Adaptive OFDM With Index Modulation for Two-Hop Relay-Assisted Networks

In this paper, we propose an adaptive orthogonal frequency-division multiplexing with index modulation (OFDM-IM) for two-hop relay networks. In contrast to the traditional OFDM-IM with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM-IM, the mapping schemes between a bit stre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on wireless communications Ročník 17; číslo 3; s. 1923 - 1936
Hlavní autoři: Shuping Dang, Coon, Justin P., Gaojie Chen
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.03.2018
Témata:
ISSN:1536-1276
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose an adaptive orthogonal frequency-division multiplexing with index modulation (OFDM-IM) for two-hop relay networks. In contrast to the traditional OFDM-IM with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM-IM, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. In addition, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity, and symbol error rate are given in closed form for decode-and-forward relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.
ISSN:1536-1276
DOI:10.1109/TWC.2017.2787056