Two-Scale Stochastic Optimization for Controlling Distributed Storage Devices
This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary for conventional generation units. We present a stochastic optimization model of the power system which captures interactions of decisions at...
Uložené v:
| Vydané v: | IEEE transactions on smart grid Ročník 9; číslo 4; s. 2691 - 2702 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.07.2018
|
| Predmet: | |
| ISSN: | 1949-3053, 1949-3061 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary for conventional generation units. We present a stochastic optimization model of the power system which captures interactions of decisions at these two timescales through a novel state-variable formulation. The model also includes transmission constraints approximated by a linearized dc network, fast response operating reserves, and renewable generation. To tackle this high-dimensional multistage stochastic optimization problem, we present a sequential sampling method which we refer to as the stochastic dynamic linear programming. This algorithm is a dynamic extension of regularized two-stage stochastic decomposition for stagewise independent multistage stochastic linear programs, and is targeted at the class of problems where decisions are made at two different timescales. We compare our algorithm with the stochastic dual dynamic programming (SDDP) which has been effectively applied in planning power systems operations. Our computational results show that our sequential Monte-Carlo approach provides prescriptive solutions and values which are statistically indistinguishable from those obtained from SDDP, while improving computational times significantly. |
|---|---|
| AbstractList | This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary for conventional generation units. We present a stochastic optimization model of the power system which captures interactions of decisions at these two timescales through a novel state-variable formulation. The model also includes transmission constraints approximated by a linearized dc network, fast response operating reserves, and renewable generation. To tackle this high-dimensional multistage stochastic optimization problem, we present a sequential sampling method which we refer to as the stochastic dynamic linear programming. This algorithm is a dynamic extension of regularized two-stage stochastic decomposition for stagewise independent multistage stochastic linear programs, and is targeted at the class of problems where decisions are made at two different timescales. We compare our algorithm with the stochastic dual dynamic programming (SDDP) which has been effectively applied in planning power systems operations. Our computational results show that our sequential Monte-Carlo approach provides prescriptive solutions and values which are statistically indistinguishable from those obtained from SDDP, while improving computational times significantly. |
| Author | Sen, Suvrajeet Gangammanavar, Harsha |
| Author_xml | – sequence: 1 givenname: Harsha orcidid: 0000-0003-4389-5433 surname: Gangammanavar fullname: Gangammanavar, Harsha email: harsha@smu.edu organization: Department of Engineering Management, Information, and Systems, Southern Methodist University, Dallas, TX, USA – sequence: 2 givenname: Suvrajeet surname: Sen fullname: Sen, Suvrajeet email: s.sen@usc.edu organization: Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, USA |
| BookMark | eNp9kE1PAjEQhhuDiYjcTbzsH1jsx_braEDRBMMBPG-6ZYo1y5a0VaO_XhDCwYNzmbk88-Z9LlGvCx0gdE3wiBCsb5eL6YhiIkZUEKEUOUN9oitdMixI73RzdoGGKb3h3TDGBNV99Lz8DOXCmhaKRQ721aTsbTHfZr_x3yb70BUuxGIcuhxD2_puXUx8ytE37xlWeyaaNRQT-PAW0hU6d6ZNMDzuAXp5uF-OH8vZfPo0vpuVlgqWywpzy6WS0ionGTUNlU5z6bAiHJQ1ilpOuaOiwhWsNHeONLhhlXRE4cYQNkD48NfGkFIEV2-j35j4VRNc743UOyP13kh9NLJDxB_E-vxbMEfj2__AmwPoAeCUI7lSWnP2A4X2b-4 |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1049_iet_gtd_2019_1344 crossref_primary_10_1049_stg2_12063 crossref_primary_10_1137_22M1538946 crossref_primary_10_1016_j_cor_2022_106132 crossref_primary_10_1137_19M1290735 crossref_primary_10_1016_j_ijepes_2021_106996 crossref_primary_10_1002_eng2_12740 crossref_primary_10_1049_gtd2_12443 crossref_primary_10_1109_TSTE_2022_3217173 crossref_primary_10_1016_j_ejor_2021_12_042 |
| Cites_doi | 10.1260/0309-524X.32.4.325 10.1016/j.ejor.2010.08.007 10.1080/17442508308833246 10.1016/j.apenergy.2009.09.022 10.1137/120864854 10.1287/opre.33.5.989 10.1109/TPWRS.2014.2344859 10.1007/978-1-4614-0237-4 10.1007/s10479-010-0756-4 10.1016/S1040-6190(99)00071-8 10.1016/j.enpol.2006.09.005 10.1109/TPWRS.2008.919419 10.1287/opre.43.3.477 10.1007/BF02592154 10.1287/opre.2016.1526 10.1287/moor.16.1.119 10.1287/opre.1050.0264 10.1007/s12667-013-0100-6 10.5547/2160-5890.1.2.4 10.1287/opre.1110.0971 10.1007/s10107-002-0331-0 10.1016/j.enpol.2006.03.023 10.1016/j.ejor.2011.10.056 10.1109/ALLERTON.2010.5706911 10.2172/1088080 10.1007/BF01582219 10.5547/ISSN0195-6574-EJ-Vol32-No2-1 10.1007/BF01580883 10.1109/TPWRS.2011.2169817 10.1023/A:1019206915174 10.1007/BF01582895 10.1109/TPWRS.2015.2410301 10.1016/j.eneco.2008.10.005 10.1137/070704277 10.1287/ijoc.2015.0640 10.1109/TPWRS.2008.2004840 10.1016/j.orl.2008.01.013 10.1007/978-1-4419-1153-7_1005 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSG.2016.2616881 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 2702 |
| ExternalDocumentID | 10_1109_TSG_2016_2616881 7588995 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: ECCS1548847 funderid: 10.13039/100000001 – fundername: AFOSR grantid: FA9550-15-1-0267 funderid: 10.13039/100000181 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c263t-405c57877c8f732ab27f957f0815e8ca82c525f26404ed95ff1b0b347f180ba13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443196400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Sat Nov 29 03:45:51 EST 2025 Tue Nov 18 20:49:21 EST 2025 Wed Aug 27 02:50:28 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-405c57877c8f732ab27f957f0815e8ca82c525f26404ed95ff1b0b347f180ba13 |
| ORCID | 0000-0003-4389-5433 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSG_2016_2616881 ieee_primary_7588995 crossref_primary_10_1109_TSG_2016_2616881 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-July 2018-7-00 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-July |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 birge (ref27) 2011 lütkepohl (ref25) 2007 ref12 ref37 ref15 ref36 christie (ref45) 1999 ref30 ref33 gjelsvik (ref34) 2010 ref11 ref10 dupa?ová (ref32) 2003; 95 ref1 ref39 ref17 ref38 ref16 ref19 ref18 (ref2) 2015 (ref21) 2015 dupa?ová (ref31) 2000; 100 manuel (ref47) 2014 ref46 ref23 ref48 ref26 ref20 ref42 ref41 ref44 ref43 ref28 mokrian (ref14) 2006 ref29 ref8 ref7 ref9 ref4 (ref3) 2014 ref6 ref5 eyer (ref22) 2010 ref40 miranda (ref24) 2007 |
| References_xml | – ident: ref48 doi: 10.1260/0309-524X.32.4.325 – ident: ref46 doi: 10.1016/j.ejor.2010.08.007 – ident: ref41 doi: 10.1080/17442508308833246 – ident: ref23 doi: 10.1016/j.apenergy.2009.09.022 – ident: ref39 doi: 10.1137/120864854 – ident: ref28 doi: 10.1287/opre.33.5.989 – ident: ref10 doi: 10.1109/TPWRS.2014.2344859 – year: 2011 ident: ref27 publication-title: Introduction to Stochastic Programming doi: 10.1007/978-1-4614-0237-4 – ident: ref16 doi: 10.1007/s10479-010-0756-4 – year: 2015 ident: ref21 publication-title: National Oceanic and Atmospheric Administration – ident: ref4 doi: 10.1016/S1040-6190(99)00071-8 – year: 2015 ident: ref2 publication-title: Department of energy global energy storage database – ident: ref5 doi: 10.1016/j.enpol.2006.09.005 – ident: ref15 doi: 10.1109/TPWRS.2008.919419 – year: 2010 ident: ref22 article-title: Energy storage for the electricity grid: Benefits and market potential assessment guide – year: 2014 ident: ref47 publication-title: Energy Storage Study 2014 – start-page: 1 year: 2007 ident: ref24 article-title: Spatially correlated wind speed modelling for generation adequacy studies in the U.K. publication-title: Proc IEEE Power Eng Soc Gen Meeting – ident: ref29 doi: 10.1287/opre.43.3.477 – ident: ref35 doi: 10.1007/BF02592154 – ident: ref38 doi: 10.1287/opre.2016.1526 – ident: ref30 doi: 10.1287/moor.16.1.119 – ident: ref18 doi: 10.1287/opre.1050.0264 – ident: ref12 doi: 10.1007/s12667-013-0100-6 – ident: ref1 doi: 10.5547/2160-5890.1.2.4 – start-page: 24 year: 2006 ident: ref14 article-title: A stochastic programming framework for the valuation of electricity storage publication-title: Proc 26th USAEE/IAEE North Amer Conf – start-page: 33 year: 2010 ident: ref34 publication-title: Long- and Medium-term Operations Planning and Stochastic Modelling in Hydro-dominated Power Systems Based on Stochastic Dual Dynamic Programming – ident: ref13 doi: 10.1287/opre.1110.0971 – volume: 95 start-page: 493 year: 2003 ident: ref32 article-title: Scenario reduction in stochastic programming publication-title: Math Program doi: 10.1007/s10107-002-0331-0 – ident: ref9 doi: 10.1016/j.enpol.2006.03.023 – ident: ref37 doi: 10.1016/j.ejor.2011.10.056 – ident: ref26 doi: 10.1109/ALLERTON.2010.5706911 – ident: ref7 doi: 10.2172/1088080 – ident: ref44 doi: 10.1007/BF01582219 – ident: ref8 doi: 10.5547/ISSN0195-6574-EJ-Vol32-No2-1 – ident: ref43 doi: 10.1007/BF01580883 – ident: ref19 doi: 10.1109/TPWRS.2011.2169817 – volume: 100 start-page: 25 year: 2000 ident: ref31 article-title: Scenarios for multistage stochastic programs publication-title: Ann Oper Res doi: 10.1023/A:1019206915174 – ident: ref33 doi: 10.1007/BF01582895 – year: 2014 ident: ref3 article-title: Technology roadmap: Energy storage – year: 2007 ident: ref25 publication-title: New Introduction to Multiple Time Series Analysis – ident: ref17 doi: 10.1109/TPWRS.2015.2410301 – ident: ref6 doi: 10.1016/j.eneco.2008.10.005 – ident: ref42 doi: 10.1137/070704277 – ident: ref11 doi: 10.1287/ijoc.2015.0640 – ident: ref20 doi: 10.1109/TPWRS.2008.2004840 – year: 1999 ident: ref45 publication-title: Power systems test case archive – ident: ref36 doi: 10.1016/j.orl.2008.01.013 – ident: ref40 doi: 10.1007/978-1-4419-1153-7_1005 |
| SSID | ssj0000333629 |
| Score | 2.2918105 |
| Snippet | This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2691 |
| SubjectTerms | distributed storage control Energy storage Generators Multistage stochastic programming Optimization Power grids Production sampling-based algorithm Stochastic processes |
| Title | Two-Scale Stochastic Optimization for Controlling Distributed Storage Devices |
| URI | https://ieeexplore.ieee.org/document/7588995 |
| Volume | 9 |
| WOSCitedRecordID | wos000443196400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8KAHv6Y4v8jBi2C3Nmma9Cib04NOYVN2K036goKuMjv9903SrkwQwVsJeRB-bd9H3nu_h9AZjyDTjAhPRjT1Qk1STxqz7gkVcBloqjLX5fp0y0cjMZ3GDw10UffCAIArPoOufXS5_CxXC3tV1jO-rQkPWBM1OY_KXq36PsWn1Oji2CWRQ5vOZ3SZlfTj3mR8bcu4oq4JGCIhgh9WaGWsirMqw63_nWcbbVbeI74sX_cOasBsF22scAq20d3kK_fGBnnA4yJXz6klYsb3RjO8VS2X2PipuF-WqNtmdDyw5Ll27hVkVmZuVAwegFMhe-hxeDXp33jVzARPkYgWJhxkyv6EXAnNKUkl4TpmXBvLz0CoVBDFCNPGDfJDyGKmdSB9SUOuA-HLNKD7qDXLZ3CAcCiJUFKSVAkeZhAILay_RjMgQsoQOqi3xDBRFaG4nWvxmrjAwo8Tg3piUU8q1DvovJZ4L8k0_tjbtoDX-yqsD39fPkLrRliUdbTHqFXMF3CC1tRn8fIxP3VfyjdSMLu0 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3qY4r33wRbCuzaVJH2VzTtymsCp7K02aoKCbzE3_vknblQki-FZCEsqX9lxyzncOwBkLVKop4q4IcOISjRJXGLXucukz4Wss04zl-tRl_T4fDsOHClyUXBilVJZ8pi7tYxbLT8dyZq_KGsa2Ne4BXYJlSgjycrZWeaPiYWykcZiFkYkN6FM8j0t6YSMa3NhEruDSuAwB5_4PPbTQWCXTK-3N_73RFmwU9qNzlR_4NlTUaAfWF6oK1qAXfY3dgcFeOYPpWD4nthSzc29kw1tBunSMpeo08yR1S0d3WrZ8ru18pVK7ZmKEjNNSmRDZhcf2ddTsuEXXBFeiAE-NQ0il_Q2Z5JphlAjEdEiZNrqfKi4TjiRFVBtDyCMqDanWvvAEJkz73BOJj_egOhqP1D44RCAuhUCJ5IykyueaW4sNpwpxIYiqQ2OOYSyLkuK2s8VrnLkWXhgb1GOLelygXofzcsV7Xk7jj7k1C3g5r8D64PfhU1jtRL1u3L3t3x3CmtmI51m1R1CdTmbqGFbk5_TlY3KSfTXfQua--w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Scale+Stochastic+Optimization+for+Controlling+Distributed+Storage+Devices&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Gangammanavar%2C+Harsha&rft.au=Sen%2C+Suvrajeet&rft.date=2018-07-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=9&rft.issue=4&rft.spage=2691&rft.epage=2702&rft_id=info:doi/10.1109%2FTSG.2016.2616881&rft.externalDocID=7588995 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |