Sparse Regularization via Convex Analysis
Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the lea...
Saved in:
| Published in: | IEEE transactions on signal processing Vol. 65; no. 17; pp. 4481 - 4494 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.09.2017
|
| Subjects: | |
| ISSN: | 1053-587X, 1941-0476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the least squares cost function to be minimized, and avoids the systematic underestimation characteristic of L1 norm regularization. The proposed penalty function is a multivariate generalization of the minimax-concave penalty. It is defined in terms of a new multivariate generalization of the Huber function, which in turn is defined via infimal convolution. The proposed sparse-regularized least squares cost function can be minimized by proximal algorithms comprising simple computations. |
|---|---|
| AbstractList | Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true solution. As an alternative to the L1 norm, this paper proposes a class of nonconvex penalty functions that maintain the convexity of the least squares cost function to be minimized, and avoids the systematic underestimation characteristic of L1 norm regularization. The proposed penalty function is a multivariate generalization of the minimax-concave penalty. It is defined in terms of a new multivariate generalization of the Huber function, which in turn is defined via infimal convolution. The proposed sparse-regularized least squares cost function can be minimized by proximal algorithms comprising simple computations. |
| Author | Selesnick, Ivan |
| Author_xml | – sequence: 1 givenname: Ivan surname: Selesnick fullname: Selesnick, Ivan email: selesi@nyu.edu organization: Dept. of Electr. & Comput. Eng., New York Univ., New York, NY, USA |
| BookMark | eNp9j01Lw0AQhhepYFu9C15y9ZC4s5PNZo8l-AUFxVbwFqbJrqzEpOzGYv31prZ48OBpZuB9hveZsFHbtYaxc-AJANdXy8VjIjioRCgAyeGIjUGnEPNUZaNh5xJjmauXEzYJ4Y1zSFOdjdnlYk0-mOjJvH405N0X9a5ro42jqOjajfmMZi012-DCKTu21ARzdphT9nxzvSzu4vnD7X0xm8eVyLCP0egVZtySFChETVhLqy1WWS1ThZqkrGpFItdpjZWxgDWgpaH0cGu7kjhl2f5v5bsQvLFl5fqfVr0n15TAy51wOQiXO-HyIDyA_A-49u6d_PY_5GKPOGPMb1xpzFEp_AZmdWJ2 |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1016_j_triboint_2023_108467 crossref_primary_10_1016_j_measurement_2022_112162 crossref_primary_10_1049_iet_spr_2020_0104 crossref_primary_10_1088_1361_6501_ac05f7 crossref_primary_10_1016_j_ymssp_2025_113161 crossref_primary_10_1109_TITS_2025_3541846 crossref_primary_10_1109_JSEN_2025_3568817 crossref_primary_10_1109_TIM_2021_3108220 crossref_primary_10_3390_bioengineering11111109 crossref_primary_10_1016_j_measurement_2025_116808 crossref_primary_10_1109_TAI_2022_3170001 crossref_primary_10_1109_TSP_2025_3580667 crossref_primary_10_1016_j_eswa_2024_124709 crossref_primary_10_1016_j_patrec_2020_01_020 crossref_primary_10_3390_rs14102308 crossref_primary_10_1007_s11760_023_02542_x crossref_primary_10_1109_TSP_2020_3032231 crossref_primary_10_3390_a18040195 crossref_primary_10_1016_j_acha_2025_101763 crossref_primary_10_1016_j_ymssp_2019_02_053 crossref_primary_10_4153_S0008439519000730 crossref_primary_10_1109_ACCESS_2020_3015140 crossref_primary_10_1109_TCI_2023_3277629 crossref_primary_10_1109_TGRS_2021_3062486 crossref_primary_10_1016_j_measurement_2022_111622 crossref_primary_10_1016_j_ymssp_2021_107961 crossref_primary_10_1016_j_renene_2021_09_024 crossref_primary_10_1109_TGRS_2021_3138540 crossref_primary_10_1016_j_eswa_2023_120517 crossref_primary_10_1016_j_sigpro_2019_107369 crossref_primary_10_1109_TSP_2024_3356253 crossref_primary_10_1016_j_ymssp_2022_109602 crossref_primary_10_1109_TIM_2021_3133312 crossref_primary_10_1109_JSEN_2024_3395306 crossref_primary_10_1088_1361_6501_ab8c0f crossref_primary_10_1016_j_measurement_2024_115658 crossref_primary_10_1016_j_isatra_2019_08_042 crossref_primary_10_1109_OJSP_2025_3579646 crossref_primary_10_1177_14759217221085655 crossref_primary_10_1109_TGRS_2019_2947360 crossref_primary_10_1017_S0263574722000285 crossref_primary_10_1016_j_sigpro_2020_107835 crossref_primary_10_1088_1361_6501_ab79c9 crossref_primary_10_1088_1361_6420_ab551e crossref_primary_10_1109_TNNLS_2022_3201052 crossref_primary_10_1016_j_aeue_2024_155578 crossref_primary_10_1109_LSP_2023_3303699 crossref_primary_10_1007_s11276_021_02839_0 crossref_primary_10_1109_TSIPN_2022_3181729 crossref_primary_10_1109_LCSYS_2024_3398204 crossref_primary_10_1007_s10878_022_00847_0 crossref_primary_10_1016_j_measurement_2022_112173 crossref_primary_10_1016_j_apacoust_2023_109500 crossref_primary_10_1016_j_apacoust_2022_108870 crossref_primary_10_1109_ACCESS_2023_3237255 crossref_primary_10_1109_TSP_2025_3567359 crossref_primary_10_1016_j_sigpro_2020_107947 crossref_primary_10_1109_TITS_2024_3389973 crossref_primary_10_1016_j_eswa_2023_120858 crossref_primary_10_1109_ACCESS_2020_3027029 crossref_primary_10_1016_j_cageo_2021_104802 crossref_primary_10_1109_TIM_2023_3292949 crossref_primary_10_1109_TGRS_2022_3175486 crossref_primary_10_1088_1742_6596_1750_1_012029 crossref_primary_10_1016_j_acha_2024_101719 crossref_primary_10_1088_1361_6501_acd26c crossref_primary_10_1109_ACCESS_2021_3056459 crossref_primary_10_1002_widm_70040 crossref_primary_10_1088_1361_6501_ab3ed8 crossref_primary_10_1007_s10851_020_01014_y crossref_primary_10_1016_j_dsp_2018_08_021 crossref_primary_10_1016_j_jsv_2022_117011 crossref_primary_10_1109_TPAMI_2021_3122259 crossref_primary_10_1177_14759217211029016 crossref_primary_10_1088_1361_6501_ace545 crossref_primary_10_1137_23M1625846 crossref_primary_10_1007_s10915_022_01789_9 crossref_primary_10_3390_rs17091483 crossref_primary_10_3934_jimo_2025071 crossref_primary_10_1016_j_jsv_2020_115879 crossref_primary_10_1093_jge_gxac085 crossref_primary_10_1016_j_apacoust_2025_110680 crossref_primary_10_3390_rs17020321 crossref_primary_10_1109_TGRS_2022_3221934 crossref_primary_10_1016_j_jksuci_2023_101860 crossref_primary_10_3390_a14110312 crossref_primary_10_1109_TGRS_2020_3011631 crossref_primary_10_1109_TIM_2024_3375405 crossref_primary_10_3390_electronics12204282 crossref_primary_10_1109_TIM_2023_3251408 crossref_primary_10_1016_j_jsv_2023_117780 crossref_primary_10_1088_1361_6501_accc4c crossref_primary_10_1121_10_0003373 crossref_primary_10_1016_j_isatra_2022_10_022 crossref_primary_10_1109_TSP_2019_2941071 crossref_primary_10_1109_LSP_2018_2875251 crossref_primary_10_1016_j_mechmachtheory_2022_105063 crossref_primary_10_1016_j_ymssp_2021_108576 crossref_primary_10_1049_iet_com_2018_6186 crossref_primary_10_1016_j_ribaf_2022_101869 crossref_primary_10_3390_s21186081 crossref_primary_10_1007_s10851_019_00917_9 crossref_primary_10_1016_j_dsp_2024_104940 crossref_primary_10_1002_ima_22275 crossref_primary_10_3390_s19071718 crossref_primary_10_1016_j_ins_2021_05_078 crossref_primary_10_1109_TIM_2024_3509584 crossref_primary_10_1016_j_ymssp_2021_108467 crossref_primary_10_1007_s11431_024_2774_2 crossref_primary_10_1177_14613484231198970 crossref_primary_10_1007_s10208_025_09693_y crossref_primary_10_1007_s10463_025_00939_8 crossref_primary_10_1007_s11432_018_9464_4 crossref_primary_10_1109_ACCESS_2018_2880454 crossref_primary_10_1109_TMECH_2021_3135284 crossref_primary_10_1088_1361_6501_acb83b crossref_primary_10_1016_j_comcom_2022_09_006 crossref_primary_10_1016_j_measurement_2024_115608 crossref_primary_10_1016_j_sigpro_2019_01_001 crossref_primary_10_1109_TMI_2024_3383468 crossref_primary_10_1088_1361_6501_ada78c crossref_primary_10_1137_18M1185375 crossref_primary_10_1155_2018_2169364 crossref_primary_10_1093_jge_gxad066 crossref_primary_10_3390_a16120574 crossref_primary_10_1016_j_neucom_2024_129065 crossref_primary_10_1177_09544062221114577 crossref_primary_10_1016_j_ymssp_2025_112572 crossref_primary_10_1080_09500340_2022_2120643 crossref_primary_10_1109_LGRS_2023_3237868 crossref_primary_10_1007_s10473_021_0624_0 crossref_primary_10_1016_j_patcog_2024_110253 crossref_primary_10_1109_LCSYS_2024_3407630 crossref_primary_10_1109_JSTARS_2020_3028104 crossref_primary_10_1016_j_ins_2021_04_047 crossref_primary_10_1016_j_ymssp_2022_108921 crossref_primary_10_1016_j_ecosta_2025_02_003 crossref_primary_10_1002_mma_8777 crossref_primary_10_1109_ACCESS_2019_2921568 crossref_primary_10_1109_TNNLS_2024_3373609 crossref_primary_10_1007_s11042_021_10586_9 crossref_primary_10_1109_OJSP_2025_3529312 crossref_primary_10_1109_LGRS_2019_2904520 crossref_primary_10_1109_ACCESS_2021_3124600 crossref_primary_10_1109_TSMC_2025_3550255 crossref_primary_10_1109_JSEN_2024_3520504 crossref_primary_10_1109_TIM_2023_3306829 crossref_primary_10_1049_iet_spr_2018_5130 crossref_primary_10_1016_j_sigpro_2020_107889 crossref_primary_10_1177_14759217231203240 crossref_primary_10_1177_10775463221113733 crossref_primary_10_1109_JSTARS_2023_3295728 crossref_primary_10_1109_TKDE_2023_3249765 crossref_primary_10_3390_su14105881 crossref_primary_10_1016_j_jsv_2018_06_037 crossref_primary_10_1137_18M1199149 crossref_primary_10_1016_j_cja_2024_06_016 crossref_primary_10_1016_j_jsv_2021_116017 crossref_primary_10_1049_iet_spr_2019_0090 crossref_primary_10_1109_TSP_2023_3244082 crossref_primary_10_1016_j_jestch_2024_101800 crossref_primary_10_1016_j_sigpro_2022_108605 crossref_primary_10_4153_S0008439523000851 crossref_primary_10_1016_j_apm_2022_09_018 crossref_primary_10_1109_TII_2019_2916986 crossref_primary_10_1109_TSP_2023_3315449 crossref_primary_10_1109_ACCESS_2020_2988467 crossref_primary_10_3390_rs13091643 crossref_primary_10_1155_2022_1758996 crossref_primary_10_1007_s40314_020_01176_w crossref_primary_10_1016_j_jsv_2020_115530 crossref_primary_10_1016_j_sigpro_2019_107292 crossref_primary_10_1109_TNNLS_2024_3512492 crossref_primary_10_3390_su142416793 crossref_primary_10_1109_LGRS_2023_3342935 crossref_primary_10_1016_j_inffus_2024_102501 crossref_primary_10_1088_1361_6501_ad3015 crossref_primary_10_1002_ima_22463 crossref_primary_10_1016_j_apacoust_2023_109461 crossref_primary_10_12677_AAM_2022_1110761 crossref_primary_10_1007_s10851_020_00951_y crossref_primary_10_1007_s11081_020_09577_w crossref_primary_10_1016_j_cmpb_2023_107773 crossref_primary_10_1016_j_sigpro_2017_10_023 crossref_primary_10_1002_mma_9710 crossref_primary_10_1016_j_nima_2024_169142 crossref_primary_10_1109_TSP_2020_3039871 crossref_primary_10_1121_10_0036563 crossref_primary_10_1016_j_patrec_2022_02_004 crossref_primary_10_1109_ACCESS_2018_2888944 crossref_primary_10_1016_j_isatra_2020_05_043 crossref_primary_10_1109_JSEN_2018_2884227 crossref_primary_10_1109_TIE_2018_2793271 crossref_primary_10_1784_insi_2025_67_7_423 crossref_primary_10_1007_s11760_022_02384_z crossref_primary_10_1145_3659583 crossref_primary_10_1016_j_jfranklin_2025_107969 crossref_primary_10_1109_TSIPN_2024_3451992 crossref_primary_10_3390_s23010554 crossref_primary_10_1109_ACCESS_2019_2901519 crossref_primary_10_12677_AIRR_2023_123018 crossref_primary_10_1016_j_apacoust_2024_110201 crossref_primary_10_1016_j_measurement_2021_109471 crossref_primary_10_1109_TIM_2023_3269103 crossref_primary_10_1016_j_neucom_2019_08_035 crossref_primary_10_3390_s20102813 crossref_primary_10_1016_j_patcog_2020_107685 crossref_primary_10_1016_j_renene_2021_04_019 crossref_primary_10_1109_TMM_2020_3019683 crossref_primary_10_1109_JSTARS_2020_3034431 crossref_primary_10_1109_TIM_2018_2851423 crossref_primary_10_1016_j_neucom_2020_07_085 crossref_primary_10_1016_j_jsv_2021_116165 crossref_primary_10_1016_j_ymssp_2025_113235 crossref_primary_10_1109_ACCESS_2024_3361941 crossref_primary_10_1088_1361_6501_ad1805 crossref_primary_10_1109_ACCESS_2019_2902616 crossref_primary_10_1109_LGRS_2022_3222185 crossref_primary_10_1016_j_isatra_2020_02_002 crossref_primary_10_1007_s00034_023_02357_8 crossref_primary_10_1016_j_ymssp_2022_109372 crossref_primary_10_1016_j_ymssp_2020_106930 crossref_primary_10_1109_ACCESS_2021_3073072 crossref_primary_10_1016_j_measurement_2022_111943 crossref_primary_10_1017_S1759078719000989 crossref_primary_10_1007_s10957_020_01745_3 crossref_primary_10_1016_j_isatra_2023_08_028 crossref_primary_10_1088_1361_6501_abb50f crossref_primary_10_1109_LCOMM_2021_3051907 crossref_primary_10_1109_TIM_2020_3044324 crossref_primary_10_1109_TSP_2019_2907264 crossref_primary_10_1016_j_sigpro_2025_109939 crossref_primary_10_1016_j_ymssp_2021_108508 crossref_primary_10_1109_JSEN_2023_3340203 crossref_primary_10_1088_1361_6501_ad5860 crossref_primary_10_1109_JSEN_2022_3177931 crossref_primary_10_1016_j_image_2021_116214 crossref_primary_10_1109_TIM_2019_2905043 crossref_primary_10_1109_TSP_2020_3044445 crossref_primary_10_1109_TIM_2023_3312485 crossref_primary_10_1016_j_dsp_2023_103937 crossref_primary_10_1109_TCYB_2018_2883566 crossref_primary_10_1016_j_neucom_2025_129410 crossref_primary_10_1088_1361_6501_ac6144 crossref_primary_10_1109_TGRS_2020_3033043 crossref_primary_10_3390_s24082445 crossref_primary_10_1016_j_measurement_2021_109001 crossref_primary_10_2478_jee_2022_0051 crossref_primary_10_1049_smt2_12170 crossref_primary_10_1007_s13042_022_01559_x crossref_primary_10_1016_j_bspc_2025_108446 crossref_primary_10_1109_MGRS_2024_3494754 crossref_primary_10_1109_TIM_2025_3606042 crossref_primary_10_1109_TSP_2023_3263724 crossref_primary_10_1007_s10851_019_00937_5 crossref_primary_10_1007_s11042_022_12375_4 crossref_primary_10_3390_act13060204 crossref_primary_10_3390_e24091259 crossref_primary_10_1016_j_sigpro_2025_110005 |
| Cites_doi | 10.1007/s11760-008-0076-1 10.1109/ICASSP.2013.6637929 10.1214/009053607000000802 10.1109/TIP.2008.2008223 10.1109/TSP.2017.2669904 10.1137/151003714 10.1109/TSP.2016.2518989 10.1561/2400000003 10.1109/ICIP.2013.6738495 10.1007/s10463-016-0563-z 10.1109/ICIP.1998.723327 10.1007/s00041-008-9045-x 10.7551/mitpress/7132.001.0001 10.1109/LSP.2017.2647948 10.1109/TIT.2011.2162174 10.1007/s10851-016-0655-7 10.1016/0167-2789(92)90242-F 10.1109/TSP.2015.2421476 10.1109/TSP.2014.2330349 10.1137/11085997X 10.1109/TIP.2010.2052275 10.1137/S1064827596304010 10.1109/JSTSP.2007.910281 10.1109/ICASSP.2017.7952979 10.1109/LSP.2014.2357681 10.1109/TSP.2008.2007606 10.1109/ICIP.2010.5650379 10.1016/j.acha.2007.10.005 10.1109/LSP.2015.2406314 10.1109/TSP.2015.2502551 10.1007/s11228-017-0407-x 10.1109/TSP.2011.2164074 10.1109/TSP.2014.2298839 10.1017/CBO9781316104514 10.1214/09-AOS729 10.1016/j.ymssp.2015.11.027 10.1007/978-1-4419-9467-7 10.1364/OL.28.000272 10.1002/cpa.20042 10.1088/0266-5611/32/7/075004 10.1109/TIP.2003.814255 10.1007/978-0-387-92920-0_5 10.1109/TSP.2016.2612179 10.1137/060657704 10.1214/aoms/1177703732 10.1198/016214501753382273 10.1109/83.784433 10.1016/j.acha.2012.03.006 10.1109/ICASSP.2017.7953017 10.1117/12.736231 10.1109/TSP.2009.2026004 10.1063/1.4739473 10.1007/978-3-319-20188-7_6 10.1109/TSP.2014.2329274 10.1109/ICASSP.2014.6853752 10.1109/JPROC.2009.2035722 10.1109/CAMSAP.2015.7383798 10.1007/s10208-012-9135-7 10.1109/LSP.2014.2349356 10.1017/CBO9780511804441 10.1109/LSP.2016.2535227 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSP.2017.2711501 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 4494 |
| ExternalDocumentID | 10_1109_TSP_2017_2711501 7938377 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: CCF-1525398; N00014-15-1-2314 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION |
| ID | FETCH-LOGICAL-c263t-3e9b360fa52322da3d5f9f3c6d54739a55cd7a2894d3cef13d13fa2714d39fb53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 341 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405394000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Tue Nov 18 20:58:10 EST 2025 Sat Nov 29 04:10:43 EST 2025 Wed Aug 27 02:52:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-3e9b360fa52322da3d5f9f3c6d54739a55cd7a2894d3cef13d13fa2714d39fb53 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSP_2017_2711501 crossref_primary_10_1109_TSP_2017_2711501 ieee_primary_7938377 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept.1,-1 2017-9-1 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept.1,-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 ref13 ref56 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 blake (ref7) 1987 ref17 ref16 ref19 ref18 lanza (ref35) 2016; 136 selesnick (ref53) 2015; 4 ref51 ref50 ref46 ref45 ahmad (ref2) 2015; 1 ref48 ref47 ref42 ref41 ref44 ref43 carlsson (ref12) 2016 ref49 ref8 ref9 ref3 ref6 ref5 ref40 bauschke (ref4) 2011 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref64 ref20 ref63 ref66 ref22 ref65 ref21 gao (ref29) 1997; 7 ref28 ref27 tipping (ref60) 2001; 1 ref62 ref61 |
| References_xml | – ident: ref34 doi: 10.1007/s11760-008-0076-1 – ident: ref62 doi: 10.1109/ICASSP.2013.6637929 – ident: ref66 doi: 10.1214/009053607000000802 – volume: 1 start-page: 211 year: 2001 ident: ref60 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J Mach Learning Res – ident: ref24 doi: 10.1109/TIP.2008.2008223 – ident: ref52 doi: 10.1109/TSP.2017.2669904 – ident: ref57 doi: 10.1137/151003714 – ident: ref55 doi: 10.1109/TSP.2016.2518989 – ident: ref46 doi: 10.1561/2400000003 – ident: ref38 doi: 10.1109/ICIP.2013.6738495 – ident: ref61 doi: 10.1007/s10463-016-0563-z – ident: ref41 doi: 10.1109/ICIP.1998.723327 – ident: ref11 doi: 10.1007/s00041-008-9045-x – year: 1987 ident: ref7 publication-title: Visual Reconstruction doi: 10.7551/mitpress/7132.001.0001 – volume: 7 start-page: 855 year: 1997 ident: ref29 article-title: Waveshrink with firm shrinkage publication-title: Statistica Sinica – ident: ref51 doi: 10.1109/LSP.2017.2647948 – ident: ref63 doi: 10.1109/TIT.2011.2162174 – ident: ref36 doi: 10.1007/s10851-016-0655-7 – ident: ref48 doi: 10.1016/0167-2789(92)90242-F – volume: 1 start-page: 220 year: 2015 ident: ref2 article-title: Iteratively reweighted L1 approaches to sparse composite regularization publication-title: I IEEE Transactions on Computers – ident: ref58 doi: 10.1109/TSP.2015.2421476 – ident: ref16 doi: 10.1109/TSP.2014.2330349 – ident: ref19 doi: 10.1137/11085997X – ident: ref44 doi: 10.1109/TIP.2010.2052275 – ident: ref18 doi: 10.1137/S1064827596304010 – ident: ref27 doi: 10.1109/JSTSP.2007.910281 – ident: ref49 doi: 10.1109/ICASSP.2017.7952979 – ident: ref5 doi: 10.1109/LSP.2014.2357681 – ident: ref39 doi: 10.1109/TSP.2008.2007606 – ident: ref1 doi: 10.1109/ICIP.2010.5650379 – ident: ref28 doi: 10.1016/j.acha.2007.10.005 – ident: ref23 doi: 10.1109/LSP.2015.2406314 – ident: ref6 doi: 10.1109/TSP.2015.2502551 – ident: ref20 doi: 10.1007/s11228-017-0407-x – ident: ref31 doi: 10.1109/TSP.2011.2164074 – ident: ref54 doi: 10.1109/TSP.2014.2298839 – volume: 136 start-page: 1 year: 2016 ident: ref35 article-title: Nonconvex nonsmooth optimization via convex-nonconvex majorization-minimization publication-title: Numerische Mathematik – ident: ref59 doi: 10.1017/CBO9781316104514 – year: 2016 ident: ref12 article-title: On convexification/optimization of functionals including an l2-misfit term – ident: ref65 doi: 10.1214/09-AOS729 – ident: ref32 doi: 10.1016/j.ymssp.2015.11.027 – year: 2011 ident: ref4 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces doi: 10.1007/978-1-4419-9467-7 – ident: ref3 doi: 10.1364/OL.28.000272 – ident: ref22 doi: 10.1002/cpa.20042 – ident: ref64 doi: 10.1088/0266-5611/32/7/075004 – ident: ref26 doi: 10.1109/TIP.2003.814255 – ident: ref43 doi: 10.1007/978-0-387-92920-0_5 – ident: ref37 doi: 10.1109/TSP.2016.2612179 – ident: ref9 doi: 10.1137/060657704 – ident: ref33 doi: 10.1214/aoms/1177703732 – ident: ref25 doi: 10.1198/016214501753382273 – ident: ref42 doi: 10.1109/83.784433 – ident: ref40 doi: 10.1016/j.acha.2012.03.006 – ident: ref50 doi: 10.1109/ICASSP.2017.7953017 – ident: ref47 doi: 10.1117/12.736231 – ident: ref30 doi: 10.1109/TSP.2009.2026004 – ident: ref21 doi: 10.1063/1.4739473 – volume: 4 start-page: 149 year: 2015 ident: ref53 article-title: Sparsity-assisted signal smoothing publication-title: Excursions in Harmonic Analysis doi: 10.1007/978-3-319-20188-7_6 – ident: ref17 doi: 10.1109/TSP.2014.2329274 – ident: ref15 doi: 10.1109/ICASSP.2014.6853752 – ident: ref10 doi: 10.1109/JPROC.2009.2035722 – ident: ref13 doi: 10.1109/CAMSAP.2015.7383798 – ident: ref14 doi: 10.1007/s10208-012-9135-7 – ident: ref56 doi: 10.1109/LSP.2014.2349356 – ident: ref8 doi: 10.1017/CBO9780511804441 – ident: ref45 doi: 10.1109/LSP.2016.2535227 |
| SSID | ssj0014496 |
| Score | 2.6685047 |
| Snippet | Sparse approximate solutions to linear equations are classically obtained via L1 norm regularized least squares, but this method often underestimates the true... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 4481 |
| SubjectTerms | convex function Convex functions Convolution Cost function denoising Noise reduction optimization Signal processing algorithms sparse approximation Sparse regularization |
| Title | Sparse Regularization via Convex Analysis |
| URI | https://ieeexplore.ieee.org/document/7938377 |
| Volume | 65 |
| WOSCitedRecordID | wos000405394000005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFH60xYMe3KpYN-bgpWDaySSTNEcRiwcpxVbpbchkgYK0pbbFn2-SmQ4VRPA0WwIz3wTe-_KWD-BOMuGMsqGOm1CGvIVCubQpinOBDfMPg2bk-wsfDHqTiRjW4L6qhTHGhOQz0_GnIZav52rtt8q6bi05PsXrUOecFbVaVcSA0qDF5dwFgtIen2xDkrHojkdDn8PFOwn3_g_-YYJ2NFWCSekf_e9ljuGwdB2jh-Jfn0DNzE7hYKehYBPao4UjqiZ6DQrzy7LGMtpMZfTo08u_om0TkjN46z-NH59RKYaAVMLIChEjcsJiKx1zTBItiU6tsEQx7dWDhUxTpbl09IlqoozFRGNipftidy1snpJzaMzmM3MBUU4lo5hizVNJY6Vyd2DcUCl8dz6sWtDd4pOpslO4F6z4yAJjiEXmEM08olmJaAva1YxF0SXjj7FND2Y1rsTx8vfbV7DvJxdZXdfQWC3X5gb21GY1_VzehiXwDcRvrGo |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MKagP3qY4r33wZWC3trktjzIcE-cYbsreSpqkMJBtzG34803SrkwQwafe0tJ-DZzz5Vw-gDtBuTHKGhtugqlvLZSfiJT4QcJDTe1Fpxn53mW9XnM04v0S3Be1MFprl3ym63bXxfLVVC7tUlnDzCXDp9gWbBOMoyCr1ipiBhg7NS7jMCCfNNloHZQMeGM46NssLlaPmPWAwh9GaENVxRmV9uH_XucIDnLn0XvI_vYxlPTkBPY3WgpWoDaYGaqqvVenMT_Pqyy91Vh4LZtg_uWt25Ccwlv7cdjq-Lkcgi8jihY-0jxBNEiF4Y5RpARSJOUpklRZ_WAuCJGKCUOgsEJSpyFSIUqF-WJzzNOEoDMoT6YTfQ5eggXFIQ4VIwIHUiZmQ5nGgtv-fKGsQmONTyzzXuFWsuIjdpwh4LFBNLaIxjmiVagVd8yyPhl_jK1YMItxOY4Xv5--hd3O8KUbd596z5ewZx-U5XhdQXkxX-pr2JGrxfhzfuOmwzftK6-x |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Regularization+via+Convex+Analysis&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Selesnick%2C+Ivan&rft.date=2017-09-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=65&rft.issue=17&rft.spage=4481&rft.epage=4494&rft_id=info:doi/10.1109%2FTSP.2017.2711501&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2017_2711501 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |