Sparse Regularization via Convex Analysis

Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the lea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 65; číslo 17; s. 4481 - 4494
Hlavní autor: Selesnick, Ivan
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.09.2017
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the least squares cost function to be minimized, and avoids the systematic underestimation characteristic of L1 norm regularization. The proposed penalty function is a multivariate generalization of the minimax-concave penalty. It is defined in terms of a new multivariate generalization of the Huber function, which in turn is defined via infimal convolution. The proposed sparse-regularized least squares cost function can be minimized by proximal algorithms comprising simple computations.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2017.2711501