A Fast Technique for Smart Home Management: ADP With Temporal Difference Learning

This paper presents a computationally efficient smart home energy management system (SHEMS) using an approximate dynamic programming (ADP) approach with temporal difference learning for scheduling distributed energy resources. This approach improves the performance of an SHEMS by incorporating stoch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid Jg. 9; H. 4; S. 3291 - 3303
Hauptverfasser: Keerthisinghe, Chanaka, Verbic, Gregor, Chapman, Archie C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2018
Schlagworte:
ISSN:1949-3053, 1949-3061
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a computationally efficient smart home energy management system (SHEMS) using an approximate dynamic programming (ADP) approach with temporal difference learning for scheduling distributed energy resources. This approach improves the performance of an SHEMS by incorporating stochastic energy consumption and PV generation models over a horizon of several days, using only the computational power of existing smart meters. In this paper, we consider a PV-storage (thermal and battery) system, however, our method can extend to multiple controllable devices without the exponential growth in computation that other methods such as dynamic programming (DP) and stochastic mixed-integer linear programming (MILP) suffer from. Specifically, probability distributions associated with the PV output and demand are kernel estimated from empirical data collected during the Smart Grid Smart City project in NSW, Australia. Our results show that ADP computes a solution much faster than both DP and stochastic MILP, and provides only a slight reduction in quality compared to the optimal DP solution. In addition, incorporating a thermal energy storage unit using the proposed ADP-based SHEMS reduces the daily electricity cost by up to 26.3% without a noticeable increase in the computational burden. Moreover, ADP with a two-day decision horizon reduces the average yearly electricity cost by a 4.6% over a daily DP method, yet requires less than half of the computational effort.
AbstractList This paper presents a computationally efficient smart home energy management system (SHEMS) using an approximate dynamic programming (ADP) approach with temporal difference learning for scheduling distributed energy resources. This approach improves the performance of an SHEMS by incorporating stochastic energy consumption and PV generation models over a horizon of several days, using only the computational power of existing smart meters. In this paper, we consider a PV-storage (thermal and battery) system, however, our method can extend to multiple controllable devices without the exponential growth in computation that other methods such as dynamic programming (DP) and stochastic mixed-integer linear programming (MILP) suffer from. Specifically, probability distributions associated with the PV output and demand are kernel estimated from empirical data collected during the Smart Grid Smart City project in NSW, Australia. Our results show that ADP computes a solution much faster than both DP and stochastic MILP, and provides only a slight reduction in quality compared to the optimal DP solution. In addition, incorporating a thermal energy storage unit using the proposed ADP-based SHEMS reduces the daily electricity cost by up to 26.3% without a noticeable increase in the computational burden. Moreover, ADP with a two-day decision horizon reduces the average yearly electricity cost by a 4.6% over a daily DP method, yet requires less than half of the computational effort.
Author Chapman, Archie C.
Keerthisinghe, Chanaka
Verbic, Gregor
Author_xml – sequence: 1
  givenname: Chanaka
  orcidid: 0000-0003-2803-5224
  surname: Keerthisinghe
  fullname: Keerthisinghe, Chanaka
  email: chanaka.keerthisinghe@sydney.edu.au
  organization: School of Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Gregor
  orcidid: 0000-0003-4949-768X
  surname: Verbic
  fullname: Verbic, Gregor
  email: gregor.verbic@sydney.edu.au
  organization: School of Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia
– sequence: 3
  givenname: Archie C.
  orcidid: 0000-0002-5055-3004
  surname: Chapman
  fullname: Chapman, Archie C.
