Two-Scale Stochastic Optimization for Controlling Distributed Storage Devices

This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary for conventional generation units. We present a stochastic optimization model of the power system which captures interactions of decisions at...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on smart grid Ročník 9; číslo 4; s. 2691 - 2702
Hlavní autori: Gangammanavar, Harsha, Sen, Suvrajeet
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2018
Predmet:
ISSN:1949-3053, 1949-3061
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary for conventional generation units. We present a stochastic optimization model of the power system which captures interactions of decisions at these two timescales through a novel state-variable formulation. The model also includes transmission constraints approximated by a linearized dc network, fast response operating reserves, and renewable generation. To tackle this high-dimensional multistage stochastic optimization problem, we present a sequential sampling method which we refer to as the stochastic dynamic linear programming. This algorithm is a dynamic extension of regularized two-stage stochastic decomposition for stagewise independent multistage stochastic linear programs, and is targeted at the class of problems where decisions are made at two different timescales. We compare our algorithm with the stochastic dual dynamic programming (SDDP) which has been effectively applied in planning power systems operations. Our computational results show that our sequential Monte-Carlo approach provides prescriptive solutions and values which are statistically indistinguishable from those obtained from SDDP, while improving computational times significantly.
AbstractList This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary for conventional generation units. We present a stochastic optimization model of the power system which captures interactions of decisions at these two timescales through a novel state-variable formulation. The model also includes transmission constraints approximated by a linearized dc network, fast response operating reserves, and renewable generation. To tackle this high-dimensional multistage stochastic optimization problem, we present a sequential sampling method which we refer to as the stochastic dynamic linear programming. This algorithm is a dynamic extension of regularized two-stage stochastic decomposition for stagewise independent multistage stochastic linear programs, and is targeted at the class of problems where decisions are made at two different timescales. We compare our algorithm with the stochastic dual dynamic programming (SDDP) which has been effectively applied in planning power systems operations. Our computational results show that our sequential Monte-Carlo approach provides prescriptive solutions and values which are statistically indistinguishable from those obtained from SDDP, while improving computational times significantly.
Author Sen, Suvrajeet
Gangammanavar, Harsha
Author_xml – sequence: 1
  givenname: Harsha
  orcidid: 0000-0003-4389-5433
  surname: Gangammanavar
  fullname: Gangammanavar, Harsha
  email: harsha@smu.edu
  organization: Department of Engineering Management, Information, and Systems, Southern Methodist University, Dallas, TX, USA
– sequence: 2
  givenname: Suvrajeet
  surname: Sen
  fullname: Sen, Suvrajeet
  email: s.sen@usc.edu
  organization: Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA, USA
BookMark eNp9kE1PAjEQhhuDiYjcTbzsH1jsx_braEDRBMMBPG-6ZYo1y5a0VaO_XhDCwYNzmbk88-Z9LlGvCx0gdE3wiBCsb5eL6YhiIkZUEKEUOUN9oitdMixI73RzdoGGKb3h3TDGBNV99Lz8DOXCmhaKRQ721aTsbTHfZr_x3yb70BUuxGIcuhxD2_puXUx8ytE37xlWeyaaNRQT-PAW0hU6d6ZNMDzuAXp5uF-OH8vZfPo0vpuVlgqWywpzy6WS0ionGTUNlU5z6bAiHJQ1ilpOuaOiwhWsNHeONLhhlXRE4cYQNkD48NfGkFIEV2-j35j4VRNc743UOyP13kh9NLJDxB_E-vxbMEfj2__AmwPoAeCUI7lSWnP2A4X2b-4
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1049_iet_gtd_2019_1344
crossref_primary_10_1049_stg2_12063
crossref_primary_10_1137_22M1538946
crossref_primary_10_1016_j_cor_2022_106132
crossref_primary_10_1137_19M1290735
crossref_primary_10_1016_j_ijepes_2021_106996
crossref_primary_10_1002_eng2_12740
crossref_primary_10_1049_gtd2_12443
crossref_primary_10_1109_TSTE_2022_3217173
crossref_primary_10_1016_j_ejor_2021_12_042
Cites_doi 10.1260/0309-524X.32.4.325
10.1016/j.ejor.2010.08.007
10.1080/17442508308833246
10.1016/j.apenergy.2009.09.022
10.1137/120864854
10.1287/opre.33.5.989
10.1109/TPWRS.2014.2344859
10.1007/978-1-4614-0237-4
10.1007/s10479-010-0756-4
10.1016/S1040-6190(99)00071-8
10.1016/j.enpol.2006.09.005
10.1109/TPWRS.2008.919419
10.1287/opre.43.3.477
10.1007/BF02592154
10.1287/opre.2016.1526
10.1287/moor.16.1.119
10.1287/opre.1050.0264
10.1007/s12667-013-0100-6
10.5547/2160-5890.1.2.4
10.1287/opre.1110.0971
10.1007/s10107-002-0331-0
10.1016/j.enpol.2006.03.023
10.1016/j.ejor.2011.10.056
10.1109/ALLERTON.2010.5706911
10.2172/1088080
10.1007/BF01582219
10.5547/ISSN0195-6574-EJ-Vol32-No2-1
10.1007/BF01580883
10.1109/TPWRS.2011.2169817
10.1023/A:1019206915174
10.1007/BF01582895
10.1109/TPWRS.2015.2410301
10.1016/j.eneco.2008.10.005
10.1137/070704277
10.1287/ijoc.2015.0640
10.1109/TPWRS.2008.2004840
10.1016/j.orl.2008.01.013
10.1007/978-1-4419-1153-7_1005
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSG.2016.2616881
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 2702
ExternalDocumentID 10_1109_TSG_2016_2616881
7588995
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: ECCS1548847
  funderid: 10.13039/100000001
– fundername: AFOSR
  grantid: FA9550-15-1-0267
  funderid: 10.13039/100000181
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-405c57877c8f732ab27f957f0815e8ca82c525f26404ed95ff1b0b347f180ba13
IEDL.DBID RIE
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000443196400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Sat Nov 29 03:45:51 EST 2025
Tue Nov 18 20:49:21 EST 2025
Wed Aug 27 02:50:28 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-405c57877c8f732ab27f957f0815e8ca82c525f26404ed95ff1b0b347f180ba13
ORCID 0000-0003-4389-5433
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TSG_2016_2616881
ieee_primary_7588995
crossref_primary_10_1109_TSG_2016_2616881
PublicationCentury 2000
PublicationDate 2018-July
2018-7-00
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-July
PublicationDecade 2010
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
birge (ref27) 2011
lütkepohl (ref25) 2007
ref12
ref37
ref15
ref36
christie (ref45) 1999
ref30
ref33
gjelsvik (ref34) 2010
ref11
ref10
dupa?ová (ref32) 2003; 95
ref1
ref39
ref17
ref38
ref16
ref19
ref18
(ref2) 2015
(ref21) 2015
dupa?ová (ref31) 2000; 100
manuel (ref47) 2014
ref46
ref23
ref48
ref26
ref20
ref42
ref41
ref44
ref43
ref28
mokrian (ref14) 2006
ref29
ref8
ref7
ref9
ref4
(ref3) 2014
ref6
ref5
eyer (ref22) 2010
ref40
miranda (ref24) 2007
References_xml – ident: ref48
  doi: 10.1260/0309-524X.32.4.325
– ident: ref46
  doi: 10.1016/j.ejor.2010.08.007
– ident: ref41
  doi: 10.1080/17442508308833246
– ident: ref23
  doi: 10.1016/j.apenergy.2009.09.022
– ident: ref39
  doi: 10.1137/120864854
– ident: ref28
  doi: 10.1287/opre.33.5.989
– ident: ref10
  doi: 10.1109/TPWRS.2014.2344859
– year: 2011
  ident: ref27
  publication-title: Introduction to Stochastic Programming
  doi: 10.1007/978-1-4614-0237-4
– ident: ref16
  doi: 10.1007/s10479-010-0756-4
– year: 2015
  ident: ref21
  publication-title: National Oceanic and Atmospheric Administration
– ident: ref4
  doi: 10.1016/S1040-6190(99)00071-8
– year: 2015
  ident: ref2
  publication-title: Department of energy global energy storage database
– ident: ref5
  doi: 10.1016/j.enpol.2006.09.005
– ident: ref15
  doi: 10.1109/TPWRS.2008.919419
– year: 2010
  ident: ref22
  article-title: Energy storage for the electricity grid: Benefits and market potential assessment guide
– year: 2014
  ident: ref47
  publication-title: Energy Storage Study 2014
– start-page: 1
  year: 2007
  ident: ref24
  article-title: Spatially correlated wind speed modelling for generation adequacy studies in the U.K.
  publication-title: Proc IEEE Power Eng Soc Gen Meeting
– ident: ref29
  doi: 10.1287/opre.43.3.477
– ident: ref35
  doi: 10.1007/BF02592154
– ident: ref38
  doi: 10.1287/opre.2016.1526
– ident: ref30
  doi: 10.1287/moor.16.1.119
– ident: ref18
  doi: 10.1287/opre.1050.0264
– ident: ref12
  doi: 10.1007/s12667-013-0100-6
– ident: ref1
  doi: 10.5547/2160-5890.1.2.4
– start-page: 24
  year: 2006
  ident: ref14
  article-title: A stochastic programming framework for the valuation of electricity storage
  publication-title: Proc 26th USAEE/IAEE North Amer Conf
– start-page: 33
  year: 2010
  ident: ref34
  publication-title: Long- and Medium-term Operations Planning and Stochastic Modelling in Hydro-dominated Power Systems Based on Stochastic Dual Dynamic Programming
– ident: ref13
  doi: 10.1287/opre.1110.0971
– volume: 95
  start-page: 493
  year: 2003
  ident: ref32
  article-title: Scenario reduction in stochastic programming
  publication-title: Math Program
  doi: 10.1007/s10107-002-0331-0
– ident: ref9
  doi: 10.1016/j.enpol.2006.03.023
– ident: ref37
  doi: 10.1016/j.ejor.2011.10.056
– ident: ref26
  doi: 10.1109/ALLERTON.2010.5706911
– ident: ref7
  doi: 10.2172/1088080
– ident: ref44
  doi: 10.1007/BF01582219
– ident: ref8
  doi: 10.5547/ISSN0195-6574-EJ-Vol32-No2-1
– ident: ref43
  doi: 10.1007/BF01580883
– ident: ref19
  doi: 10.1109/TPWRS.2011.2169817
– volume: 100
  start-page: 25
  year: 2000
  ident: ref31
  article-title: Scenarios for multistage stochastic programs
  publication-title: Ann Oper Res
  doi: 10.1023/A:1019206915174
– ident: ref33
  doi: 10.1007/BF01582895
– year: 2014
  ident: ref3
  article-title: Technology roadmap: Energy storage
– year: 2007
  ident: ref25
  publication-title: New Introduction to Multiple Time Series Analysis
– ident: ref17
  doi: 10.1109/TPWRS.2015.2410301
– ident: ref6
  doi: 10.1016/j.eneco.2008.10.005
– ident: ref42
  doi: 10.1137/070704277
– ident: ref11
  doi: 10.1287/ijoc.2015.0640
– ident: ref20
  doi: 10.1109/TPWRS.2008.2004840
– year: 1999
  ident: ref45
  publication-title: Power systems test case archive
– ident: ref36
  doi: 10.1016/j.orl.2008.01.013
– ident: ref40
  doi: 10.1007/978-1-4419-1153-7_1005
SSID ssj0000333629
Score 2.2918105
Snippet This paper is motivated by a power system with storage devices at multiple locations which need to be controlled at a much finer timescale than that necessary...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2691
SubjectTerms distributed storage control
Energy storage
Generators
Multistage stochastic programming
Optimization
Power grids
Production
sampling-based algorithm
Stochastic processes
Title Two-Scale Stochastic Optimization for Controlling Distributed Storage Devices
URI https://ieeexplore.ieee.org/document/7588995
Volume 9
WOSCitedRecordID wos000443196400027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA_b8KAHv6Y4v8jBi2C3Nmma9Cib04NOYVN2K036goKuMjv9903SrkwQwVsJeRB-bd9H3nu_h9AZjyDTjAhPRjT1Qk1STxqz7gkVcBloqjLX5fp0y0cjMZ3GDw10UffCAIArPoOufXS5_CxXC3tV1jO-rQkPWBM1OY_KXq36PsWn1Oji2CWRQ5vOZ3SZlfTj3mR8bcu4oq4JGCIhgh9WaGWsirMqw63_nWcbbVbeI74sX_cOasBsF22scAq20d3kK_fGBnnA4yJXz6klYsb3RjO8VS2X2PipuF-WqNtmdDyw5Ll27hVkVmZuVAwegFMhe-hxeDXp33jVzARPkYgWJhxkyv6EXAnNKUkl4TpmXBvLz0CoVBDFCNPGDfJDyGKmdSB9SUOuA-HLNKD7qDXLZ3CAcCiJUFKSVAkeZhAILay_RjMgQsoQOqi3xDBRFaG4nWvxmrjAwo8Tg3piUU8q1DvovJZ4L8k0_tjbtoDX-yqsD39fPkLrRliUdbTHqFXMF3CC1tRn8fIxP3VfyjdSMLu0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3qY4r33wRbCuzaVJH2VzTtymsCp7K02aoKCbzE3_vknblQki-FZCEsqX9lxyzncOwBkLVKop4q4IcOISjRJXGLXucukz4Wss04zl-tRl_T4fDsOHClyUXBilVJZ8pi7tYxbLT8dyZq_KGsa2Ne4BXYJlSgjycrZWeaPiYWykcZiFkYkN6FM8j0t6YSMa3NhEruDSuAwB5_4PPbTQWCXTK-3N_73RFmwU9qNzlR_4NlTUaAfWF6oK1qAXfY3dgcFeOYPpWD4nthSzc29kw1tBunSMpeo08yR1S0d3WrZ8ru18pVK7ZmKEjNNSmRDZhcf2ddTsuEXXBFeiAE-NQ0il_Q2Z5JphlAjEdEiZNrqfKi4TjiRFVBtDyCMqDanWvvAEJkz73BOJj_egOhqP1D44RCAuhUCJ5IykyueaW4sNpwpxIYiqQ2OOYSyLkuK2s8VrnLkWXhgb1GOLelygXofzcsV7Xk7jj7k1C3g5r8D64PfhU1jtRL1u3L3t3x3CmtmI51m1R1CdTmbqGFbk5_TlY3KSfTXfQua--w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Scale+Stochastic+Optimization+for+Controlling+Distributed+Storage+Devices&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Gangammanavar%2C+Harsha&rft.au=Sen%2C+Suvrajeet&rft.date=2018-07-01&rft.pub=IEEE&rft.issn=1949-3053&rft.volume=9&rft.issue=4&rft.spage=2691&rft.epage=2702&rft_id=info:doi/10.1109%2FTSG.2016.2616881&rft.externalDocID=7588995
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon