Multispectral true temperature inversion algorithm based on QR decomposition

Multispectral radiation temperature measurement technology is extensively applied across military, industrial, and metallurgical sectors. Such as solid rocket engine tail flame and metal surface temperature measurement. To achieve these target material surface temperature measurements. This paper pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and laser technology Jg. 187; S. 112885
Hauptverfasser: Yang, Zongju, wang, Peimin, Hu, Zhijian, Peng, Ruifei, Yu, Kun, Liu, Yufang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2025
Schlagworte:
ISSN:0030-3992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multispectral radiation temperature measurement technology is extensively applied across military, industrial, and metallurgical sectors. Such as solid rocket engine tail flame and metal surface temperature measurement. To achieve these target material surface temperature measurements. This paper presents a multi-spectral true temperature inversion algorithm that leverages QR decomposition of multi-channel spectral information, designed to enhance the correlation between spectral information extraction and multi-channel data. The algorithm employs matrix QR decomposition to construct a multi-channel spectral information dataset, addressing the issue of inaccurate target temperature measurements attributed to unknown material emissivity. In addition, in order to improve the accuracy of multispectral inversion algorithm, this paper developed a CNN-LSTM-ATTENTION neural network, the convolutional layer and attention mechanism are added to the LSTM neural network, which enhances the correlation of spectral information and is conducive to more in-depth information mining, so as to measure the target real temperature. The algorithm is called QR decomposition and CNN-LSTM-ATTENTION combined true temperature inversion algorithm, abbreviation QRD-CLA, In the simulation experiment, the QRD-CLA algorithm demonstrates a 0.29% increase in accuracy compared to the GIM-LSTM algorithm. Validation through measured data confirms that the QRD-CLA outperforms the GIM-LSTM by 0.4% in terms of accuracy.
AbstractList Multispectral radiation temperature measurement technology is extensively applied across military, industrial, and metallurgical sectors. Such as solid rocket engine tail flame and metal surface temperature measurement. To achieve these target material surface temperature measurements. This paper presents a multi-spectral true temperature inversion algorithm that leverages QR decomposition of multi-channel spectral information, designed to enhance the correlation between spectral information extraction and multi-channel data. The algorithm employs matrix QR decomposition to construct a multi-channel spectral information dataset, addressing the issue of inaccurate target temperature measurements attributed to unknown material emissivity. In addition, in order to improve the accuracy of multispectral inversion algorithm, this paper developed a CNN-LSTM-ATTENTION neural network, the convolutional layer and attention mechanism are added to the LSTM neural network, which enhances the correlation of spectral information and is conducive to more in-depth information mining, so as to measure the target real temperature. The algorithm is called QR decomposition and CNN-LSTM-ATTENTION combined true temperature inversion algorithm, abbreviation QRD-CLA, In the simulation experiment, the QRD-CLA algorithm demonstrates a 0.29% increase in accuracy compared to the GIM-LSTM algorithm. Validation through measured data confirms that the QRD-CLA outperforms the GIM-LSTM by 0.4% in terms of accuracy.
ArticleNumber 112885
Author Peng, Ruifei
Yu, Kun
Liu, Yufang
Hu, Zhijian
Yang, Zongju
wang, Peimin
Author_xml – sequence: 1
  givenname: Zongju
  surname: Yang
  fullname: Yang, Zongju
  organization: Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 2
  givenname: Peimin
  surname: wang
  fullname: wang, Peimin
  organization: Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 3
  givenname: Zhijian
  surname: Hu
  fullname: Hu, Zhijian
  email: huzhijian1991@gmail.com
  organization: LAAS-CNRS, University of Toulouse, CNRS, Toulouse 31400, France
– sequence: 4
  givenname: Ruifei
  surname: Peng
  fullname: Peng, Ruifei
  organization: Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
– sequence: 5
  givenname: Kun
  surname: Yu
  fullname: Yu, Kun
  organization: Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
– sequence: 6
  givenname: Yufang
  surname: Liu
  fullname: Liu, Yufang
  email: yf-liu@htu.edu.cn
  organization: Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, School of Physics, Henan Normal University, Xinxiang, Henan 453007, China
BookMark eNqFkF1LwzAYhXMxwW36G8wfaM1Hk7WXY_gFE1H0OqTJG81om5KkA_-9HRNvvXo5L-ccDs8KLYYwAEI3lJSUUHl7KMOYO50ymJIRJkpKWV2LBVoSwknBm4ZdolVKB0JIJQVfov3z1GWfRjA56g7nOAHO0I8QdZ4iYD8cISYfBqy7zxB9_upxqxNYPL9e37AFE_oxJJ9nzxW6cLpLcP171-jj_u5991jsXx6edtt9YZjkuai1oMzJlrYcKMxKWMektMy1ThoOmlQcGLdEUHBVRZikFYPKCMtJs2lqvkabc6-JIaUITo3R9zp-K0rUCYQ6qD8Q6gRCnUHMye05CfO8o4eokvEwGLA-zgiUDf7fjh9zGnDU
Cites_doi 10.1016/j.rinp.2020.103388
10.1088/1361-6501/acc047
10.1016/j.infrared.2022.104408
10.1007/s10765-005-6724-6
10.1063/5.0016747
10.1016/j.measurement.2024.114346
10.1016/j.rinp.2023.107014
10.1364/OE.25.030560
10.1364/OE.475680
10.1007/s10765-008-0448-3
10.1364/OE.24.019185
10.1109/CCDC.2017.7978572
10.1016/S1350-4495(02)00182-2
10.1016/j.infrared.2020.103523
10.1364/OE.26.025706
10.1364/OE.414844
10.1016/j.yofte.2024.103986
10.1016/j.measurement.2020.108725
10.1117/1.OE.61.12.124109
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2025.112885
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_optlastec_2025_112885
S0030399225004761
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFFNX
AFJKZ
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSH
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
ZMT
~G-
9DU
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c263t-8a512f6b1b3e1e8a55df266d2fbf6c3ea043e23d051ef44026142e4c5d3097983
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001460796500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0030-3992
IngestDate Sat Nov 29 06:59:09 EST 2025
Sat Jun 07 17:01:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords True temperature
Emissivity
Self-attention mechanism
Neural network algorithm
QR decomposition
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c263t-8a512f6b1b3e1e8a55df266d2fbf6c3ea043e23d051ef44026142e4c5d3097983
ParticipantIDs crossref_primary_10_1016_j_optlastec_2025_112885
elsevier_sciencedirect_doi_10_1016_j_optlastec_2025_112885
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xing (b0070) 2017; 25
Hagqvist, Sikström, Christiansson, Lennartson (b0050) 2014; 25
Zhang, Sun, Chen, Kong, Jiang, Zhang, Wang (b0115) 2024; 88
Sun, Peng, Yuan, Dai (b0045) 2009; 30
Sun, Sun, Dai (b0055) 2020; 19
Wang, Dai, Yang (b0005) 2023; 34
Wang, Dai (b0015) 2024; 228
Xing, Yan, Li, Cui (b0110) 2022; 30
Mazikowski, Chrzanowski (b0035) 2003; 44
Xing, Liu, Luo, Han (b0090) 2020; 91
L. Fu, J. Fu, Y. Guo, and J. Xi. Spectral emissivity estimation based on K — means clustering RBF neural network. In: 2017 29th Chinese Control And Decision Conference (CCDC). 2017.
Xing, Yan, Cui (b0105) 2022; 61
Wang, Hua, Zhu (b0095) 2021; 170
Coates (b0025) 1988
Liang, Li, Sheng, Xing (b0080) 2018; 26
Sun, Yuan, Dai, Chu (b0040) 2005; 26
Dai, Yang, Chu (b0030) 1995
Xing, Rana, Gu, Gu (b0065) 2016; 24
Gardner (b0020) 1980; 12
Sun (b0060) 2001; 20
Luo, Sun, Sun, Xue (b0120) 2022; 127
Yang, Bo, Dai, Zhi (b0010) 2023; 53
Zhao, Lv, Zheng (b0100) 2021; 29
Chen (b0085) 2020; 111
Sun (10.1016/j.optlastec.2025.112885_b0045) 2009; 30
Zhao (10.1016/j.optlastec.2025.112885_b0100) 2021; 29
Xing (10.1016/j.optlastec.2025.112885_b0105) 2022; 61
Wang (10.1016/j.optlastec.2025.112885_b0005) 2023; 34
Xing (10.1016/j.optlastec.2025.112885_b0065) 2016; 24
Dai (10.1016/j.optlastec.2025.112885_b0030) 1995
Gardner (10.1016/j.optlastec.2025.112885_b0020) 1980; 12
Wang (10.1016/j.optlastec.2025.112885_b0095) 2021; 170
Zhang (10.1016/j.optlastec.2025.112885_b0115) 2024; 88
Sun (10.1016/j.optlastec.2025.112885_b0055) 2020; 19
Chen (10.1016/j.optlastec.2025.112885_b0085) 2020; 111
Mazikowski (10.1016/j.optlastec.2025.112885_b0035) 2003; 44
Hagqvist (10.1016/j.optlastec.2025.112885_b0050) 2014; 25
Xing (10.1016/j.optlastec.2025.112885_b0070) 2017; 25
Wang (10.1016/j.optlastec.2025.112885_b0015) 2024; 228
Yang (10.1016/j.optlastec.2025.112885_b0010) 2023; 53
Liang (10.1016/j.optlastec.2025.112885_b0080) 2018; 26
10.1016/j.optlastec.2025.112885_b0075
Sun (10.1016/j.optlastec.2025.112885_b0060) 2001; 20
Coates (10.1016/j.optlastec.2025.112885_b0025) 1988
Xing (10.1016/j.optlastec.2025.112885_b0090) 2020; 91
Xing (10.1016/j.optlastec.2025.112885_b0110) 2022; 30
Sun (10.1016/j.optlastec.2025.112885_b0040) 2005; 26
Luo (10.1016/j.optlastec.2025.112885_b0120) 2022; 127
References_xml – reference: L. Fu, J. Fu, Y. Guo, and J. Xi. Spectral emissivity estimation based on K — means clustering RBF neural network. In: 2017 29th Chinese Control And Decision Conference (CCDC). 2017.
– volume: 26
  start-page: 25706
  year: 2018
  end-page: 25720
  ident: b0080
  article-title: Generalized inverse matrix-exterior penalty function (GIM-EPF) algorithm for data processing of multi-wavelength pyrometer (MWP)
  publication-title: Opt. Express
– volume: 12
  start-page: 699
  year: 1980
  end-page: 705
  ident: b0020
  article-title: Computer modelling of a multiwavelength pyrometer for measuring true surface temperature
  publication-title: High Temp.-High Pressures
– volume: 30
  start-page: 249
  year: 2009
  end-page: 256
  ident: b0045
  article-title: Research on the temperature and emissivity measurement of the metallic thermal protection blanket
  publication-title: Int. J. Thermophys.
– volume: 24
  start-page: 19185
  year: 2016
  end-page: 19194
  ident: b0065
  article-title: Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP)
  publication-title: Opt. Express
– volume: 29
  start-page: 4405
  year: 2021
  end-page: 4421
  ident: b0100
  article-title: Multispectral radiometric temperature measurement algorithm for turbine blades based on moving narrow-band spectral windows
  publication-title: Opt. Express
– volume: 88
  year: 2024
  ident: b0115
  article-title: Temperature extraction from Brillouin sensing based on temporal convolutional networks
  publication-title: Opt. Fiber Technol.
– volume: 25
  year: 2014
  ident: b0050
  article-title: Emissivity compensated spectral pyrometry for varying emissivity metallic measurands
  publication-title: Meas. Sci. Technol.
– year: 1988
  ident: b0025
  article-title: The least-squares approach to multi-wavelength pyrometry
  publication-title: High Temp. High Pressures
– start-page: 461
  year: 1995
  end-page: 466
  ident: b0030
  article-title: Multi-wavelength radiation thermometer and its application
  publication-title: J. Infrared. Millim
– volume: 34
  year: 2023
  ident: b0005
  article-title: The development of a multispectral pyrometer for achievable true temperature field measurements of the explosion flame
  publication-title: Meas. Sci. Technol.
– volume: 53
  year: 2023
  ident: b0010
  article-title: Development of multi-spectral pyrometer for measuring cathode surface temperature of pulsed vacuum arc discharge
  publication-title: Results Phys.
– volume: 26
  start-page: 1255
  year: 2005
  end-page: 1261
  ident: b0040
  article-title: Processing method of multi-wavelength pyrometer data for continuous temperature measurements
  publication-title: Int. J. Thermophys.
– volume: 20
  start-page: 151
  year: 2001
  end-page: 153
  ident: b0060
  article-title: rue temperature measurement by radiation method based on neural network model
  publication-title: J. Infrared Millimeter Waves
– volume: 25
  start-page: 30560
  year: 2017
  end-page: 30574
  ident: b0070
  article-title: Directly data processing algorithm for multi-wavelength pyrometer (MWP)
  publication-title: Opt. Express
– volume: 30
  start-page: 46081
  year: 2022
  end-page: 46093
  ident: b0110
  article-title: Generalized inverse matrix- long short-term memory neural network data processing algorithm for multi-wavelength pyrometry
  publication-title: Opt. Express
– volume: 111
  year: 2020
  ident: b0085
  article-title: Multi-spectral temperature measurement based on adaptive emissivity model under high temperature background
  publication-title: Infrared Phys. Technol.
– volume: 127
  year: 2022
  ident: b0120
  article-title: Emissivity constraints for calibration constant models of multi-wavelength pyrometers
  publication-title: Infrared Phys. Technol.
– volume: 91
  year: 2020
  ident: b0090
  article-title: Generalized inverse matrix normalization algorithm to extract high-temperature data from multiwavelength pyrometry
  publication-title: Rev. Sci. Instrum.
– volume: 44
  start-page: 91
  year: 2003
  end-page: 99
  ident: b0035
  article-title: Non-contact multiband method for emissivity measurement
  publication-title: Infrared Phys. Technol.
– volume: 19
  year: 2020
  ident: b0055
  article-title: Constraints of emissivity model for multi-wavelength pyrometer
  publication-title: Results Phys.
– volume: 170
  year: 2021
  ident: b0095
  article-title: Constraint optimization algorithm for spectral emissivity calculation in multispectral thermometry
  publication-title: Measurement
– volume: 228
  year: 2024
  ident: b0015
  article-title: Multi-spectral radiationthermometry based on the reconstructed spectral emissivity model
  publication-title: Measurement
– volume: 61
  year: 2022
  ident: b0105
  article-title: Generalized inverse matrix-recurrent neural network data processing algorithm for multiwavelength pyrometer
  publication-title: Opt. Eng.
– volume: 20
  start-page: 151
  issue: 2
  year: 2001
  ident: 10.1016/j.optlastec.2025.112885_b0060
  article-title: rue temperature measurement by radiation method based on neural network model
  publication-title: J. Infrared Millimeter Waves
– volume: 19
  year: 2020
  ident: 10.1016/j.optlastec.2025.112885_b0055
  article-title: Constraints of emissivity model for multi-wavelength pyrometer
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103388
– volume: 34
  issue: 6
  year: 2023
  ident: 10.1016/j.optlastec.2025.112885_b0005
  article-title: The development of a multispectral pyrometer for achievable true temperature field measurements of the explosion flame
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/acc047
– volume: 25
  issue: 2
  year: 2014
  ident: 10.1016/j.optlastec.2025.112885_b0050
  article-title: Emissivity compensated spectral pyrometry for varying emissivity metallic measurands
  publication-title: Meas. Sci. Technol.
– volume: 127
  year: 2022
  ident: 10.1016/j.optlastec.2025.112885_b0120
  article-title: Emissivity constraints for calibration constant models of multi-wavelength pyrometers
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2022.104408
– volume: 26
  start-page: 1255
  issue: 4
  year: 2005
  ident: 10.1016/j.optlastec.2025.112885_b0040
  article-title: Processing method of multi-wavelength pyrometer data for continuous temperature measurements
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-005-6724-6
– volume: 91
  issue: 10
  year: 2020
  ident: 10.1016/j.optlastec.2025.112885_b0090
  article-title: Generalized inverse matrix normalization algorithm to extract high-temperature data from multiwavelength pyrometry
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/5.0016747
– volume: 228
  year: 2024
  ident: 10.1016/j.optlastec.2025.112885_b0015
  article-title: Multi-spectral radiationthermometry based on the reconstructed spectral emissivity model
  publication-title: Measurement
  doi: 10.1016/j.measurement.2024.114346
– start-page: 461
  year: 1995
  ident: 10.1016/j.optlastec.2025.112885_b0030
  article-title: Multi-wavelength radiation thermometer and its application
  publication-title: J. Infrared. Millim
– volume: 53
  year: 2023
  ident: 10.1016/j.optlastec.2025.112885_b0010
  article-title: Development of multi-spectral pyrometer for measuring cathode surface temperature of pulsed vacuum arc discharge
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.107014
– year: 1988
  ident: 10.1016/j.optlastec.2025.112885_b0025
  article-title: The least-squares approach to multi-wavelength pyrometry
  publication-title: High Temp. High Pressures
– volume: 25
  start-page: 30560
  issue: 24
  year: 2017
  ident: 10.1016/j.optlastec.2025.112885_b0070
  article-title: Directly data processing algorithm for multi-wavelength pyrometer (MWP)
  publication-title: Opt. Express
  doi: 10.1364/OE.25.030560
– volume: 30
  start-page: 46081
  issue: 26
  year: 2022
  ident: 10.1016/j.optlastec.2025.112885_b0110
  article-title: Generalized inverse matrix- long short-term memory neural network data processing algorithm for multi-wavelength pyrometry
  publication-title: Opt. Express
  doi: 10.1364/OE.475680
– volume: 30
  start-page: 249
  issue: 1
  year: 2009
  ident: 10.1016/j.optlastec.2025.112885_b0045
  article-title: Research on the temperature and emissivity measurement of the metallic thermal protection blanket
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-008-0448-3
– volume: 24
  start-page: 19185
  issue: 17
  year: 2016
  ident: 10.1016/j.optlastec.2025.112885_b0065
  article-title: Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP)
  publication-title: Opt. Express
  doi: 10.1364/OE.24.019185
– ident: 10.1016/j.optlastec.2025.112885_b0075
  doi: 10.1109/CCDC.2017.7978572
– volume: 12
  start-page: 699
  issue: 6
  year: 1980
  ident: 10.1016/j.optlastec.2025.112885_b0020
  article-title: Computer modelling of a multiwavelength pyrometer for measuring true surface temperature
  publication-title: High Temp.-High Pressures
– volume: 44
  start-page: 91
  issue: 2
  year: 2003
  ident: 10.1016/j.optlastec.2025.112885_b0035
  article-title: Non-contact multiband method for emissivity measurement
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/S1350-4495(02)00182-2
– volume: 111
  year: 2020
  ident: 10.1016/j.optlastec.2025.112885_b0085
  article-title: Multi-spectral temperature measurement based on adaptive emissivity model under high temperature background
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2020.103523
– volume: 26
  start-page: 25706
  issue: 20
  year: 2018
  ident: 10.1016/j.optlastec.2025.112885_b0080
  article-title: Generalized inverse matrix-exterior penalty function (GIM-EPF) algorithm for data processing of multi-wavelength pyrometer (MWP)
  publication-title: Opt. Express
  doi: 10.1364/OE.26.025706
– volume: 29
  start-page: 4405
  issue: 3
  year: 2021
  ident: 10.1016/j.optlastec.2025.112885_b0100
  article-title: Multispectral radiometric temperature measurement algorithm for turbine blades based on moving narrow-band spectral windows
  publication-title: Opt. Express
  doi: 10.1364/OE.414844
– volume: 88
  year: 2024
  ident: 10.1016/j.optlastec.2025.112885_b0115
  article-title: Temperature extraction from Brillouin sensing based on temporal convolutional networks
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2024.103986
– volume: 170
  year: 2021
  ident: 10.1016/j.optlastec.2025.112885_b0095
  article-title: Constraint optimization algorithm for spectral emissivity calculation in multispectral thermometry
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108725
– volume: 61
  issue: 12
  year: 2022
  ident: 10.1016/j.optlastec.2025.112885_b0105
  article-title: Generalized inverse matrix-recurrent neural network data processing algorithm for multiwavelength pyrometer
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.61.12.124109
SSID ssj0004653
Score 2.4133582
Snippet Multispectral radiation temperature measurement technology is extensively applied across military, industrial, and metallurgical sectors. Such as solid rocket...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112885
SubjectTerms Emissivity
Neural network algorithm
QR decomposition
Self-attention mechanism
True temperature
Title Multispectral true temperature inversion algorithm based on QR decomposition
URI https://dx.doi.org/10.1016/j.optlastec.2025.112885
Volume 187
WOSCitedRecordID wos001460796500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0030-3992
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004653
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swELc6YBJ7mDY2BOxDfthblKq1nQ_zhhDTNiFWKoa6vURxcoZUkEal7fjzOSdOmgIS42EvUXJynNi_ny7ny92ZkC8JUwHCzFwBmrvCY-CGaaJcrTlqzCBM_NLfcX4cnJyEo5EcdDpFnQuzuAryPLy9lcV_hRplCLZJnX0G3E2nKMBzBB2PCDse_wn4MqW2TKCcloHkc3BM_SlbPNnJ8kXlInPiq4vJNJtdXjvmU5aa3wanQycFE2VuQ7napuvPoqnojBY3TJ3ZA6_8b-t8_jPJL8bzWvrXSgdgdhBb8qhseZmNWwQdQNV0OM80ZG2PBPOakKtGy3LU7VLe07JBS0-ilRdWW_U8UOGVN2HcnRQzHA0OpWue0V3esVo0-97HrAkxrKPXxlHTUWQ6iqqOXpB1FngSVfn6wfej0Y9WLq2tXGrHsBIT-Og7PW7RtKyUszfktV1e0IOKFm9JB_It8qpVdHKLvCyDfpObd-R4hSrUUIW2qEIbqtCGKrSkCkXR6ZCuUOU9-fX16Ozwm2t313AT5vOZG8Zo62lf9RWHPuCVl2q01lKmlfYTDnFPcGA8Ra0NWgizVhcMROKlvCcDGfJtspZPctgh1PdY7KkQBGCDPlOx8qWMleZK9EUKapf06hmKiqqISvQEPrtkv57JyNqClY0XIU-eunnv-c_7QDaXVP5I1syUfyIbyQJhmH62JLkDsqKIQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multispectral+true+temperature+inversion+algorithm+based+on+QR+decomposition&rft.jtitle=Optics+and+laser+technology&rft.au=Yang%2C+Zongju&rft.au=wang%2C+Peimin&rft.au=Hu%2C+Zhijian&rft.au=Peng%2C+Ruifei&rft.date=2025-09-01&rft.issn=0030-3992&rft.volume=187&rft.spage=112885&rft_id=info:doi/10.1016%2Fj.optlastec.2025.112885&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2025_112885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon