A Variable Step-Size Diffusion LMS Algorithm for Distributed Estimation
We propose a new variable step-size diffusion least mean square algorithm for distributed estimation that adaptively adjusts the step-size in every iteration. For a network application, the proposed method determines a suboptimal step-size at each node to minimize the mean square deviation for the i...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 63; číslo 7; s. 1808 - 1820 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.04.2015
|
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a new variable step-size diffusion least mean square algorithm for distributed estimation that adaptively adjusts the step-size in every iteration. For a network application, the proposed method determines a suboptimal step-size at each node to minimize the mean square deviation for the intermediate estimate. The algorithm thus adapts the different node environments and profiles across the networks, and requires relatively less user interaction than existing algorithms. In experiments, the algorithm achieves both fast convergence speed and low misadjustment by remarkable improvement in an adaptation stage. We analyze the mean square performance of the proposed algorithm. Also, the proposed algorithm works well even in non-stationary environments. |
|---|---|
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2015.2401533 |