  email: archie.chapman@sydney.edu.au
  organization: School of Electrical and Information Engineering, University of Sydney, Sydney, NSW, Australia
BookMark eNp9kMFOAjEQhhuDiYjcTbz0BRbbnW6beiMgYIJRA8bjptudhRq2i9168O1dAuHgwbn8c_i_Sea7Jj3feCTklrMR50zfr1fzUcq4HKUy1UKxC9LnWugEmOS9857BFRm27SfrBgC6ap-8jenMtJGu0W69-_pGWjWBrmoTIl00NdJn480Ga_TxgY6nr_TDxW3XrvdNMDs6dVWFAb1FukQTvPObG3JZmV2Lw1MOyPvscT1ZJMuX-dNkvExsKiEmRmlIrWBaGmkVh0zIkjHkUhepwFIJzgQziAAKM1sBFEqWhVVpYQpeqgIGRB7v2tC0bcAqty6a6Bofg3G7nLP84Cbv3OQHN_nJTQeyP-A-uO7hn_-QuyPiEPFcV0pkGhj8ArUJb8c
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1109_TII_2018_2839059
crossref_primary_10_1049_iet_gtd_2019_1744
crossref_primary_10_1016_j_epsr_2022_108120
crossref_primary_10_1016_j_ijepes_2022_108359
crossref_primary_10_1109_TII_2021_3095141
crossref_primary_10_1109_TSG_2025_3547985
crossref_primary_10_1109_TSG_2019_2956785
crossref_primary_10_1109_JSYST_2020_3033128
crossref_primary_10_1016_j_ijepes_2019_105542
crossref_primary_10_1109_JIOT_2022_3152586
crossref_primary_10_1002_acs_3282
crossref_primary_10_1007_s10462_022_10261_x
crossref_primary_10_1109_ACCESS_2024_3471076
crossref_primary_10_1109_TSTE_2019_2951616
crossref_primary_10_1016_j_epsr_2022_108119
crossref_primary_10_3390_en11123494
crossref_primary_10_1016_j_ijepes_2021_107413
crossref_primary_10_3390_en13102562
crossref_primary_10_1109_TIA_2020_2981916
crossref_primary_10_3390_en16083517
crossref_primary_10_1109_TSTE_2024_3361674
crossref_primary_10_1007_s00202_025_02958_3
crossref_primary_10_1016_j_jobe_2024_110206
crossref_primary_10_1109_TIA_2023_3348768
crossref_primary_10_1049_iet_rpg_2019_0536
crossref_primary_10_1002_jnm_3015
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_1016_j_enconman_2021_114322
crossref_primary_10_1016_j_rser_2020_110000
crossref_primary_10_1177_0957650920942998
crossref_primary_10_3390_en12081501
crossref_primary_10_1109_TSTE_2018_2855039
crossref_primary_10_1016_j_scs_2021_102969
crossref_primary_10_3390_pr13072148
crossref_primary_10_1016_j_ifacsc_2020_100106
crossref_primary_10_1109_TSTE_2020_3021226
crossref_primary_10_1109_TPWRS_2022_3227345
crossref_primary_10_1016_j_apenergy_2019_113669
crossref_primary_10_1109_TSG_2022_3225805
crossref_primary_10_1109_ACCESS_2020_3024901
crossref_primary_10_1016_j_seta_2020_100834
crossref_primary_10_1109_TSG_2018_2878445
crossref_primary_10_1109_TSTE_2022_3153609
crossref_primary_10_1109_TSG_2020_2978061
crossref_primary_10_1016_j_segan_2023_101133
crossref_primary_10_1109_TCST_2022_3208822
crossref_primary_10_1109_TIE_2018_2850023
crossref_primary_10_1016_j_asoc_2020_106882
crossref_primary_10_1109_TSG_2018_2798039
crossref_primary_10_1016_j_energy_2023_129593
crossref_primary_10_1016_j_renene_2022_04_085
crossref_primary_10_1109_TSG_2021_3111029
crossref_primary_10_1109_TCST_2021_3132662
crossref_primary_10_1016_j_compind_2023_103974
crossref_primary_10_1109_ACCESS_2020_3023665
crossref_primary_10_1109_TSTE_2019_2927237
crossref_primary_10_1109_ACCESS_2021_3071993
crossref_primary_10_3390_en16093897
crossref_primary_10_1109_TSG_2020_2971427
crossref_primary_10_1016_j_energy_2025_135386
crossref_primary_10_1002_ecj_12452
crossref_primary_10_1016_j_neucom_2023_127185
crossref_primary_10_1109_TSTE_2021_3086846
crossref_primary_10_1016_j_epsr_2020_106543
crossref_primary_10_3390_app11010158
Cites_doi 10.1109/TSG.2012.2212729
10.1109/IGCC.2014.7039146
10.1002/9780470182963
10.1109/AUPEC.2014.6966552
10.1109/TSG.2013.2293131
10.1109/CDC.2011.6161081
10.1109/TII.2012.2230637
10.1109/ISGT-Asia.2011.6167090
10.1109/ISGT.2011.5759191
10.1109/PSCC.2016.7540924
10.1287/ijoc.1110.0470
10.1109/FSKD.2011.6019758
10.1287/mnsc.47.8.1101.10231
10.1109/TSG.2012.2201182
10.1109/TSG.2010.2053053
10.1109/ISGTEurope.2013.6695439
10.1109/PSCC.2014.7038377
10.1109/SmartGridComm.2011.6102379
10.1109/TSG.2013.2279110
10.1162/neco.1994.6.6.1185
10.1109/ADPRL.2014.7010626
10.1109/TPWRS.2015.2414880
10.1109/TSG.2016.2516559
10.1109/TSG.2012.2212032
10.1109/ISGT.2011.5759152
10.1109/JPROC.2011.2109671
10.1109/ISGTEurope.2013.6695463
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSG.2016.2629470
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 3303
ExternalDocumentID 10_1109_TSG_2016_2629470
7745930
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-a7932c4096a6c713546d00e169b24ed741040aee337e5cf33b76dbc72bab1d7b3
IEDL.DBID RIE
ISICitedReferencesCount 91
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443196400081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Tue Nov 18 21:49:35 EST 2025
Sat Nov 29 03:45:51 EST 2025
Wed Aug 27 02:50:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-a7932c4096a6c713546d00e169b24ed741040aee337e5cf33b76dbc72bab1d7b3
ORCID 0000-0003-4949-768X
0000-0002-5055-3004
0000-0003-2803-5224
PageCount 13
ParticipantIDs crossref_primary_10_1109_TSG_2016_2629470
ieee_primary_7745930
crossref_citationtrail_10_1109_TSG_2016_2629470
PublicationCentury 2000
PublicationDate 2018-July
2018-7-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref37
ref15
ref36
ref14
ref31
ref33
ref32
ref2
ref39
ref38
ref16
ref19
ref18
(ref1) 2014
powell (ref30) 2005
(ref3) 0
(ref11) 2015
bertsekas (ref21) 2005; 1
salas (ref25) 2013
(ref9) 2015
wang (ref17) 2012
ref24
ref23
ref26
ref20
ref22
(ref35) 2015
(ref41) 2012
ref28
ref27
(ref10) 2014
ref29
ref8
ref7
(ref4) 0
ref6
ratnam (ref34) 2015
ref5
ref40
(ref12) 2014
References_xml – ident: ref13
  doi: 10.1109/TSG.2012.2212729
– ident: ref40
  doi: 10.1109/IGCC.2014.7039146
– ident: ref29
  doi: 10.1002/9780470182963
– ident: ref14
  doi: 10.1109/AUPEC.2014.6966552
– ident: ref33
  doi: 10.1109/TSG.2013.2293131
– ident: ref18
  doi: 10.1109/CDC.2011.6161081
– ident: ref16
  doi: 10.1109/TII.2012.2230637
– year: 2012
  ident: ref41
  article-title: Water heating data collection and analysis
– ident: ref22
  doi: 10.1109/ISGT-Asia.2011.6167090
– ident: ref5
  doi: 10.1109/ISGT.2011.5759191
– year: 2014
  ident: ref1
  article-title: Australian government bureau of resources and energy economics
– ident: ref24
  doi: 10.1109/PSCC.2016.7540924
– ident: ref28
  doi: 10.1287/ijoc.1110.0470
– year: 2015
  ident: ref35
  publication-title: Smart-Grid Smart-City Customer Trial Data
– year: 0
  ident: ref4
  publication-title: Flexible Pricing FAQs
– year: 0
  ident: ref3
  publication-title: BGE Time of Use Pricing
– volume: 1
  year: 2005
  ident: ref21
  publication-title: Dynamic Programming and Optimal Control
– year: 2014
  ident: ref12
  article-title: The economics of grid defection when and where distributed solar generation plus storage competes with traditional utility service
– year: 2015
  ident: ref9
  publication-title: Australian PV Market Since April 2001
– ident: ref39
  doi: 10.1109/FSKD.2011.6019758
– year: 2013
  ident: ref25
  publication-title: Benchmarking A Scalable Approximate Dynamic Programming Algorithm for Stochastic Control of Multidimensional Energy Storage Problems
– ident: ref37
  doi: 10.1287/mnsc.47.8.1101.10231
– start-page: 1
  year: 2015
  ident: ref34
  article-title: Residential load and rooftop PV generation: An Australian distribution network dataset
  publication-title: Int J Sustain Energy
– ident: ref6
  doi: 10.1109/TSG.2012.2201182
– ident: ref20
  doi: 10.1109/TSG.2010.2053053
– ident: ref32
  doi: 10.1109/ISGTEurope.2013.6695439
– year: 2005
  ident: ref30
  publication-title: Approximate Dynamic Programming for Large-Scale Resource Allocation Problems
– ident: ref23
  doi: 10.1109/PSCC.2014.7038377
– ident: ref38
  doi: 10.1109/SmartGridComm.2011.6102379
– start-page: 1
  year: 2012
  ident: ref17
  article-title: Optimal dispatching model of smart home energy management system
  publication-title: Proc Innov Smart Grid Technol (ISGT-ASIA)
– ident: ref7
  doi: 10.1109/TSG.2013.2279110
– year: 2015
  ident: ref11
  article-title: Emerging technologies information
– ident: ref36
  doi: 10.1162/neco.1994.6.6.1185
– ident: ref26
  doi: 10.1109/ADPRL.2014.7010626
– ident: ref8
  doi: 10.1109/TPWRS.2015.2414880
– ident: ref2
  doi: 10.1109/TSG.2016.2516559
– ident: ref15
  doi: 10.1109/TSG.2012.2212032
– year: 2014
  ident: ref10
  article-title: The integrated grid realizing the full value of central and distributed energy resources
– ident: ref19
  doi: 10.1109/ISGT.2011.5759152
– ident: ref27
  doi: 10.1109/JPROC.2011.2109671
– ident: ref31
  doi: 10.1109/ISGTEurope.2013.6695463
SSID ssj0000333629
Score 2.5140598
Snippet This paper presents a computationally efficient smart home energy management system (SHEMS) using an approximate dynamic programming (ADP) approach with...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 3291
SubjectTerms approximate dynamic programming
Australia
Batteries
Demand response
distributed energy resources
Dynamic programming
Energy management
Optimization
smart home energy management
Smart homes
stochastic mixed-integer linear programming
Stochastic processes
temporal difference learning
value function approximation
Title A Fast Technique for Smart Home Management: ADP With Temporal Difference Learning
URI https://ieeexplore.ieee.org/document/7745930
Volume 9
WOSCitedRecordID wos000443196400081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoL3lgQSJtajt2whZRClNV1CK6RfEjUKm0qE35_ZwTN3RASCxRFJ2l6PPrznf-PoSuJSdSExZ4oQ6lx0xGvFQp38t8rjPKtcic2ITo98PxOBrU0G11F8YYUxSfmZZ9LXL5eq5W9qisDa5KEFEI0LeE4OVdreo8xacU1uKoSCIzm84P6Dor6Uft0fDRlnHxFgEbZpWJN3ahDVmVYlfp7f_vfw7QnvMecVx29yGqmdkR2t3gFGyg5xj30mWOR2tyVgxuKR5-wBDBVhMd_xS83OG4O8Cvk_wdrAuGqinuOsEUZbCjXn07Ri-9h9H9k-d0EzxFOM29FOYcURC48ZQrK8HHuPZ90-GRJMxo8CFg5qbGUCpMoDJKpeBaKkFkKjtaSHqC6rP5zJwibPO4EFGwQKY22BIysmsCg2cgMprJJmqvcUyUIxW32hbTpAgu_CgB5BOLfOKQb6KbqsVnSajxh23Dgl7ZObzPfv98jnagcVjW0l6ger5YmUu0rb7yyXJxVYyWb91HukQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4QNFEPvtCIzz14MbFQdrfb1hsRESMSDBi5Nd1HlQTBQPH3u1uWysGYeGmaZto0375mdma_D-CSM8wlpp4TyIA7VCXYiYVwncRlMiFM-okVm_A7nWAwCLsFuM7PwiilsuIzVTG3WS5fTsTcbJVVtavihUQH6GtGOcue1sp3VFxC9GwcZmlkahL6HlnmJd2w2u_dm0IuVsHahhpt4pV1aEVYJVtXmjv_-6Nd2Lb-I6ovGnwPCmq8D1srrIIleK6jZjxLUX9Jz4q0Y4p6H7qTIKOKjn5KXm5QvdFFr8P0XVtnHFUj1LCSKUIhS776dgAvzbv-bcuxygmOwIykTqxHHRY6dGMxE0aEjzLpuqrGQo6pktqL0GM3VooQX3kiIYT7THLhYx7zmvQ5OYTieDJWR4BMJlfHFNTjsQm3fB6aWYHqq-cnJOFlqC5xjISlFTfqFqMoCy_cMNLIRwb5yCJfhqv8jc8FpcYftiUDem5n8T7-_fEFbLT6T-2o_dB5PIFN_aFgUVl7CsV0OldnsC6-0uFsep71nG_DVr2N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fast+Technique+for+Smart+Home+Management%3A+ADP+With+Temporal+Difference+Learning&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Keerthisinghe%2C+Chanaka&rft.au=Verbic%2C+Gregor&rft.au=Chapman%2C+Archie+C.&rft.date=2018-07-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=9&rft.issue=4&rft.spage=3291&rft.epage=3303&rft_id=info:doi/10.1109%2FTSG.2016.2629470&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2016_2629470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon