD, while retaining interpretable relationships with the conventional POD modes. |
|---|---|
| AbstractList | We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number \(Re_{D}=100\) as a test case. The flow attributes are mapped into two modes in the latent space and then these two modes are visualized in the physical space. Because the MD-CNN-AEs with nonlinear activation functions show lower reconstruction errors than the proper orthogonal decomposition (POD), the nonlinearity contained in the activation function is considered the key to improving the capability of the model. It is found by applying POD to each field decomposed using the MD-CNN-AE with hyperbolic tangent activation such that a single nonlinear MD-CNN-AE mode contains multiple orthogonal bases, in contrast to the linear methods, i.e. POD and MD-CNN-AE with linear activation. We further assess the proposed MD-CNN-AE by applying it to a transient process of a circular cylinder wake in order to examine its capability for flows containing high-order spatial modes. The present results suggest a great potential for the nonlinear MD-CNN-AE to be used for feature extraction of flow fields in lower dimensions than POD, while retaining interpretable relationships with the conventional POD modes. We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder (MD-CNN-AE). The proposed method is applied to a flow around a circular cylinder at the Reynolds number $Re_{D}=100$ as a test case. The flow attributes are mapped into two modes in the latent space and then these two modes are visualized in the physical space. Because the MD-CNN-AEs with nonlinear activation functions show lower reconstruction errors than the proper orthogonal decomposition (POD), the nonlinearity contained in the activation function is considered the key to improving the capability of the model. It is found by applying POD to each field decomposed using the MD-CNN-AE with hyperbolic tangent activation such that a single nonlinear MD-CNN-AE mode contains multiple orthogonal bases, in contrast to the linear methods, i.e. POD and MD-CNN-AE with linear activation. We further assess the proposed MD-CNN-AE by applying it to a transient process of a circular cylinder wake in order to examine its capability for flows containing high-order spatial modes. The present results suggest a great potential for the nonlinear MD-CNN-AE to be used for feature extraction of flow fields in lower dimensions than POD, while retaining interpretable relationships with the conventional POD modes. |
| ArticleNumber | A13 |
| Author | Murata, Takaaki Fukagata, Koji Fukami, Kai |
| Author_xml | – sequence: 1 givenname: Takaaki surname: Murata fullname: Murata, Takaaki – sequence: 2 givenname: Kai surname: Fukami fullname: Fukami, Kai – sequence: 3 givenname: Koji orcidid: 0000-0003-4805-238X surname: Fukagata fullname: Fukagata, Koji |
| BookMark | eNptkMtKAzEUhoNUsFZ3PkDArVNzMplLllK8QdGFug5pLpg6k9RkxtK38Vl8MmesK3H1w-H7D-d8x2jigzcInQGZA4Hqcm3bOSXA5zWlB2gKrORZVbJigqaEUJoBUHKEjlNaEwI54dUUPT0E3zhvZMRt0AZro0K7Ccl1Lni8dd0rVsF_hKYfB7LB3vTxJ7ptiG8J2xCxbXqnvz71zsvWqXSCDq1skjn9zRl6ubl-Xtxly8fb-8XVMlO0zLtsZUypoAaykrom3BRK05UuKee6AK4qaxWzpiBMlobmDAoJNWUDZioOTKp8hs73ezcxvPcmdWId-jgcmQTNi5xUhAEdKLqnVAwpRWOFcp0cv-midI0AIkZ5YpAnRnlikDeULv6UNtG1Mu7-x78B5Wt1jg |
| CitedBy_id | crossref_primary_10_3390_en15041513 crossref_primary_10_1016_j_physd_2023_133857 crossref_primary_10_1016_j_physrep_2023_10_005 crossref_primary_10_3390_electronics11244159 crossref_primary_10_1007_s11071_022_07733_8 crossref_primary_10_1063_5_0194598 crossref_primary_10_1017_jfm_2021_812 crossref_primary_10_1088_2632_2153_abdaf8 crossref_primary_10_1186_s40323_024_00273_3 crossref_primary_10_3390_app15147720 crossref_primary_10_1016_j_engappai_2025_110463 crossref_primary_10_1038_s43588_022_00264_7 crossref_primary_10_1016_j_icheatmasstransfer_2024_107271 crossref_primary_10_1142_S0217984925502008 crossref_primary_10_1017_dce_2022_2 crossref_primary_10_1017_jfm_2024_16 crossref_primary_10_1063_5_0244416 crossref_primary_10_1016_j_ymssp_2024_111376 crossref_primary_10_1016_j_cpc_2023_109022 crossref_primary_10_1109_ACCESS_2025_3542173 crossref_primary_10_1088_1873_7005_ade8a2 crossref_primary_10_1017_jfm_2022_908 crossref_primary_10_1016_j_rinp_2023_106540 crossref_primary_10_3390_s25165149 crossref_primary_10_1016_j_oceaneng_2023_114823 crossref_primary_10_1137_22M1521407 crossref_primary_10_1016_j_cma_2025_118045 crossref_primary_10_1063_5_0224262 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127351 crossref_primary_10_1063_5_0238413 crossref_primary_10_1063_5_0236511 crossref_primary_10_1007_s00162_023_00663_0 crossref_primary_10_1016_j_jbiomech_2023_111759 crossref_primary_10_1007_s11831_025_10231_w crossref_primary_10_1016_j_jcp_2021_110666 crossref_primary_10_1038_s41467_023_42213_6 crossref_primary_10_3390_en15228719 crossref_primary_10_1016_j_cma_2023_116155 crossref_primary_10_1016_j_ast_2025_110407 crossref_primary_10_1016_j_ast_2024_109255 crossref_primary_10_1051_e3sconf_202339601044 crossref_primary_10_1007_s11071_025_10953_3 crossref_primary_10_1080_19942060_2022_2044383 crossref_primary_10_1016_j_paerosci_2025_101130 crossref_primary_10_1063_5_0190452 crossref_primary_10_1088_1361_6463_ada167 crossref_primary_10_1007_s00162_019_00512_z crossref_primary_10_1088_1873_7005_ade338 crossref_primary_10_1016_j_eswa_2022_117038 crossref_primary_10_1016_j_cmpb_2024_108466 crossref_primary_10_1051_matecconf_202235503009 crossref_primary_10_1007_s00162_020_00528_w crossref_primary_10_1007_s10915_022_02059_4 crossref_primary_10_1063_5_0211680 crossref_primary_10_1007_s10489_024_06074_w crossref_primary_10_1016_j_cma_2022_114800 crossref_primary_10_1016_j_oceaneng_2023_113935 crossref_primary_10_3390_fluids6090332 crossref_primary_10_1016_j_cma_2024_116983 crossref_primary_10_1016_j_jcp_2023_112475 crossref_primary_10_1088_1742_6596_2694_1_012009 crossref_primary_10_1063_5_0065637 crossref_primary_10_3390_math12070998 crossref_primary_10_1038_s42005_024_01521_z crossref_primary_10_1016_j_jocs_2022_101750 crossref_primary_10_1017_jfm_2022_1052 crossref_primary_10_2514_1_J063360 crossref_primary_10_1016_j_buildenv_2025_113309 crossref_primary_10_1109_JMMCT_2023_3301978 crossref_primary_10_3390_jmse10091285 crossref_primary_10_1016_j_ces_2022_117795 crossref_primary_10_1088_1873_7005_abb91d crossref_primary_10_1137_20M1344263 crossref_primary_10_2514_1_J059424 crossref_primary_10_1016_j_buildenv_2024_112287 crossref_primary_10_1016_j_physd_2022_133454 crossref_primary_10_1177_0954410021999864 crossref_primary_10_1016_j_pnucene_2025_105874 crossref_primary_10_1017_jfm_2021_697 crossref_primary_10_1063_5_0221740 crossref_primary_10_1088_1361_6439_adf650 crossref_primary_10_1103_PhysRevFluids_8_094605 crossref_primary_10_1007_s00162_020_00518_y crossref_primary_10_1016_j_ast_2022_107931 crossref_primary_10_1016_j_cpc_2025_109501 crossref_primary_10_3390_aerospace10121029 crossref_primary_10_1016_j_cma_2025_117782 crossref_primary_10_1016_j_apm_2022_09_034 crossref_primary_10_1063_5_0087977 crossref_primary_10_1016_j_oceaneng_2024_117284 crossref_primary_10_3390_app15158418 crossref_primary_10_1108_HFF_10_2023_0659 crossref_primary_10_1016_j_engappai_2025_111752 crossref_primary_10_1063_5_0077768 crossref_primary_10_1007_s00162_021_00580_0 crossref_primary_10_1063_5_0220129 crossref_primary_10_1016_j_physd_2024_134470 crossref_primary_10_1016_j_rineng_2025_107165 crossref_primary_10_1016_j_ces_2023_118933 crossref_primary_10_1016_j_ast_2023_108354 crossref_primary_10_1038_s41467_024_45578_4 crossref_primary_10_1103_PhysRevFluids_8_064401 crossref_primary_10_1007_s10596_024_10320_y crossref_primary_10_1016_j_ast_2023_108198 crossref_primary_10_1016_j_paerosci_2021_100725 crossref_primary_10_1017_jfm_2025_91 crossref_primary_10_1007_s00521_021_06799_6 crossref_primary_10_1063_5_0221595 crossref_primary_10_1007_s10409_023_22491_x crossref_primary_10_1007_s42979_024_02602_0 crossref_primary_10_1016_j_cma_2025_117790 crossref_primary_10_3390_aerospace9020096 crossref_primary_10_1063_5_0266302 crossref_primary_10_1016_j_oceaneng_2024_117551 crossref_primary_10_2514_1_B38780 crossref_primary_10_1016_j_oceaneng_2024_118089 crossref_primary_10_2514_1_J064790 crossref_primary_10_1007_s00521_021_06633_z crossref_primary_10_1007_s00158_025_04052_5 crossref_primary_10_1063_5_0280421 crossref_primary_10_1016_j_ijheatfluidflow_2022_108997 crossref_primary_10_1016_j_compfluid_2023_106047 crossref_primary_10_1038_s41598_022_07515_7 crossref_primary_10_3390_rs14133228 crossref_primary_10_1177_03019233241278460 crossref_primary_10_1038_s41598_023_31677_7 crossref_primary_10_1177_14680874251330354 crossref_primary_10_1088_2632_2153_ad63f4 crossref_primary_10_1063_5_0223064 crossref_primary_10_1007_s11071_023_09232_w crossref_primary_10_1017_dce_2024_31 crossref_primary_10_1016_j_engappai_2023_105978 crossref_primary_10_1016_j_cpc_2025_109728 crossref_primary_10_1016_j_flowmeasinst_2024_102682 crossref_primary_10_1017_jfm_2023_716 crossref_primary_10_1063_5_0265738 crossref_primary_10_1016_j_jmapro_2022_02_053 crossref_primary_10_1016_j_future_2024_05_005 crossref_primary_10_1016_j_jcp_2023_112537 crossref_primary_10_2514_1_J061647 crossref_primary_10_1017_jfm_2020_948 crossref_primary_10_1017_jfm_2023_154 crossref_primary_10_3390_app122312075 crossref_primary_10_1007_s42979_021_00867_3 crossref_primary_10_1007_s10915_023_02176_8 crossref_primary_10_1016_j_aitf_2025_100003 crossref_primary_10_1016_j_cma_2022_115771 crossref_primary_10_1016_j_compfluid_2023_105883 crossref_primary_10_1063_5_0179132 crossref_primary_10_1109_ACCESS_2021_3139622 crossref_primary_10_3390_aerospace11070506 crossref_primary_10_1016_j_compfluid_2025_106815 crossref_primary_10_1017_dce_2024_46 crossref_primary_10_1088_1742_6596_2311_1_012023 crossref_primary_10_3390_en14051310 crossref_primary_10_1016_j_ast_2022_107629 crossref_primary_10_1017_jfm_2020_817 crossref_primary_10_1017_jfm_2023_720 crossref_primary_10_1109_ACCESS_2020_2993562 crossref_primary_10_1080_10407790_2024_2379006 crossref_primary_10_2514_1_J062629 |
| Cites_doi | 10.2514/1.J058462 10.1017/jfm.2018.980 10.1063/1.3210772 10.1146/annurev-fluid-010816-060042 10.1103/PhysRevFluids.4.064603 10.1098/rspa.2006.1785 10.1146/annurev-fluid-010719-060214 10.1016/S0893-6080(98)00010-0 10.1017/9781108380690 10.1017/jfm.2016.678 10.1146/annurev-fluid-010518-040547 10.1098/rspa.2020.0097 10.1017/S0022112010001217 10.1063/1.5067313 10.1126/science.290.5500.2323 10.1103/PhysRevFluids.4.054603 10.1063/1.2033624 10.2514/1.J056060 10.1016/0893-6080(89)90014-2 10.1006/jcph.2002.7146 10.1017/jfm.2016.615 10.1017/S0022112007005204 10.1126/science.1127647 10.1017/jfm.2016.803 10.1017/jfm.2017.637 10.1017/jfm.2019.238 |
| ContentType | Journal Article |
| Copyright | 2019 Cambridge University Press |
| Copyright_xml | – notice: 2019 Cambridge University Press |
| DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DOI | 10.1017/jfm.2019.822 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest research library Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1469-7645 |
| ExternalDocumentID | 10_1017_jfm_2019_822 |
| GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB AAYXX ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUFD ABUWG ABVKB ABVZP ABXAU ABXHF ABZCX ACBEA ACBMC ACDLN ACGFO ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADKIL ADMLS ADOVH ADVJH AEBAK AEMTW AENEX AENGE AEUYN AFFHD AFFUJ AFKQG AFKRA AFLOS AFLVW AFRAH AFUTZ AFZFC AGABE AGBYD AGJUD AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CITATION CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WYP ZYDXJ ~02 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c263t-bee6c1810bad809e5cd2bd6299d519c7ffc4fe504a6e23415a1824e5ce7914ac3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 256 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506238300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1120 |
| IngestDate | Sat Aug 16 15:21:01 EDT 2025 Sat Nov 29 04:24:22 EST 2025 Tue Nov 18 21:53:56 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://www.cambridge.org/core/terms |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-bee6c1810bad809e5cd2bd6299d519c7ffc4fe504a6e23415a1824e5ce7914ac3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4805-238X |
| PQID | 2353070412 |
| PQPubID | 34769 |
| ParticipantIDs | proquest_journals_2353070412 crossref_citationtrail_10_1017_jfm_2019_822 crossref_primary_10_1017_jfm_2019_822 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-10 |
| PublicationDateYYYYMMDD | 2020-01-10 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of fluid mechanics |
| PublicationYear | 2020 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | S002211201900822X_r28 S002211201900822X_r29 S002211201900822X_r26 S002211201900822X_r27 LeCun (S002211201900822X_r16) 1998; 86 S002211201900822X_r1 S002211201900822X_r2 S002211201900822X_r3 S002211201900822X_r4 S002211201900822X_r20 S002211201900822X_r21 S002211201900822X_r6 S002211201900822X_r7 Loiseau (S002211201900822X_r18) 2020 S002211201900822X_r24 S002211201900822X_r8 S002211201900822X_r9 S002211201900822X_r25 S002211201900822X_r22 S002211201900822X_r23 S002211201900822X_r17 Kor (S002211201900822X_r14) 2017; 12 S002211201900822X_r15 Lumley (S002211201900822X_r19) 1967 S002211201900822X_r31 S002211201900822X_r10 S002211201900822X_r32 San (S002211201900822X_r30) 2018; 97 S002211201900822X_r13 S002211201900822X_r33 Brunton (S002211201900822X_r5) 2015; 67 S002211201900822X_r11 S002211201900822X_r34 S002211201900822X_r12 |
| References_xml | – ident: S002211201900822X_r34 doi: 10.2514/1.J058462 – ident: S002211201900822X_r28 doi: 10.1017/jfm.2018.980 – volume-title: Model Order Reduction year: 2020 ident: S002211201900822X_r18 – ident: S002211201900822X_r22 doi: 10.1063/1.3210772 – ident: S002211201900822X_r27 doi: 10.1146/annurev-fluid-010816-060042 – ident: S002211201900822X_r11 doi: 10.1103/PhysRevFluids.4.064603 – ident: S002211201900822X_r1 doi: 10.1098/rspa.2006.1785 – ident: S002211201900822X_r6 doi: 10.1146/annurev-fluid-010719-060214 – ident: S002211201900822X_r25 doi: 10.1016/S0893-6080(98)00010-0 – ident: S002211201900822X_r8 – ident: S002211201900822X_r4 doi: 10.1017/9781108380690 – ident: S002211201900822X_r23 doi: 10.1017/jfm.2016.678 – ident: S002211201900822X_r7 doi: 10.1146/annurev-fluid-010518-040547 – ident: S002211201900822X_r9 doi: 10.1098/rspa.2020.0097 – ident: S002211201900822X_r31 doi: 10.1017/S0022112010001217 – ident: S002211201900822X_r24 doi: 10.1063/1.5067313 – ident: S002211201900822X_r26 doi: 10.1126/science.290.5500.2323 – volume: 86 start-page: 2278 year: 1998 ident: S002211201900822X_r16 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – ident: S002211201900822X_r32 doi: 10.1103/PhysRevFluids.4.054603 – volume: 97 year: 2018 ident: S002211201900822X_r30 article-title: Extreme learning machine for reduced order modeling of turbulent geophysical flows publication-title: Phys. Rev. E – ident: S002211201900822X_r3 doi: 10.1063/1.2033624 – volume: 67 year: 2015 ident: S002211201900822X_r5 article-title: Closed-loop turbulence control: progress and challenges publication-title: Appl. Mech. Rev. – volume: 12 year: 2017 ident: S002211201900822X_r14 article-title: A unified interpolation stencil for ghost-cell immersed boundary method for flow around complex geometries publication-title: J. Fluid Sci. Technol. – ident: S002211201900822X_r33 doi: 10.2514/1.J056060 – ident: S002211201900822X_r2 doi: 10.1016/0893-6080(89)90014-2 – ident: S002211201900822X_r21 doi: 10.1006/jcph.2002.7146 – ident: S002211201900822X_r17 doi: 10.1017/jfm.2016.615 – ident: S002211201900822X_r29 doi: 10.1017/S0022112007005204 – ident: S002211201900822X_r12 doi: 10.1126/science.1127647 – ident: S002211201900822X_r15 doi: 10.1017/jfm.2016.803 – volume-title: Atmospheric Turbulence and Radio Wave Propagation year: 1967 ident: S002211201900822X_r19 – ident: S002211201900822X_r20 doi: 10.1017/jfm.2017.637 – ident: S002211201900822X_r10 doi: 10.1017/jfm.2019.238 – ident: S002211201900822X_r13 |
| SSID | ssj0013097 |
| Score | 2.6959298 |
| Snippet | We present a new nonlinear mode decomposition method to visualize decomposed flow fields, named the mode decomposing convolutional neural network autoencoder... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Activation Artificial neural networks Circular cylinders Computational fluid dynamics Cylinders Decomposition Dimensions Feature extraction Fields Flow mapping Fluid dynamics Fluid flow Fluid mechanics Hydrodynamics Machine learning Methods Modes Neural networks Nonlinear systems Nonlinearity Proper Orthogonal Decomposition Reynolds number Velocity |
| Title | Nonlinear mode decomposition with convolutional neural networks for fluid dynamics |
| URI | https://www.proquest.com/docview/2353070412 |
| Volume | 882 |
| WOSCitedRecordID | wos000506238300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BCxIMFAqIQqk8wIQiEufpCQGiYkClKg9VLFHih1RUtaVp-f34HJfSARYWZ8hJiXyffWf783cAZ5GMcqEQvMLPnSBxhZPpsOfkUciY4n4ijdrn60Pc6ST9PuvaDbfC0ioXc6KZqMWY4x75JfVDhGfg0avJh4NVo_B01ZbQWIcqqiRQQ917Wp4iuCxeqIXrvMK1xHeUjH5XeA3d00ChdDUkrc7IJsy0a__9wV3YsQkmuS4RsQdrclSHmk02iR3KRR22fygR1mHTMEF5sQ-9TimekU0JVskhQiLr3FK7CG7bEmSqW8TqL6EipnkYPnlBdBZM1HA-EESU1e6LA3hp3z3f3ju28ILDaeTPnFzKiOvQ7-aZSFwmQy5oLiIduYRO-HisFA-UDN0giyTVYTDM9Col0GYyZl6Qcf8QKqPxSB4BYYliQglOXcaDWOZM5iHn2EuxF-jVZQMuFn2fcqtKjsUxhmlJP4tT7akUPZVqTzXg_Nt6Uqpx_GLXXPgotWOySJcOOv779QlsUVxVu0j2a0JlNp3LU9jgn7NBMW1B9eau0-21NNToo2m7LQM73XbDty-tnt_H |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VUlQ4kBJaUSiwB3KqLOz1-mMPCKFClKghqmiocnPt_ZBSpWkbp6D-qf7GztjrfhzKLQdOPni1lr3Pb2Z3374B-BSbuNCWwKvDwhOpr70cw55XxJGUVoWpqdw-jwbJcJiOx_JgBa6bszAkq2w4sSJqfaZojfwzDyOCpwj41_MLj6pG0e5qU0KjhsW-ufqLU7byS_87jm-H8-6P0V7Pc1UFPMXjcOEVxsQK45pf5Dr1pYmU5oWOkZY1ZjMqsVYJayJf5LHhyPFRjim4wGYmkYHIVYj9PoGngti_kgoe3u1a-DJp3Mkxj_Gd0J4sqk8sHXsPEJicPwyBDyNAFda6rf_tg2zAS5dAs2814l_Bipm1oeWSaeaoqmzDi3tOi214VildVfkafg1rc5B8zqgKENOGVPVOusZoWZqREt_9kfgkcvysLpVevmSY5TM7vZxopq9m-Sl2ugm_l_LGW7A6O5uZN8BkaqW2WnFfKpGYQpoiUopGJQkEzp63YbcZ60w513Uq_jHNanldkiEyMkJGhsjYhs5t6_PabeSRdjsNJjLHOWV2B4i3_779EdZ7o5-DbNAf7r-D55xWEHwSNu7A6mJ-ad7DmvqzmJTzDxW8GRwvGz43e705oQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+mode+decomposition+with+convolutional+neural+networks+for+fluid%C2%A0dynamics&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Murata%2C+Takaaki&rft.au=Fukami%2C+Kai&rft.au=Fukagata%2C+Koji&rft.date=2020-01-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=882&rft_id=info:doi/10.1017%2Fjfm.2019.822&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2019_822 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |