A Variable Step-Size Diffusion LMS Algorithm for Distributed Estimation

We propose a new variable step-size diffusion least mean square algorithm for distributed estimation that adaptively adjusts the step-size in every iteration. For a network application, the proposed method determines a suboptimal step-size at each node to minimize the mean square deviation for the i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 63; číslo 7; s. 1808 - 1820
Hlavní autoři: Lee, Han-Sol, Kim, Seong-Eun, Lee, Jae-Woo, Song, Woo-Jin
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.04.2015
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a new variable step-size diffusion least mean square algorithm for distributed estimation that adaptively adjusts the step-size in every iteration. For a network application, the proposed method determines a suboptimal step-size at each node to minimize the mean square deviation for the intermediate estimate. The algorithm thus adapts the different node environments and profiles across the networks, and requires relatively less user interaction than existing algorithms. In experiments, the algorithm achieves both fast convergence speed and low misadjustment by remarkable improvement in an adaptation stage. We analyze the mean square performance of the proposed algorithm. Also, the proposed algorithm works well even in non-stationary environments.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2015.2401533