Sparse Regularization via Convex Analysis

Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the lea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 65; no. 17; pp. 4481 - 4494
Main Author: Selesnick, Ivan
Format: Journal Article
Language:English
Published: IEEE 01.09.2017
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the least squares cost function to be minimized, and avoids the systematic underestimation characteristic of L1 norm regularization. The proposed penalty function is a multivariate generalization of the minimax-concave penalty. It is defined in terms of a new multivariate generalization of the Huber function, which in turn is defined via infimal convolution. The proposed sparse-regularized least squares cost function can be minimized by proximal algorithms comprising simple computations.
AbstractList Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the least squares cost function to be minimized, and avoids the systematic underestimation characteristic of L1 norm regularization. The proposed penalty function is a multivariate generalization of the minimax-concave penalty. It is defined in terms of a new multivariate generalization of the Huber function, which in turn is defined via infimal convolution. The proposed sparse-regularized least squares cost function can be minimized by proximal algorithms comprising simple computations.
Author Selesnick, Ivan
Author_xml – sequence: 1
  givenname: Ivan
  surname: Selesnick
  fullname: Selesnick, Ivan
  email: selesi@nyu.edu
  organization: Dept. of Electr. & Comput. Eng., New York Univ., New York, NY, USA
BookMark eNp9j01Lw0AQhhepYFu9C15y9ZC4s5PNZo8l-AUFxVbwFqbJrqzEpOzGYv31prZ48OBpZuB9hveZsFHbtYaxc-AJANdXy8VjIjioRCgAyeGIjUGnEPNUZaNh5xJjmauXEzYJ4Y1zSFOdjdnlYk0-mOjJvH405N0X9a5ro42jqOjajfmMZi012-DCKTu21ARzdphT9nxzvSzu4vnD7X0xm8eVyLCP0egVZtySFChETVhLqy1WWS1ThZqkrGpFItdpjZWxgDWgpaH0cGu7kjhl2f5v5bsQvLFl5fqfVr0n15TAy51wOQiXO-HyIDyA_A-49u6d_PY_5GKPOGPMb1xpzFEp_AZmdWJ2
CODEN ITPRED
CitedBy_id crossref_primary_10_1016_j_triboint_2023_108467
crossref_primary_10_1016_j_measurement_2022_112162
crossref_primary_10_1049_iet_spr_2020_0104
crossref_primary_10_1088_1361_6501_ac05f7
crossref_primary_10_1016_j_ymssp_2025_113161
crossref_primary_10_1109_TITS_2025_3541846
crossref_primary_10_1109_JSEN_2025_3568817
crossref_primary_10_1109_TIM_2021_3108220
crossref_primary_10_3390_bioengineering11111109
crossref_primary_10_1016_j_measurement_2025_116808
crossref_primary_10_1109_TAI_2022_3170001
crossref_primary_10_1109_TSP_2025_3580667
crossref_primary_10_1016_j_eswa_2024_124709
crossref_primary_10_1016_j_patrec_2020_01_020
crossref_primary_10_3390_rs14102308
crossref_primary_10_1007_s11760_023_02542_x
crossref_primary_10_1109_TSP_2020_3032231
crossref_primary_10_3390_a18040195
crossref_primary_10_1016_j_acha_2025_101763
crossref_primary_10_1016_j_ymssp_2019_02_053
crossref_primary_10_4153_S0008439519000730
crossref_primary_10_1109_ACCESS_2020_3015140
crossref_primary_10_1109_TCI_2023_3277629
crossref_primary_10_1109_TGRS_2021_3062486
crossref_primary_10_1016_j_measurement_2022_111622
crossref_primary_10_1016_j_ymssp_2021_107961
crossref_primary_10_1016_j_renene_2021_09_024
crossref_primary_10_1109_TGRS_2021_3138540
crossref_primary_10_1016_j_eswa_2023_120517
crossref_primary_10_1016_j_sigpro_2019_107369
crossref_primary_10_1109_TSP_2024_3356253
crossref_primary_10_1016_j_ymssp_2022_109602
crossref_primary_10_1109_TIM_2021_3133312
crossref_primary_10_1109_JSEN_2024_3395306
crossref_primary_10_1088_1361_6501_ab8c0f
crossref_primary_10_1016_j_measurement_2024_115658
crossref_primary_10_1016_j_isatra_2019_08_042
crossref_primary_10_1109_OJSP_2025_3579646
crossref_primary_10_1177_14759217221085655
crossref_primary_10_1109_TGRS_2019_2947360
crossref_primary_10_1017_S0263574722000285
crossref_primary_10_1016_j_sigpro_2020_107835
crossref_primary_10_1088_1361_6501_ab79c9
crossref_primary_10_1088_1361_6420_ab551e
crossref_primary_10_1109_TNNLS_2022_3201052
crossref_primary_10_1016_j_aeue_2024_155578
crossref_primary_10_1109_LSP_2023_3303699
crossref_primary_10_1007_s11276_021_02839_0
crossref_primary_10_1109_TSIPN_2022_3181729
crossref_primary_10_1109_LCSYS_2024_3398204
crossref_primary_10_1007_s10878_022_00847_0
crossref_primary_10_1016_j_measurement_2022_112173
crossref_primary_10_1016_j_apacoust_2023_109500
crossref_primary_10_1016_j_apacoust_2022_108870
crossref_primary_10_1109_ACCESS_2023_3237255
crossref_primary_10_1109_TSP_2025_3567359
crossref_primary_10_1016_j_sigpro_2020_107947
crossref_primary_10_1109_TITS_2024_3389973
crossref_primary_10_1016_j_eswa_2023_120858
crossref_primary_10_1109_ACCESS_2020_3027029
crossref_primary_10_1016_j_cageo_2021_104802
crossref_primary_10_1109_TIM_2023_3292949
crossref_primary_10_1109_TGRS_2022_3175486
crossref_primary_10_1088_1742_6596_1750_1_012029
crossref_primary_10_1016_j_acha_2024_101719
crossref_primary_10_1088_1361_6501_acd26c
crossref_primary_10_1109_ACCESS_2021_3056459
crossref_primary_10_1002_widm_70040
crossref_primary_10_1088_1361_6501_ab3ed8
crossref_primary_10_1007_s10851_020_01014_y
crossref_primary_10_1016_j_dsp_2018_08_021
crossref_primary_10_1016_j_jsv_2022_117011
crossref_primary_10_1109_TPAMI_2021_3122259
crossref_primary_10_1177_14759217211029016
crossref_primary_10_1088_1361_6501_ace545
crossref_primary_10_1137_23M1625846
crossref_primary_10_1007_s10915_022_01789_9
crossref_primary_10_3390_rs17091483
crossref_primary_10_3934_jimo_2025071
crossref_primary_10_1016_j_jsv_2020_115879
crossref_primary_10_1093_jge_gxac085
crossref_primary_10_1016_j_apacoust_2025_110680
crossref_primary_10_3390_rs17020321
crossref_primary_10_1109_TGRS_2022_3221934
crossref_primary_10_1016_j_jksuci_2023_101860
crossref_primary_10_3390_a14110312
crossref_primary_10_1109_TGRS_2020_3011631
crossref_primary_10_1109_TIM_2024_3375405
crossref_primary_10_3390_electronics12204282
crossref_primary_10_1109_TIM_2023_3251408
crossref_primary_10_1016_j_jsv_2023_117780
crossref_primary_10_1088_1361_6501_accc4c
crossref_primary_10_1121_10_0003373
crossref_primary_10_1016_j_isatra_2022_10_022
crossref_primary_10_1109_TSP_2019_2941071
crossref_primary_10_1109_LSP_2018_2875251
crossref_primary_10_1016_j_mechmachtheory_2022_105063
crossref_primary_10_1016_j_ymssp_2021_108576
crossref_primary_10_1049_iet_com_2018_6186
crossref_primary_10_1016_j_ribaf_2022_101869
crossref_primary_10_3390_s21186081
crossref_primary_10_1007_s10851_019_00917_9
crossref_primary_10_1016_j_dsp_2024_104940
crossref_primary_10_1002_ima_22275
crossref_primary_10_3390_s19071718
crossref_primary_10_1016_j_ins_2021_05_078
crossref_primary_10_1109_TIM_2024_3509584
crossref_primary_10_1016_j_ymssp_2021_108467
crossref_primary_10_1007_s11431_024_2774_2
crossref_primary_10_1177_14613484231198970
crossref_primary_10_1007_s10208_025_09693_y
crossref_primary_10_1007_s10463_025_00939_8
crossref_primary_10_1007_s11432_018_9464_4
crossref_primary_10_1109_ACCESS_2018_2880454
crossref_primary_10_1109_TMECH_2021_3135284
crossref_primary_10_1088_1361_6501_acb83b
crossref_primary_10_1016_j_comcom_2022_09_006
crossref_primary_10_1016_j_measurement_2024_115608
crossref_primary_10_1016_j_sigpro_2019_01_001
crossref_primary_10_1109_TMI_2024_3383468
crossref_primary_10_1088_1361_6501_ada78c
crossref_primary_10_1137_18M1185375
crossref_primary_10_1155_2018_2169364
crossref_primary_10_1093_jge_gxad066
crossref_primary_10_3390_a16120574
crossref_primary_10_1016_j_neucom_2024_129065
crossref_primary_10_1177_09544062221114577
crossref_primary_10_1016_j_ymssp_2025_112572
crossref_primary_10_1080_09500340_2022_2120643
crossref_primary_10_1109_LGRS_2023_3237868
crossref_primary_10_1007_s10473_021_0624_0
crossref_primary_10_1016_j_patcog_2024_110253
crossref_primary_10_1109_LCSYS_2024_3407630
crossref_primary_10_1109_JSTARS_2020_3028104
crossref_primary_10_1016_j_ins_2021_04_047
crossref_primary_10_1016_j_ymssp_2022_108921
crossref_primary_10_1016_j_ecosta_2025_02_003
crossref_primary_10_1002_mma_8777
crossref_primary_10_1109_ACCESS_2019_2921568
crossref_primary_10_1109_TNNLS_2024_3373609
crossref_primary_10_1007_s11042_021_10586_9
crossref_primary_10_1109_OJSP_2025_3529312
crossref_primary_10_1109_LGRS_2019_2904520
crossref_primary_10_1109_ACCESS_2021_3124600
crossref_primary_10_1109_TSMC_2025_3550255
crossref_primary_10_1109_JSEN_2024_3520504
crossref_primary_10_1109_TIM_2023_3306829
crossref_primary_10_1049_iet_spr_2018_5130
crossref_primary_10_1016_j_sigpro_2020_107889
crossref_primary_10_1177_14759217231203240
crossref_primary_10_1177_10775463221113733
crossref_primary_10_1109_JSTARS_2023_3295728
crossref_primary_10_1109_TKDE_2023_3249765
crossref_primary_10_3390_su14105881
crossref_primary_10_1016_j_jsv_2018_06_037
crossref_primary_10_1137_18M1199149
crossref_primary_10_1016_j_cja_2024_06_016
crossref_primary_10_1016_j_jsv_2021_116017
crossref_primary_10_1049_iet_spr_2019_0090
crossref_primary_10_1109_TSP_2023_3244082
crossref_primary_10_1016_j_jestch_2024_101800
crossref_primary_10_1016_j_sigpro_2022_108605
crossref_primary_10_4153_S0008439523000851
crossref_primary_10_1016_j_apm_2022_09_018
crossref_primary_10_1109_TII_2019_2916986
crossref_primary_10_1109_TSP_2023_3315449
crossref_primary_10_1109_ACCESS_2020_2988467
crossref_primary_10_3390_rs13091643
crossref_primary_10_1155_2022_1758996
crossref_primary_10_1007_s40314_020_01176_w
crossref_primary_10_1016_j_jsv_2020_115530
crossref_primary_10_1016_j_sigpro_2019_107292
crossref_primary_10_1109_TNNLS_2024_3512492
crossref_primary_10_3390_su142416793
crossref_primary_10_1109_LGRS_2023_3342935
crossref_primary_10_1016_j_inffus_2024_102501
crossref_primary_10_1088_1361_6501_ad3015
crossref_primary_10_1002_ima_22463
crossref_primary_10_1016_j_apacoust_2023_109461
crossref_primary_10_12677_AAM_2022_1110761
crossref_primary_10_1007_s10851_020_00951_y
crossref_primary_10_1007_s11081_020_09577_w
crossref_primary_10_1016_j_cmpb_2023_107773
crossref_primary_10_1016_j_sigpro_2017_10_023
crossref_primary_10_1002_mma_9710
crossref_primary_10_1016_j_nima_2024_169142
crossref_primary_10_1109_TSP_2020_3039871
crossref_primary_10_1121_10_0036563
crossref_primary_10_1016_j_patrec_2022_02_004
crossref_primary_10_1109_ACCESS_2018_2888944
crossref_primary_10_1016_j_isatra_2020_05_043
crossref_primary_10_1109_JSEN_2018_2884227
crossref_primary_10_1109_TIE_2018_2793271
crossref_primary_10_1784_insi_2025_67_7_423
crossref_primary_10_1007_s11760_022_02384_z
crossref_primary_10_1145_3659583
crossref_primary_10_1016_j_jfranklin_2025_107969
crossref_primary_10_1109_TSIPN_2024_3451992
crossref_primary_10_3390_s23010554
crossref_primary_10_1109_ACCESS_2019_2901519
crossref_primary_10_12677_AIRR_2023_123018
crossref_primary_10_1016_j_apacoust_2024_110201
crossref_primary_10_1016_j_measurement_2021_109471
crossref_primary_10_1109_TIM_2023_3269103
crossref_primary_10_1016_j_neucom_2019_08_035
crossref_primary_10_3390_s20102813
crossref_primary_10_1016_j_patcog_2020_107685
crossref_primary_10_1016_j_renene_2021_04_019
crossref_primary_10_1109_TMM_2020_3019683
crossref_primary_10_1109_JSTARS_2020_3034431
crossref_primary_10_1109_TIM_2018_2851423
crossref_primary_10_1016_j_neucom_2020_07_085
crossref_primary_10_1016_j_jsv_2021_116165
crossref_primary_10_1016_j_ymssp_2025_113235
crossref_primary_10_1109_ACCESS_2024_3361941
crossref_primary_10_1088_1361_6501_ad1805
crossref_primary_10_1109_ACCESS_2019_2902616
crossref_primary_10_1109_LGRS_2022_3222185
crossref_primary_10_1016_j_isatra_2020_02_002
crossref_primary_10_1007_s00034_023_02357_8
crossref_primary_10_1016_j_ymssp_2022_109372
crossref_primary_10_1016_j_ymssp_2020_106930
crossref_primary_10_1109_ACCESS_2021_3073072
crossref_primary_10_1016_j_measurement_2022_111943
crossref_primary_10_1017_S1759078719000989
crossref_primary_10_1007_s10957_020_01745_3
crossref_primary_10_1016_j_isatra_2023_08_028
crossref_primary_10_1088_1361_6501_abb50f
crossref_primary_10_1109_LCOMM_2021_3051907
crossref_primary_10_1109_TIM_2020_3044324
crossref_primary_10_1109_TSP_2019_2907264
crossref_primary_10_1016_j_sigpro_2025_109939
crossref_primary_10_1016_j_ymssp_2021_108508
crossref_primary_10_1109_JSEN_2023_3340203
crossref_primary_10_1088_1361_6501_ad5860
crossref_primary_10_1109_JSEN_2022_3177931
crossref_primary_10_1016_j_image_2021_116214
crossref_primary_10_1109_TIM_2019_2905043
crossref_primary_10_1109_TSP_2020_3044445
crossref_primary_10_1109_TIM_2023_3312485
crossref_primary_10_1016_j_dsp_2023_103937
crossref_primary_10_1109_TCYB_2018_2883566
crossref_primary_10_1016_j_neucom_2025_129410
crossref_primary_10_1088_1361_6501_ac6144
crossref_primary_10_1109_TGRS_2020_3033043
crossref_primary_10_3390_s24082445
crossref_primary_10_1016_j_measurement_2021_109001
crossref_primary_10_2478_jee_2022_0051
crossref_primary_10_1049_smt2_12170
crossref_primary_10_1007_s13042_022_01559_x
crossref_primary_10_1016_j_bspc_2025_108446
crossref_primary_10_1109_MGRS_2024_3494754
crossref_primary_10_1109_TIM_2025_3606042
crossref_primary_10_1109_TSP_2023_3263724
crossref_primary_10_1007_s10851_019_00937_5
crossref_primary_10_1007_s11042_022_12375_4
crossref_primary_10_3390_act13060204
crossref_primary_10_3390_e24091259
crossref_primary_10_1016_j_sigpro_2025_110005
Cites_doi 10.1007/s11760-008-0076-1
10.1109/ICASSP.2013.6637929
10.1214/009053607000000802
10.1109/TIP.2008.2008223
10.1109/TSP.2017.2669904
10.1137/151003714
10.1109/TSP.2016.2518989
10.1561/2400000003
10.1109/ICIP.2013.6738495
10.1007/s10463-016-0563-z
10.1109/ICIP.1998.723327
10.1007/s00041-008-9045-x
10.7551/mitpress/7132.001.0001
10.1109/LSP.2017.2647948
10.1109/TIT.2011.2162174
10.1007/s10851-016-0655-7
10.1016/0167-2789(92)90242-F
10.1109/TSP.2015.2421476
10.1109/TSP.2014.2330349
10.1137/11085997X
10.1109/TIP.2010.2052275
10.1137/S1064827596304010
10.1109/JSTSP.2007.910281
10.1109/ICASSP.2017.7952979
10.1109/LSP.2014.2357681
10.1109/TSP.2008.2007606
10.1109/ICIP.2010.5650379
10.1016/j.acha.2007.10.005
10.1109/LSP.2015.2406314
10.1109/TSP.2015.2502551
10.1007/s11228-017-0407-x
10.1109/TSP.2011.2164074
10.1109/TSP.2014.2298839
10.1017/CBO9781316104514
10.1214/09-AOS729
10.1016/j.ymssp.2015.11.027
10.1007/978-1-4419-9467-7
10.1364/OL.28.000272
10.1002/cpa.20042
10.1088/0266-5611/32/7/075004
10.1109/TIP.2003.814255
10.1007/978-0-387-92920-0_5
10.1109/TSP.2016.2612179
10.1137/060657704
10.1214/aoms/1177703732
10.1198/016214501753382273
10.1109/83.784433
10.1016/j.acha.2012.03.006
10.1109/ICASSP.2017.7953017
10.1117/12.736231
10.1109/TSP.2009.2026004
10.1063/1.4739473
10.1007/978-3-319-20188-7_6
10.1109/TSP.2014.2329274
10.1109/ICASSP.2014.6853752
10.1109/JPROC.2009.2035722
10.1109/CAMSAP.2015.7383798
10.1007/s10208-012-9135-7
10.1109/LSP.2014.2349356
10.1017/CBO9780511804441
10.1109/LSP.2016.2535227
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2017.2711501
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 4494
ExternalDocumentID 10_1109_TSP_2017_2711501
7938377
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1525398; N00014-15-1-2314
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-3e9b360fa52322da3d5f9f3c6d54739a55cd7a2894d3cef13d13fa2714d39fb53
IEDL.DBID RIE
ISICitedReferencesCount 341
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405394000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Tue Nov 18 20:58:10 EST 2025
Sat Nov 29 04:10:43 EST 2025
Wed Aug 27 02:52:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-3e9b360fa52322da3d5f9f3c6d54739a55cd7a2894d3cef13d13fa2714d39fb53
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TSP_2017_2711501
crossref_primary_10_1109_TSP_2017_2711501
ieee_primary_7938377
PublicationCentury 2000
PublicationDate 2017-Sept.1,-1
2017-9-1
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.1,-1
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
blake (ref7) 1987
ref17
ref16
ref19
ref18
lanza (ref35) 2016; 136
selesnick (ref53) 2015; 4
ref51
ref50
ref46
ref45
ahmad (ref2) 2015; 1
ref48
ref47
ref42
ref41
ref44
ref43
carlsson (ref12) 2016
ref49
ref8
ref9
ref3
ref6
ref5
ref40
bauschke (ref4) 2011
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref64
ref20
ref63
ref66
ref22
ref65
ref21
gao (ref29) 1997; 7
ref28
ref27
tipping (ref60) 2001; 1
ref62
ref61
References_xml – ident: ref34
  doi: 10.1007/s11760-008-0076-1
– ident: ref62
  doi: 10.1109/ICASSP.2013.6637929
– ident: ref66
  doi: 10.1214/009053607000000802
– volume: 1
  start-page: 211
  year: 2001
  ident: ref60
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J Mach Learning Res
– ident: ref24
  doi: 10.1109/TIP.2008.2008223
– ident: ref52
  doi: 10.1109/TSP.2017.2669904
– ident: ref57
  doi: 10.1137/151003714
– ident: ref55
  doi: 10.1109/TSP.2016.2518989
– ident: ref46
  doi: 10.1561/2400000003
– ident: ref38
  doi: 10.1109/ICIP.2013.6738495
– ident: ref61
  doi: 10.1007/s10463-016-0563-z
– ident: ref41
  doi: 10.1109/ICIP.1998.723327
– ident: ref11
  doi: 10.1007/s00041-008-9045-x
– year: 1987
  ident: ref7
  publication-title: Visual Reconstruction
  doi: 10.7551/mitpress/7132.001.0001
– volume: 7
  start-page: 855
  year: 1997
  ident: ref29
  article-title: Waveshrink with firm shrinkage
  publication-title: Statistica Sinica
– ident: ref51
  doi: 10.1109/LSP.2017.2647948
– ident: ref63
  doi: 10.1109/TIT.2011.2162174
– ident: ref36
  doi: 10.1007/s10851-016-0655-7
– ident: ref48
  doi: 10.1016/0167-2789(92)90242-F
– volume: 1
  start-page: 220
  year: 2015
  ident: ref2
  article-title: Iteratively reweighted L1 approaches to sparse composite regularization
  publication-title: I IEEE Transactions on Computers
– ident: ref58
  doi: 10.1109/TSP.2015.2421476
– ident: ref16
  doi: 10.1109/TSP.2014.2330349
– ident: ref19
  doi: 10.1137/11085997X
– ident: ref44
  doi: 10.1109/TIP.2010.2052275
– ident: ref18
  doi: 10.1137/S1064827596304010
– ident: ref27
  doi: 10.1109/JSTSP.2007.910281
– ident: ref49
  doi: 10.1109/ICASSP.2017.7952979
– ident: ref5
  doi: 10.1109/LSP.2014.2357681
– ident: ref39
  doi: 10.1109/TSP.2008.2007606
– ident: ref1
  doi: 10.1109/ICIP.2010.5650379
– ident: ref28
  doi: 10.1016/j.acha.2007.10.005
– ident: ref23
  doi: 10.1109/LSP.2015.2406314
– ident: ref6
  doi: 10.1109/TSP.2015.2502551
– ident: ref20
  doi: 10.1007/s11228-017-0407-x
– ident: ref31
  doi: 10.1109/TSP.2011.2164074
– ident: ref54
  doi: 10.1109/TSP.2014.2298839
– volume: 136
  start-page: 1
  year: 2016
  ident: ref35
  article-title: Nonconvex nonsmooth optimization via convex-nonconvex majorization-minimization
  publication-title: Numerische Mathematik
– ident: ref59
  doi: 10.1017/CBO9781316104514
– year: 2016
  ident: ref12
  article-title: On convexification/optimization of functionals including an l2-misfit term
– ident: ref65
  doi: 10.1214/09-AOS729
– ident: ref32
  doi: 10.1016/j.ymssp.2015.11.027
– year: 2011
  ident: ref4
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
  doi: 10.1007/978-1-4419-9467-7
– ident: ref3
  doi: 10.1364/OL.28.000272
– ident: ref22
  doi: 10.1002/cpa.20042
– ident: ref64
  doi: 10.1088/0266-5611/32/7/075004
– ident: ref26
  doi: 10.1109/TIP.2003.814255
– ident: ref43
  doi: 10.1007/978-0-387-92920-0_5
– ident: ref37
  doi: 10.1109/TSP.2016.2612179
– ident: ref9
  doi: 10.1137/060657704
– ident: ref33
  doi: 10.1214/aoms/1177703732
– ident: ref25
  doi: 10.1198/016214501753382273
– ident: ref42
  doi: 10.1109/83.784433
– ident: ref40
  doi: 10.1016/j.acha.2012.03.006
– ident: ref50
  doi: 10.1109/ICASSP.2017.7953017
– ident: ref47
  doi: 10.1117/12.736231
– ident: ref30
  doi: 10.1109/TSP.2009.2026004
– ident: ref21
  doi: 10.1063/1.4739473
– volume: 4
  start-page: 149
  year: 2015
  ident: ref53
  article-title: Sparsity-assisted signal smoothing
  publication-title: Excursions in Harmonic Analysis
  doi: 10.1007/978-3-319-20188-7_6
– ident: ref17
  doi: 10.1109/TSP.2014.2329274
– ident: ref15
  doi: 10.1109/ICASSP.2014.6853752
– ident: ref10
  doi: 10.1109/JPROC.2009.2035722
– ident: ref13
  doi: 10.1109/CAMSAP.2015.7383798
– ident: ref14
  doi: 10.1007/s10208-012-9135-7
– ident: ref56
  doi: 10.1109/LSP.2014.2349356
– ident: ref8
  doi: 10.1017/CBO9780511804441
– ident: ref45
  doi: 10.1109/LSP.2016.2535227
SSID ssj0014496
Score 2.6685047
Snippet Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4481
SubjectTerms convex function
Convex functions
Convolution
Cost function
denoising
Noise reduction
optimization
Signal processing algorithms
sparse approximation
Sparse regularization
Title Sparse Regularization via Convex Analysis
URI https://ieeexplore.ieee.org/document/7938377
Volume 65
WOSCitedRecordID wos000405394000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH60xYMe3KpYN-bgpWDaySSTNEcRiwcpxVbpbchkgYK0pbbFn2-SmQ4VRPA0WwIz3wTe-_KWD-BOMuGMsqGOm1CGvIVCubQpinOBDfMPg2bk-wsfDHqTiRjW4L6qhTHGhOQz0_GnIZav52rtt8q6bi05PsXrUOecFbVaVcSA0qDF5dwFgtIen2xDkrHojkdDn8PFOwn3_g_-YYJ2NFWCSekf_e9ljuGwdB2jh-Jfn0DNzE7hYKehYBPao4UjqiZ6DQrzy7LGMtpMZfTo08u_om0TkjN46z-NH59RKYaAVMLIChEjcsJiKx1zTBItiU6tsEQx7dWDhUxTpbl09IlqoozFRGNipftidy1snpJzaMzmM3MBUU4lo5hizVNJY6Vyd2DcUCl8dz6sWtDd4pOpslO4F6z4yAJjiEXmEM08olmJaAva1YxF0SXjj7FND2Y1rsTx8vfbV7DvJxdZXdfQWC3X5gb21GY1_VzehiXwDcRvrGo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3qY4r33wZWC3trktjzIcE-cYbsreSpqkMJBtzG34803SrkwQwafe0tJ-DZzz5Vw-gDtBuTHKGhtugqlvLZSfiJT4QcJDTe1Fpxn53mW9XnM04v0S3Be1MFprl3ym63bXxfLVVC7tUlnDzCXDp9gWbBOMoyCr1ipiBhg7NS7jMCCfNNloHZQMeGM46NssLlaPmPWAwh9GaENVxRmV9uH_XucIDnLn0XvI_vYxlPTkBPY3WgpWoDaYGaqqvVenMT_Pqyy91Vh4LZtg_uWt25Ccwlv7cdjq-Lkcgi8jihY-0jxBNEiF4Y5RpARSJOUpklRZ_WAuCJGKCUOgsEJSpyFSIUqF-WJzzNOEoDMoT6YTfQ5eggXFIQ4VIwIHUiZmQ5nGgtv-fKGsQmONTyzzXuFWsuIjdpwh4LFBNLaIxjmiVagVd8yyPhl_jK1YMItxOY4Xv5--hd3O8KUbd596z5ewZx-U5XhdQXkxX-pr2JGrxfhzfuOmwzftK6-x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Regularization+via+Convex+Analysis&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Selesnick%2C+Ivan&rft.date=2017-09-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=65&rft.issue=17&rft.spage=4481&rft.epage=4494&rft_id=info:doi/10.1109%2FTSP.2017.2711501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2017_2711501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon