Analysis of Best Linear Approximation of a Wiener-Hammerstein System for Arbitrary Amplitude Distributions

For a nonlinear system with an input signal having a Gaussian probability distribution (this includes random-phase multisines), the best linear approximation (BLA) is proportional to the frequency response of the overall system. However, this is not the case for non-Gaussian input signals, for which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on instrumentation and measurement Ročník 61; číslo 3; s. 645 - 654
Hlavní autori: Hin Kwan Wong, Schoukens, J., Godfrey, K. R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 01.03.2012
Predmet:
ISSN:0018-9456, 1557-9662
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For a nonlinear system with an input signal having a Gaussian probability distribution (this includes random-phase multisines), the best linear approximation (BLA) is proportional to the frequency response of the overall system. However, this is not the case for non-Gaussian input signals, for which the frequency response is biased with respect to the Gaussian BLA. In this paper, theoretical expressions for determining this bias for Wiener-Hammerstein systems are developed both for binary input signals and for white noise inputs with arbitrary probability distribution. Cubic and quintic nonlinearities are considered, but the methods can be extended to other forms of polynomial nonlinearity. Simple measures for quantifying the bias are also developed. It is shown that the bias decays rapidly to zero for a growing length of the impulse response.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2011.2169615