NRC-VABS: Normalized Reparameterized Conditional Variational Autoencoder with applied beam search in latent space for drug molecule design
Designing an optimal and desired drug molecule structure is a challenging problem. Most of the existing solutions/representations reported in the literature for this problem are complex and time consuming. This is due to larger datasets with longer training periods and long learning dependencies. De...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 240; S. 122396 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.04.2024
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Designing an optimal and desired drug molecule structure is a challenging problem. Most of the existing solutions/representations reported in the literature for this problem are complex and time consuming. This is due to larger datasets with longer training periods and long learning dependencies. Deep learning’s generative model can be used to enable chemical modelling to generate molecules without explicit complex molecular rules. However, Deep Learning models (LSTM based VAE) suffer from posterior collapse, larger vocabulary of datasets and sub-optimal latent space searching mechanisms. Motivated by this, we propose a recently researched idea of Normalized Reparameterized conditional Variational Autoencoder with applied beam search in latent space (NRC-VABS). The resulting model with normalized vocabulary, conditionally augmented dataset and revised/reparameterized loss function addresses posterior collapse and constructs continuous and consistent latent space for exploitation by beam search during generation stages. The conditions/properties of desirable molecules are specified through a condition vector and is used while training as well as during generation of drug molecules. Beam search is coined on improved normalized SMILES representation. The idea entails by creating samples with beam search and filtering them depending on their condition and identifying the optimal molecules with desired properties. Normalization also improves the information and reduces complexity in latent space. To address the diversity of the generated molecules, a tunable parameter (D) is also used. Various performance evaluation metrics, such as validity, uniqueness, novelty, accuracy, and Frechet ChemNet Distance are used to evaluate the NRC-VABS on benchmark data sets such as GDB13, MOSES and subset of 250k ZINC molecules. The performance of the NRC-VABS is compared with state-of-the-art peer techniques. NRC-VABS generates molecules at validity range from 92% to 84%, Accuracy 89% to 97% at varied level of diversities (D = 1, D = 2 and D = 3). An application of the proposal in terms interpolation and controlling other (2 of 3) properties by varying one (1 of 3) property at a time. Generating only target molecules with desired properties and maintaining diversity improves novel molecules while greatly reducing time complexity as only novel and desired molecules can be generated.
•NRC-VABS improved SMILES notation for reducing complexity in the SMILES.•A solution to posterior collapse is proposed that enhance the NRC-VABS performance.•Latent Space is explored by using beam search algorithm. |
|---|---|
| AbstractList | Designing an optimal and desired drug molecule structure is a challenging problem. Most of the existing solutions/representations reported in the literature for this problem are complex and time consuming. This is due to larger datasets with longer training periods and long learning dependencies. Deep learning’s generative model can be used to enable chemical modelling to generate molecules without explicit complex molecular rules. However, Deep Learning models (LSTM based VAE) suffer from posterior collapse, larger vocabulary of datasets and sub-optimal latent space searching mechanisms. Motivated by this, we propose a recently researched idea of Normalized Reparameterized conditional Variational Autoencoder with applied beam search in latent space (NRC-VABS). The resulting model with normalized vocabulary, conditionally augmented dataset and revised/reparameterized loss function addresses posterior collapse and constructs continuous and consistent latent space for exploitation by beam search during generation stages. The conditions/properties of desirable molecules are specified through a condition vector and is used while training as well as during generation of drug molecules. Beam search is coined on improved normalized SMILES representation. The idea entails by creating samples with beam search and filtering them depending on their condition and identifying the optimal molecules with desired properties. Normalization also improves the information and reduces complexity in latent space. To address the diversity of the generated molecules, a tunable parameter (D) is also used. Various performance evaluation metrics, such as validity, uniqueness, novelty, accuracy, and Frechet ChemNet Distance are used to evaluate the NRC-VABS on benchmark data sets such as GDB13, MOSES and subset of 250k ZINC molecules. The performance of the NRC-VABS is compared with state-of-the-art peer techniques. NRC-VABS generates molecules at validity range from 92% to 84%, Accuracy 89% to 97% at varied level of diversities (D = 1, D = 2 and D = 3). An application of the proposal in terms interpolation and controlling other (2 of 3) properties by varying one (1 of 3) property at a time. Generating only target molecules with desired properties and maintaining diversity improves novel molecules while greatly reducing time complexity as only novel and desired molecules can be generated.
•NRC-VABS improved SMILES notation for reducing complexity in the SMILES.•A solution to posterior collapse is proposed that enhance the NRC-VABS performance.•Latent Space is explored by using beam search algorithm. |
| ArticleNumber | 122396 |
| Author | Kumar, Kamal Kumar, Neeraj Bhadwal, Arun Singh |
| Author_xml | – sequence: 1 givenname: Arun Singh orcidid: 0000-0002-1708-367X surname: Bhadwal fullname: Bhadwal, Arun Singh email: arunsingh.phd19@nituk.ac.in organization: University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand, 248007, India – sequence: 2 givenname: Kamal orcidid: 0000-0001-8063-8650 surname: Kumar fullname: Kumar, Kamal email: kamalkumar@nituk.ac.in organization: National Institute of Technology, Srinagar, Uttarakhand, 246174, India – sequence: 3 givenname: Neeraj surname: Kumar fullname: Kumar, Neeraj email: neeraj.kumar@thapar.edu organization: Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India |
| BookMark | eNp9kMlOwzAURS0EEmX4AVb-gQQPjZ0gNqVikhBIBbq1HPsFXCVxZLsg-AS-mg6sWHR1312cJ91zhPZ73wNCZ5TklFBxvsghfuqcEcZzyhivxB4a0VLyTMiK76MRqQqZjakcH6KjGBeEUEmIHKGfx9k0m0-uni_wow-dbt03WDyDQQfdQYKw6VPfW5ec73WL5zo4_XdPlslDb7yFgD9desd6GFq3AmrQHY6gg3nHrsetTtAnHAdtADc-YBuWb7jzLZhlC9hCdG_9CTpodBvh9C-P0evN9cv0Lnt4ur2fTh4ywwRPWWUrI2VDjWVAjKRCWlY3Y1NW1ghSF1QWgtHamEZYTsaltWVTFiAabmsuOePHqNz-NcHHGKBRxqXNohS0axUlau1ULdTaqVo7VVunK5T9Q4fgOh2-dkOXWwhWoz4cBBWNW1kD6wKYpKx3u_BfKJGVdA |
| CitedBy_id | crossref_primary_10_1007_s11227_024_06250_2 crossref_primary_10_1007_s00521_025_11213_6 crossref_primary_10_3390_ijms25116186 crossref_primary_10_1186_s13321_024_00916_y |
| Cites_doi | 10.1021/acscentsci.7b00572 10.1145/3610533 10.1021/ci990307l 10.1016/S1056-8719(00)00107-6 10.1093/bioinformatics/btac814 10.3389/fphar.2020.565644 10.1186/s13321-018-0286-7 10.2533/chimia.2020.241 10.1186/s13321-023-00696-x 10.1016/j.knosys.2023.110429 10.1093/nar/gkw1074 10.1098/rsif.2017.0387 10.1186/s13321-018-0287-6 10.1016/j.drudis.2018.01.039 10.2533/chimia.2019.1018 10.1145/3388440.3412458 10.1007/s10822-013-9672-4 10.2174/092986709787002817 10.1021/ci049714+ 10.1021/acs.jcim.2c00487 10.1093/bib/bbx044 10.1186/s13321-020-00441-8 10.1021/acs.molpharmaceut.5b00982 10.1186/s13321-019-0393-0 10.15252/msb.20156651 10.1038/ncomms13427 10.1021/ci00057a005 10.1021/acs.jcim.8b00234 10.1186/s13321-017-0235-x 10.1162/neco.1989.1.2.270 10.1021/ar500432k 10.1021/acscentsci.7b00512 10.1021/acs.jcim.8b00706 10.1021/acs.jcim.7b00457 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2023.122396 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2023_122396 S0957417423028981 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT ~HD |
| ID | FETCH-LOGICAL-c263t-9d9c77f1cd2e0c7167d2bf4c89dc60b5175621bccf6d3048dd8f85e6f3db37323 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001117544700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Tue Nov 18 21:32:28 EST 2025 Sat Nov 29 06:15:34 EST 2025 Tue Jun 18 08:50:57 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Posterior collapse Beam search Deep Learning Conditioned Variational Autoencoder De novo molecule generation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c263t-9d9c77f1cd2e0c7167d2bf4c89dc60b5175621bccf6d3048dd8f85e6f3db37323 |
| ORCID | 0000-0002-1708-367X 0000-0001-8063-8650 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_eswa_2023_122396 crossref_primary_10_1016_j_eswa_2023_122396 elsevier_sciencedirect_doi_10_1016_j_eswa_2023_122396 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-15 |
| PublicationDateYYYYMMDD | 2024-04-15 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Rigoni, Navarin, Sperduti (b38) 2020 Landrum (b20) 2016 Lipinski (b25) 2000; 44 Irwin, Shoichet (b16) 2005; 45 O’Boyle, Dalke (b30) 2018 Yan, C., Wang, S., Yang, J., Xu, T., & Huang, J. (2020). Re-balancing variational autoencoder loss for molecule sequence generation. In Williams, Zipser (b45) 1989; 1 Bhadwal, Kumar, Kumar (b6) 2023; 268 Angermueller, Pärnamaa, Parts, Stegle (b2) 2016; 12 Arús-Pous, Awale, Probst, Reymond (b3) 2019; 73 Lim, Ryu, Kim, Kim (b24) 2018; 10 Neil, Segler, Guasch, Ahmed, Plumbley, Sellwood (b29) 2018 Gupta, Müller, Huisman, Fuchs, Schneider, Schneider (b14) 2018; 37 Bowman, Vilnis, Vinyals, Dai, Jozefowicz, Bengio (b8) 2015 Lee, Min (b21) 2022; 62 Prasanna, Doerksen (b35) 2009; 16 Olivecrona, Blaschke, Engkvist, Chen (b31) 2017; 9 Arús-Pous, Johansson, Prykhodko, Bjerrum, Tyrchan, Reymond (b4) 2019; 11 Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., et al. (2017). beta-vae: Learning basic visual concepts with a constrained variational framework. In Mamoshina, Vieira, Putin, Zhavoronkov (b26) 2016; 13 Visini, Arus-Pous, Awale, Reymond (b42) 2017; 57 . Skalic, Jiménez, Sabbadin, De Fabritiis (b41) 2019; 59 Schoenmaker, Béquignon, Jespers, van Westen (b39) 2023; 15 Gaulton, Hersey, Nowotka, Bento, Chambers, Mendez (b12) 2017; 45 Preuer, Renz, Unterthiner, Hochreiter, Klambauer (b36) 2018; 58 Miotto, Wang, Wang, Jiang, Dudley (b28) 2018; 19 Li, Zhang, Liu (b22) 2018; 10 Arús-Pous, Patronov, Bjerrum, Tyrchan, Reymond, Chen (b5) 2020; 12 Polishchuk, Madzhidov, Varnek (b33) 2013; 27 Krenn, Häse, Nigam, Friederich, Aspuru-Guzik (b18) 2020; 1 Dai, Tian, Dai, Skiena, Song (b11) 2018 Polykovskiy, Zhebrak, Sanchez-Lengeling, Golovanov, Tatanov, Belyaev (b34) 2020; 11 Ozerov, Lezhnina, Izumchenko, Artemov, Medintsev, Vanhaelen (b32) 2016; 7 Kusner, Paige, Hernández-Lobato (b19) 2017 Liao, Xie, Mamitsuka, Zhu (b23) 2023; 39 Wildman, Crippen (b44) 1999; 39 Zhang, Jiang, Cui, Garnett, Chen (b47) 2019; 32 Chen, Engkvist, Wang, Olivecrona, Blaschke (b9) 2018; 23 Segler, Kogej, Tyrchan, Waller (b40) 2018; 4 Alperstein, Cherkasov, Rolfe (b1) 2019 Reymond (b37) 2015; 48 (pp. 1–7). Kingma, Welling (b17) 2013 Ching, Himmelstein, Beaulieu-Jones, Kalinin, Do, Way (b10) 2018; 15 Weininger (b43) 1988; 28 Gómez-Bombarelli, Wei, Duvenaud, Hernández-Lobato, Sánchez-Lengeling, Sheberla (b13) 2018; 4 Bhadwal, Kumar, Kumar (b7) 2023 Meier, Bühlmann, Arús Pous, Reymond (b27) 2020; 74 10.1016/j.eswa.2023.122396_b46 Neil (10.1016/j.eswa.2023.122396_b29) 2018 Landrum (10.1016/j.eswa.2023.122396_b20) 2016 Arús-Pous (10.1016/j.eswa.2023.122396_b5) 2020; 12 Dai (10.1016/j.eswa.2023.122396_b11) 2018 Bowman (10.1016/j.eswa.2023.122396_b8) 2015 Irwin (10.1016/j.eswa.2023.122396_b16) 2005; 45 Preuer (10.1016/j.eswa.2023.122396_b36) 2018; 58 Liao (10.1016/j.eswa.2023.122396_b23) 2023; 39 Arús-Pous (10.1016/j.eswa.2023.122396_b4) 2019; 11 Wildman (10.1016/j.eswa.2023.122396_b44) 1999; 39 Li (10.1016/j.eswa.2023.122396_b22) 2018; 10 Meier (10.1016/j.eswa.2023.122396_b27) 2020; 74 Reymond (10.1016/j.eswa.2023.122396_b37) 2015; 48 Angermueller (10.1016/j.eswa.2023.122396_b2) 2016; 12 Lee (10.1016/j.eswa.2023.122396_b21) 2022; 62 Schoenmaker (10.1016/j.eswa.2023.122396_b39) 2023; 15 Prasanna (10.1016/j.eswa.2023.122396_b35) 2009; 16 Krenn (10.1016/j.eswa.2023.122396_b18) 2020; 1 Ozerov (10.1016/j.eswa.2023.122396_b32) 2016; 7 Polykovskiy (10.1016/j.eswa.2023.122396_b34) 2020; 11 Weininger (10.1016/j.eswa.2023.122396_b43) 1988; 28 Gómez-Bombarelli (10.1016/j.eswa.2023.122396_b13) 2018; 4 Bhadwal (10.1016/j.eswa.2023.122396_b7) 2023 10.1016/j.eswa.2023.122396_b15 Skalic (10.1016/j.eswa.2023.122396_b41) 2019; 59 Mamoshina (10.1016/j.eswa.2023.122396_b26) 2016; 13 Williams (10.1016/j.eswa.2023.122396_b45) 1989; 1 Kusner (10.1016/j.eswa.2023.122396_b19) 2017 Visini (10.1016/j.eswa.2023.122396_b42) 2017; 57 Segler (10.1016/j.eswa.2023.122396_b40) 2018; 4 Miotto (10.1016/j.eswa.2023.122396_b28) 2018; 19 Kingma (10.1016/j.eswa.2023.122396_b17) 2013 Polishchuk (10.1016/j.eswa.2023.122396_b33) 2013; 27 Arús-Pous (10.1016/j.eswa.2023.122396_b3) 2019; 73 Rigoni (10.1016/j.eswa.2023.122396_b38) 2020 Lim (10.1016/j.eswa.2023.122396_b24) 2018; 10 Ching (10.1016/j.eswa.2023.122396_b10) 2018; 15 Bhadwal (10.1016/j.eswa.2023.122396_b6) 2023; 268 Chen (10.1016/j.eswa.2023.122396_b9) 2018; 23 Gupta (10.1016/j.eswa.2023.122396_b14) 2018; 37 Lipinski (10.1016/j.eswa.2023.122396_b25) 2000; 44 Gaulton (10.1016/j.eswa.2023.122396_b12) 2017; 45 Olivecrona (10.1016/j.eswa.2023.122396_b31) 2017; 9 Zhang (10.1016/j.eswa.2023.122396_b47) 2019; 32 Alperstein (10.1016/j.eswa.2023.122396_b1) 2019 O’Boyle (10.1016/j.eswa.2023.122396_b30) 2018 |
| References_xml | – reference: Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., et al. (2017). beta-vae: Learning basic visual concepts with a constrained variational framework. In – volume: 11 year: 2020 ident: b34 article-title: Molecular sets (MOSES): A benchmarking platform for molecular generation models publication-title: Frontiers in Pharmacology – year: 2019 ident: b1 article-title: All smiles variational autoencoder – volume: 4 start-page: 120 year: 2018 end-page: 131 ident: b40 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Central Science – volume: 9 start-page: 1 year: 2017 end-page: 14 ident: b31 article-title: Molecular de-novo design through deep reinforcement learning publication-title: Journal of Cheminformatics – volume: 48 start-page: 722 year: 2015 end-page: 730 ident: b37 article-title: The chemical space project publication-title: Accounts of Chemical Research – volume: 59 start-page: 1205 year: 2019 end-page: 1214 ident: b41 article-title: Shape-based generative modeling for de novo drug design publication-title: Journal of Chemical Information and Modeling – volume: 39 start-page: btac814 year: 2023 ident: b23 article-title: Sc2Mol: A scaffold-based two-step molecule generator with variational autoencoder and transformer publication-title: Bioinformatics – volume: 73 start-page: 1018 year: 2019 end-page: 1023 ident: b3 article-title: Exploring chemical space with machine learning publication-title: CHIMIA International Journal for Chemistry – volume: 58 start-page: 1736 year: 2018 end-page: 1741 ident: b36 article-title: Fréchet ChemNet distance: A metric for generative models for molecules in drug discovery publication-title: Journal of Chemical Information and Modeling – year: 2016 ident: b20 article-title: Rdkit: Open-source cheminformatics software – volume: 62 start-page: 2943 year: 2022 end-page: 2950 ident: b21 article-title: MGCVAE: Multi-objective inverse design via molecular graph conditional variational autoencoder publication-title: Journal of Chemical Information and Modeling – volume: 12 start-page: 1 year: 2020 end-page: 18 ident: b5 article-title: SMILES-based deep generative scaffold decorator for de-novo drug design publication-title: Journal of Cheminformatics – volume: 44 start-page: 235 year: 2000 end-page: 249 ident: b25 article-title: Drug-like properties and the causes of poor solubility and poor permeability publication-title: Journal of Pharmacological and Toxicological Methods – volume: 45 start-page: 177 year: 2005 end-page: 182 ident: b16 article-title: ZINC- a free database of commercially available compounds for virtual screening publication-title: Journal of Chemical Information and Modeling – reference: (pp. 1–7). – volume: 10 start-page: 1 year: 2018 end-page: 24 ident: b22 article-title: Multi-objective de novo drug design with conditional graph generative model publication-title: Journal of Cheminformatics – start-page: 1945 year: 2017 end-page: 1954 ident: b19 article-title: Grammar variational autoencoder publication-title: International conference on machine learning – volume: 268 year: 2023 ident: b6 article-title: GenSMILES: An enhanced validity conscious representation for inverse design of molecules publication-title: Knowledge-Based Systems – volume: 28 start-page: 31 year: 1988 end-page: 36 ident: b43 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: Journal of Chemical Information and Computer Sciences – volume: 10 start-page: 1 year: 2018 end-page: 9 ident: b24 article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design publication-title: Journal of Cheminformatics – volume: 19 start-page: 1236 year: 2018 end-page: 1246 ident: b28 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Briefings in Bioinformatics – year: 2018 ident: b29 article-title: Exploring deep recurrent models with reinforcement learning for molecule design – volume: 45 start-page: D945 year: 2017 end-page: D954 ident: b12 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Research – volume: 74 start-page: 241 year: 2020 end-page: 246 ident: b27 article-title: The Generated Databases (GDBs) as a source of 3d-shaped building blocks for use in medicinal chemistry and drug discovery publication-title: Chimia – volume: 11 start-page: 1 year: 2019 end-page: 13 ident: b4 article-title: Randomized SMILES strings improve the quality of molecular generative models publication-title: Journal of Cheminformatics – volume: 39 start-page: 868 year: 1999 end-page: 873 ident: b44 article-title: Prediction of physicochemical parameters by atomic contributions publication-title: Journal of Chemical Information and Computer Sciences – reference: Yan, C., Wang, S., Yang, J., Xu, T., & Huang, J. (2020). Re-balancing variational autoencoder loss for molecule sequence generation. In – year: 2018 ident: b30 article-title: DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures – year: 2015 ident: b8 article-title: Generating sentences from a continuous space – volume: 37 year: 2018 ident: b14 article-title: Generative recurrent networks for de novo drug design publication-title: Molecular Informatics – year: 2013 ident: b17 article-title: Auto-encoding variational bayes – start-page: 729 year: 2020 end-page: 736 ident: b38 article-title: Conditional constrained graph variational autoencoders for molecule design publication-title: 2020 IEEE symposium series on computational intelligence – volume: 15 year: 2018 ident: b10 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: Journal of the Royal Society Interface – volume: 32 year: 2019 ident: b47 article-title: D-vae: A variational autoencoder for directed acyclic graphs publication-title: Advances in Neural Information Processing Systems – volume: 57 start-page: 2707 year: 2017 end-page: 2718 ident: b42 article-title: Virtual exploration of the ring systems chemical universe publication-title: Journal of Chemical Information and Modeling – volume: 7 start-page: 13427 year: 2016 ident: b32 article-title: In silico pathway activation network decomposition analysis (iPANDA) as a method for biomarker development publication-title: Nature Communications – volume: 1 start-page: 270 year: 1989 end-page: 280 ident: b45 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Computation – volume: 23 start-page: 1241 year: 2018 end-page: 1250 ident: b9 article-title: The rise of deep learning in drug discovery publication-title: Drug Discovery Today – volume: 16 start-page: 21 year: 2009 end-page: 41 ident: b35 article-title: Topological polar surface area: A useful descriptor in 2D-QSAR publication-title: Current Medicinal Chemistry – volume: 27 start-page: 675 year: 2013 end-page: 679 ident: b33 article-title: Estimation of the size of drug-like chemical space based on GDB-17 data publication-title: Journal of Computer-Aided Molecular Design – reference: . – volume: 13 start-page: 1445 year: 2016 end-page: 1454 ident: b26 article-title: Applications of deep learning in biomedicine publication-title: Molecular Pharmaceutics – volume: 12 start-page: 878 year: 2016 ident: b2 article-title: Deep learning for computational biology publication-title: Molecular Systems Biology – year: 2018 ident: b11 article-title: Syntax-directed variational autoencoder for structured data – volume: 4 start-page: 268 year: 2018 end-page: 276 ident: b13 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Central Science – volume: 15 start-page: 22 year: 2023 ident: b39 article-title: UnCorrupt SMILES: a novel approach to de novo design publication-title: Journal of Cheminformatics – volume: 1 year: 2020 ident: b18 article-title: Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation publication-title: Machine Learning: Science and Technology – year: 2023 ident: b7 article-title: GMG-NCDVAE: Guided de novo molecule generation using NLP techniques and constrained diverse variational autoencoder publication-title: ACM Transactions on Asian and Low-Resource Language Information Processing – volume: 4 start-page: 268 issue: 2 year: 2018 ident: 10.1016/j.eswa.2023.122396_b13 article-title: Automatic chemical design using a data-driven continuous representation of molecules publication-title: ACS Central Science doi: 10.1021/acscentsci.7b00572 – year: 2023 ident: 10.1016/j.eswa.2023.122396_b7 article-title: GMG-NCDVAE: Guided de novo molecule generation using NLP techniques and constrained diverse variational autoencoder publication-title: ACM Transactions on Asian and Low-Resource Language Information Processing doi: 10.1145/3610533 – volume: 39 start-page: 868 issue: 5 year: 1999 ident: 10.1016/j.eswa.2023.122396_b44 article-title: Prediction of physicochemical parameters by atomic contributions publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci990307l – volume: 44 start-page: 235 issue: 1 year: 2000 ident: 10.1016/j.eswa.2023.122396_b25 article-title: Drug-like properties and the causes of poor solubility and poor permeability publication-title: Journal of Pharmacological and Toxicological Methods doi: 10.1016/S1056-8719(00)00107-6 – volume: 39 start-page: btac814 issue: 1 year: 2023 ident: 10.1016/j.eswa.2023.122396_b23 article-title: Sc2Mol: A scaffold-based two-step molecule generator with variational autoencoder and transformer publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac814 – year: 2019 ident: 10.1016/j.eswa.2023.122396_b1 – volume: 1 issue: 4 year: 2020 ident: 10.1016/j.eswa.2023.122396_b18 article-title: Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation publication-title: Machine Learning: Science and Technology – volume: 11 year: 2020 ident: 10.1016/j.eswa.2023.122396_b34 article-title: Molecular sets (MOSES): A benchmarking platform for molecular generation models publication-title: Frontiers in Pharmacology doi: 10.3389/fphar.2020.565644 – volume: 10 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.122396_b24 article-title: Molecular generative model based on conditional variational autoencoder for de novo molecular design publication-title: Journal of Cheminformatics doi: 10.1186/s13321-018-0286-7 – volume: 74 start-page: 241 issue: 4 year: 2020 ident: 10.1016/j.eswa.2023.122396_b27 article-title: The Generated Databases (GDBs) as a source of 3d-shaped building blocks for use in medicinal chemistry and drug discovery publication-title: Chimia doi: 10.2533/chimia.2020.241 – volume: 15 start-page: 22 issue: 1 year: 2023 ident: 10.1016/j.eswa.2023.122396_b39 article-title: UnCorrupt SMILES: a novel approach to de novo design publication-title: Journal of Cheminformatics doi: 10.1186/s13321-023-00696-x – volume: 37 issue: 1–2 year: 2018 ident: 10.1016/j.eswa.2023.122396_b14 article-title: Generative recurrent networks for de novo drug design publication-title: Molecular Informatics – volume: 32 year: 2019 ident: 10.1016/j.eswa.2023.122396_b47 article-title: D-vae: A variational autoencoder for directed acyclic graphs publication-title: Advances in Neural Information Processing Systems – volume: 268 year: 2023 ident: 10.1016/j.eswa.2023.122396_b6 article-title: GenSMILES: An enhanced validity conscious representation for inverse design of molecules publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110429 – volume: 45 start-page: D945 issue: D1 year: 2017 ident: 10.1016/j.eswa.2023.122396_b12 article-title: The ChEMBL database in 2017 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1074 – volume: 15 issue: 141 year: 2018 ident: 10.1016/j.eswa.2023.122396_b10 article-title: Opportunities and obstacles for deep learning in biology and medicine publication-title: Journal of the Royal Society Interface doi: 10.1098/rsif.2017.0387 – volume: 10 start-page: 1 year: 2018 ident: 10.1016/j.eswa.2023.122396_b22 article-title: Multi-objective de novo drug design with conditional graph generative model publication-title: Journal of Cheminformatics doi: 10.1186/s13321-018-0287-6 – volume: 23 start-page: 1241 issue: 6 year: 2018 ident: 10.1016/j.eswa.2023.122396_b9 article-title: The rise of deep learning in drug discovery publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2018.01.039 – volume: 73 start-page: 1018 issue: 12 year: 2019 ident: 10.1016/j.eswa.2023.122396_b3 article-title: Exploring chemical space with machine learning publication-title: CHIMIA International Journal for Chemistry doi: 10.2533/chimia.2019.1018 – ident: 10.1016/j.eswa.2023.122396_b46 doi: 10.1145/3388440.3412458 – ident: 10.1016/j.eswa.2023.122396_b15 – volume: 27 start-page: 675 year: 2013 ident: 10.1016/j.eswa.2023.122396_b33 article-title: Estimation of the size of drug-like chemical space based on GDB-17 data publication-title: Journal of Computer-Aided Molecular Design doi: 10.1007/s10822-013-9672-4 – year: 2018 ident: 10.1016/j.eswa.2023.122396_b30 – volume: 16 start-page: 21 issue: 1 year: 2009 ident: 10.1016/j.eswa.2023.122396_b35 article-title: Topological polar surface area: A useful descriptor in 2D-QSAR publication-title: Current Medicinal Chemistry doi: 10.2174/092986709787002817 – volume: 45 start-page: 177 issue: 1 year: 2005 ident: 10.1016/j.eswa.2023.122396_b16 article-title: ZINC- a free database of commercially available compounds for virtual screening publication-title: Journal of Chemical Information and Modeling doi: 10.1021/ci049714+ – volume: 62 start-page: 2943 issue: 12 year: 2022 ident: 10.1016/j.eswa.2023.122396_b21 article-title: MGCVAE: Multi-objective inverse design via molecular graph conditional variational autoencoder publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.2c00487 – volume: 19 start-page: 1236 issue: 6 year: 2018 ident: 10.1016/j.eswa.2023.122396_b28 article-title: Deep learning for healthcare: review, opportunities and challenges publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbx044 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.eswa.2023.122396_b5 article-title: SMILES-based deep generative scaffold decorator for de-novo drug design publication-title: Journal of Cheminformatics doi: 10.1186/s13321-020-00441-8 – year: 2018 ident: 10.1016/j.eswa.2023.122396_b29 – volume: 13 start-page: 1445 issue: 5 year: 2016 ident: 10.1016/j.eswa.2023.122396_b26 article-title: Applications of deep learning in biomedicine publication-title: Molecular Pharmaceutics doi: 10.1021/acs.molpharmaceut.5b00982 – volume: 11 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.eswa.2023.122396_b4 article-title: Randomized SMILES strings improve the quality of molecular generative models publication-title: Journal of Cheminformatics doi: 10.1186/s13321-019-0393-0 – volume: 12 start-page: 878 issue: 7 year: 2016 ident: 10.1016/j.eswa.2023.122396_b2 article-title: Deep learning for computational biology publication-title: Molecular Systems Biology doi: 10.15252/msb.20156651 – volume: 7 start-page: 13427 issue: 1 year: 2016 ident: 10.1016/j.eswa.2023.122396_b32 article-title: In silico pathway activation network decomposition analysis (iPANDA) as a method for biomarker development publication-title: Nature Communications doi: 10.1038/ncomms13427 – volume: 28 start-page: 31 issue: 1 year: 1988 ident: 10.1016/j.eswa.2023.122396_b43 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci00057a005 – volume: 58 start-page: 1736 issue: 9 year: 2018 ident: 10.1016/j.eswa.2023.122396_b36 article-title: Fréchet ChemNet distance: A metric for generative models for molecules in drug discovery publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.8b00234 – year: 2016 ident: 10.1016/j.eswa.2023.122396_b20 – year: 2015 ident: 10.1016/j.eswa.2023.122396_b8 – volume: 9 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.eswa.2023.122396_b31 article-title: Molecular de-novo design through deep reinforcement learning publication-title: Journal of Cheminformatics doi: 10.1186/s13321-017-0235-x – volume: 1 start-page: 270 issue: 2 year: 1989 ident: 10.1016/j.eswa.2023.122396_b45 article-title: A learning algorithm for continually running fully recurrent neural networks publication-title: Neural Computation doi: 10.1162/neco.1989.1.2.270 – year: 2018 ident: 10.1016/j.eswa.2023.122396_b11 – volume: 48 start-page: 722 issue: 3 year: 2015 ident: 10.1016/j.eswa.2023.122396_b37 article-title: The chemical space project publication-title: Accounts of Chemical Research doi: 10.1021/ar500432k – year: 2013 ident: 10.1016/j.eswa.2023.122396_b17 – start-page: 1945 year: 2017 ident: 10.1016/j.eswa.2023.122396_b19 article-title: Grammar variational autoencoder – volume: 4 start-page: 120 issue: 1 year: 2018 ident: 10.1016/j.eswa.2023.122396_b40 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Central Science doi: 10.1021/acscentsci.7b00512 – volume: 59 start-page: 1205 issue: 3 year: 2019 ident: 10.1016/j.eswa.2023.122396_b41 article-title: Shape-based generative modeling for de novo drug design publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.8b00706 – volume: 57 start-page: 2707 issue: 11 year: 2017 ident: 10.1016/j.eswa.2023.122396_b42 article-title: Virtual exploration of the ring systems chemical universe publication-title: Journal of Chemical Information and Modeling doi: 10.1021/acs.jcim.7b00457 – start-page: 729 year: 2020 ident: 10.1016/j.eswa.2023.122396_b38 article-title: Conditional constrained graph variational autoencoders for molecule design |
| SSID | ssj0017007 |
| Score | 2.459727 |
| Snippet | Designing an optimal and desired drug molecule structure is a challenging problem. Most of the existing solutions/representations reported in the literature... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 122396 |
| SubjectTerms | Beam search Conditioned Variational Autoencoder De novo molecule generation Deep Learning Posterior collapse |
| Title | NRC-VABS: Normalized Reparameterized Conditional Variational Autoencoder with applied beam search in latent space for drug molecule design |
| URI | https://dx.doi.org/10.1016/j.eswa.2023.122396 |
| Volume | 240 |
| WOSCitedRecordID | wos001117544700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBYh20MvfZduX-jQW3CwJceye0vDlj7AlO52yc3YslwSHGdxnO3Sn9Af0N_bmYzlmGxZ2kIvxhaRZPJ9lmZG82DslQiNzEHLcSKZuY7vGx8-qUA7nmeKQEvtRYaKTag4Dufz6NNg8NPGwlyWqqrCq6vo4r9CDW0ANobO_gXc3aDQAPcAOlwBdrj-EfDx55lzPn1zirp-jBJpufhuMAgRs3yv0Ptl9zxb42E1GQLPQWG2RsHptlljckvMMUGBb1ZONelqtDeSlCCkVs0IFiRNecPzevt1tKJquxiM1XmGLDtvP1M3beroTW_svtEQDQN4Lp-S70C9hdUHNtfOZt15hH9MV2l5rTU2pk6XfUuG2DnAUCwnmddsiM3en4nslMrxPSrlMza0SodKOoGi0op2GReU9unalkDWieXYbL5hnikhxx6IRNFB_u3djn6Kk-FcoJeBIooR_UdCTaJwyI6m70_mH7rzKeVSIL59uTYcizwHD2f6vcjTE2PO7rE7rf7Bp8Sb-2xgqgfsrq3twdul_iH7YWn0mu9JxA9IxHsk4j0S8R6JOALNWxJxJBEnEvFFxYlEfEciDiTiSCJuScSJRI_Yl7cnZ7N3Tlu3w9EikI0T5ZFWqvB0LoyrQSFXucgKX4dRrgM3m4DEGggv07oIcgk7SJ6HRTgxQSHzTCop5GM2rNaVecJ46mVYQUEXWQaiLgyhobPrpaEu_CAV4ph59q9NdJvUHmurlIn1XlwmCEeCcCQExzEbdX0uKKXLjb-eWMSSViglYTMBgt3Q7-k_9nvGbu-_jeds2NRb84Ld0pfNYlO_bHn4C7eCthc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NRC-VABS%3A+Normalized+Reparameterized+Conditional+Variational+Autoencoder+with+applied+beam+search+in+latent+space+for+drug+molecule+design&rft.jtitle=Expert+systems+with+applications&rft.au=Bhadwal%2C+Arun+Singh&rft.au=Kumar%2C+Kamal&rft.au=Kumar%2C+Neeraj&rft.date=2024-04-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=240&rft_id=info:doi/10.1016%2Fj.eswa.2023.122396&rft.externalDocID=S0957417423028981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |