A Time-Vertex Signal Processing Framework: Scalable Processing and Meaningful Representations for Time-Series on Graphs

An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This paper aims to elevate the notion of joint harmonic analysis to a ful...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing Vol. 66; no. 3; pp. 817 - 829
Main Authors: Grassi, Francesco, Loukas, Andreas, Perraudin, Nathanael, Ricaud, Benjamin
Format: Journal Article
Language:English
Published: IEEE 01.02.2018
Subjects:
ISSN:1053-587X, 1941-0476
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This paper aims to elevate the notion of joint harmonic analysis to a full-fledged framework denoted as time-vertex signal processing, that links together the time-domain signal processing techniques with the new tools of graph signal processing. This entails three main contributions: a) We provide a formal motivation for harmonic time-vertex analysis as an analysis tool for the state evolution of simple partial differential equations on graphs; b) we improve the accuracy of joint filtering operators by up-to two orders of magnitude; c) using our joint filters, we construct time-vertex dictionaries analyzing the different scales and the local time-frequency content of a signal. The utility of our tools is illustrated in numerous applications and datasets, such as dynamic mesh denoising and classification, still-video inpainting, and source localization in seismic events. Our results suggest that joint analysis of time-vertex signals can bring benefits to regression and learning.
AbstractList An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This paper aims to elevate the notion of joint harmonic analysis to a full-fledged framework denoted as time-vertex signal processing, that links together the time-domain signal processing techniques with the new tools of graph signal processing. This entails three main contributions: a) We provide a formal motivation for harmonic time-vertex analysis as an analysis tool for the state evolution of simple partial differential equations on graphs; b) we improve the accuracy of joint filtering operators by up-to two orders of magnitude; c) using our joint filters, we construct time-vertex dictionaries analyzing the different scales and the local time-frequency content of a signal. The utility of our tools is illustrated in numerous applications and datasets, such as dynamic mesh denoising and classification, still-video inpainting, and source localization in seismic events. Our results suggest that joint analysis of time-vertex signals can bring benefits to regression and learning.
Author Grassi, Francesco
Ricaud, Benjamin
Loukas, Andreas
Perraudin, Nathanael
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0002-2360-0354
  surname: Grassi
  fullname: Grassi, Francesco
  email: francesco.grassi@polito.it
  organization: Politecnico di Torino, Torino, Italy
– sequence: 2
  givenname: Andreas
  surname: Loukas
  fullname: Loukas, Andreas
  email: andreas.loukas@epfl.ch
  organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 3
  givenname: Nathanael
  orcidid: 0000-0001-8285-1308
  surname: Perraudin
  fullname: Perraudin, Nathanael
  email: nathanael.perraudin@sdsc.ethz.ch
  organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
– sequence: 4
  givenname: Benjamin
  surname: Ricaud
  fullname: Ricaud, Benjamin
  email: benjamin.ricaud@epfl.ch
  organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
BookMark eNp9kMFKAzEQhoNUsFbvgpe8wNYku9kk3kqxVahYbBVvSzY7qdFttiQr1be3ZYuIB0_zw8z3M3ynqOcbDwhdUDKklKir5WI-ZISKIROCc6mOUJ-qjCYkE3lvlwlPEy7Fywk6jfGNEJplKu-j7Qgv3RqSZwgtfOKFW3ld43loDMTo_ApPgl7Dtgnv13hhdK3LGn6vta_wPWi_y_ajxo-wCRDBt7p1jY_YNqHrX0BwEHHj8TTozWs8Q8dW1xHOD3OAniY3y_FtMnuY3o1Hs8SwPG0TJkzJCa-MtIJqzqSpKiXApJlVILMUlGIpp1aKSlWCZVKDtaVIZQm5ZcDTAcq7XhOaGAPYwrjuuTZoVxeUFHt9xU5fsddXHPTtQPIH3AS31uHrP-SyQxwA_JxLSjkjWfoN_A9_hA
CODEN ITPRED
CitedBy_id crossref_primary_10_1371_journal_pone_0324087
crossref_primary_10_1109_TCSII_2020_3017800
crossref_primary_10_1109_TSP_2022_3184455
crossref_primary_10_1186_s13634_019_0631_7
crossref_primary_10_1007_s00041_021_09826_1
crossref_primary_10_1016_j_sigpro_2022_108662
crossref_primary_10_1109_TSIPN_2020_3010613
crossref_primary_10_1016_j_sigpro_2021_108302
crossref_primary_10_1109_LSP_2021_3086391
crossref_primary_10_1109_MSP_2020_3014590
crossref_primary_10_1016_j_comcom_2023_10_021
crossref_primary_10_1016_j_dsp_2024_104728
crossref_primary_10_1080_01431161_2024_2391104
crossref_primary_10_1109_MSP_2023_3262906
crossref_primary_10_1109_TSP_2020_3033962
crossref_primary_10_1109_TSP_2023_3329948
crossref_primary_10_1109_TSP_2021_3075145
crossref_primary_10_1109_LSP_2020_3029699
crossref_primary_10_1016_j_dsp_2021_103360
crossref_primary_10_3389_fncom_2022_1078150
crossref_primary_10_1016_j_chaos_2021_110676
crossref_primary_10_1016_j_engappai_2022_104695
crossref_primary_10_1109_TSIPN_2020_2964214
crossref_primary_10_1016_j_sigpro_2022_108574
crossref_primary_10_1016_j_sigpro_2025_110025
crossref_primary_10_1109_TSIPN_2022_3156886
crossref_primary_10_1109_TSP_2018_2881658
crossref_primary_10_1007_s00034_021_01930_3
crossref_primary_10_1109_TSIPN_2025_3597466
crossref_primary_10_1109_ACCESS_2020_3021580
crossref_primary_10_1109_TSP_2023_3347646
crossref_primary_10_1016_j_neuroimage_2021_117791
crossref_primary_10_1016_j_cie_2024_110329
crossref_primary_10_1016_j_crhy_2019_08_003
crossref_primary_10_1109_MSP_2020_3013555
crossref_primary_10_1109_TSP_2022_3166401
crossref_primary_10_1109_TSP_2024_3395021
crossref_primary_10_1007_s43670_021_00019_x
crossref_primary_10_1109_TSP_2018_2864654
crossref_primary_10_1109_TPAMI_2023_3311912
crossref_primary_10_1109_TSIPN_2025_3572698
crossref_primary_10_1109_TSP_2019_2952055
crossref_primary_10_1016_j_sigpro_2022_108480
crossref_primary_10_1016_j_neuroimage_2021_118611
crossref_primary_10_1109_TSP_2021_3079804
crossref_primary_10_1109_TNNLS_2024_3381069
crossref_primary_10_1109_LSP_2024_3396664
crossref_primary_10_1109_TSP_2024_3503063
crossref_primary_10_1109_TITS_2021_3098637
crossref_primary_10_1109_TSP_2023_3263675
crossref_primary_10_1140_epjp_s13360_021_01457_1
crossref_primary_10_1109_TGRS_2025_3586372
crossref_primary_10_1007_s11760_024_03610_6
crossref_primary_10_1109_TSIPN_2023_3299511
crossref_primary_10_1109_TSP_2024_3439211
crossref_primary_10_1145_3742784
crossref_primary_10_1016_j_dsp_2024_104414
crossref_primary_10_1016_j_jfranklin_2024_106805
crossref_primary_10_1109_TSIPN_2020_3038475
crossref_primary_10_1109_TSP_2021_3064984
crossref_primary_10_1016_j_sigpro_2020_107749
crossref_primary_10_1016_j_sigpro_2024_109522
crossref_primary_10_1016_j_sigpro_2025_109944
crossref_primary_10_1016_j_dsp_2022_103762
crossref_primary_10_1016_j_jfranklin_2022_08_059
crossref_primary_10_1007_s00034_020_01548_x
crossref_primary_10_1109_TSP_2020_3032408
crossref_primary_10_3390_a13110295
crossref_primary_10_1109_JSEN_2024_3366346
crossref_primary_10_1109_TCSS_2021_3062884
crossref_primary_10_1109_ACCESS_2022_3167055
crossref_primary_10_1109_TSIPN_2025_3525978
crossref_primary_10_1007_s00034_023_02298_2
crossref_primary_10_1016_j_neuroimage_2023_120337
crossref_primary_10_1109_ACCESS_2021_3109288
crossref_primary_10_1186_s13634_022_00926_8
crossref_primary_10_1109_TSIPN_2023_3279513
crossref_primary_10_1109_TSIPN_2025_3540714
crossref_primary_10_1109_TSP_2019_2929930
crossref_primary_10_1007_s00034_023_02483_3
crossref_primary_10_1109_ACCESS_2019_2946899
crossref_primary_10_1109_JIOT_2023_3294470
crossref_primary_10_1186_s13636_023_00272_z
crossref_primary_10_1109_TSP_2023_3284364
crossref_primary_10_1109_TSP_2024_3349788
Cites_doi 10.1145/1460412.1460444
10.1109/TSP.2013.2238935
10.1109/MSP.2012.2235192
10.1109/TSP.2016.2614793
10.1109/TSIPN.2016.2524500
10.1017/CBO9780511807107
10.1109/MSP.2007.4286567
10.1109/EUSIPCO.2016.7760238
10.1109/ICASSP.2017.7952890
10.1109/ICASSP.2015.7179022
10.1103/RevModPhys.87.925
10.1109/TSP.2017.2739099
10.1016/0024-3795(94)90486-3
10.1109/JSTSP.2016.2600859
10.1109/TSP.2015.2424203
10.1109/SSP.2012.6319640
10.1038/srep02980
10.1109/CVPR.2005.38
10.1093/comnet/cnu016
10.1016/j.acha.2015.02.005
10.1007/978-3-540-45167-9_12
10.4171/JST/83
10.1023/B:MACH.0000033120.25363.1e
10.1145/2737095.2737101
10.1109/LSP.2015.2448655
10.1109/DCOSS.2011.5982158
10.1109/MSP.2014.2329213
10.1098/rspa.1927.0118
10.1109/TSP.2017.2690388
10.1016/j.acha.2006.04.004
10.1016/j.acha.2010.04.005
10.1109/JSTSP.2016.2555239
10.1109/TIP.2011.2158229
10.1109/GlobalSIP.2016.7905862
10.1109/VAST.2015.7347624
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2017.2775589
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 829
ExternalDocumentID 10_1109_TSP_2017_2775589
8115204
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-27cb505dc8f71a528cdd97ec34f9e843e992351f87d9d7248aeffb738be6f2e53
IEDL.DBID RIE
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000422953900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Tue Nov 18 21:39:57 EST 2025
Sat Nov 29 04:10:44 EST 2025
Tue Aug 26 17:04:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-27cb505dc8f71a528cdd97ec34f9e843e992351f87d9d7248aeffb738be6f2e53
ORCID 0000-0001-8285-1308
0000-0002-2360-0354
PageCount 13
ParticipantIDs ieee_primary_8115204
crossref_citationtrail_10_1109_TSP_2017_2775589
crossref_primary_10_1109_TSP_2017_2775589
PublicationCentury 2000
PublicationDate 2018-Feb.1,-1
2018-2-1
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-Feb.1,-1
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref14
pr?ša (ref46) 2014
ref11
ref10
perraudin (ref44) 2014
durran (ref50) 2013
ref17
belkin (ref7) 2001
loukas (ref31) 2016
ref18
perraudin (ref38) 2016
dahlhaus (ref19) 2003
ref48
ref47
ref42
ref41
loukas (ref30) 2016
ref43
zhang (ref20) 2015
ref49
perraudin (ref45) 2014
ref8
ref9
ref4
kalofolias (ref15) 2016
ref3
ref6
ref5
christensen (ref39) 2016
ref35
ref34
ref37
ref36
ref33
ref32
ref1
loukas (ref16) 2016
gröchenig (ref40) 2001
smith (ref24) 2017
ref23
ref26
ref25
mohan (ref2) 2008
ref22
ref21
ref28
ref27
ref29
References_xml – start-page: 323
  year: 2008
  ident: ref2
  article-title: Nericell: Rich monitoring of road and traffic conditions using mobile smartphones
  publication-title: Proceedings of ACM SENSYS
  doi: 10.1145/1460412.1460444
– ident: ref6
  doi: 10.1109/TSP.2013.2238935
– ident: ref5
  doi: 10.1109/MSP.2012.2235192
– year: 2014
  ident: ref45
  article-title: UNLocBoX A matlab convex optimization toolbox using proximal splitting methods
  publication-title: ArXiv e-prints
– ident: ref28
  doi: 10.1109/TSP.2016.2614793
– ident: ref23
  doi: 10.1109/TSIPN.2016.2524500
– start-page: 115
  year: 2003
  ident: ref19
  article-title: Causality and graphical models in time series analysis
  publication-title: Oxford Statistical Science Series
– year: 2016
  ident: ref30
  article-title: Predicting the evolution of stationary graph signals
  publication-title: arXiv 1607 03313
– start-page: 346
  year: 2016
  ident: ref16
  article-title: Frequency analysis of temporal graph signals
  publication-title: Proc IEEE Global Conf Signal Inf Process
– ident: ref49
  doi: 10.1017/CBO9780511807107
– year: 2001
  ident: ref40
  publication-title: Foundations of Time-Frequency Analysis (Applied and Numerical Harmonic Analysis)
– ident: ref43
  doi: 10.1109/MSP.2007.4286567
– ident: ref17
  doi: 10.1109/EUSIPCO.2016.7760238
– ident: ref29
  doi: 10.1109/ICASSP.2017.7952890
– ident: ref27
  doi: 10.1109/ICASSP.2015.7179022
– ident: ref3
  doi: 10.1103/RevModPhys.87.925
– ident: ref10
  doi: 10.1109/TSP.2017.2739099
– ident: ref34
  doi: 10.1016/0024-3795(94)90486-3
– year: 2014
  ident: ref44
  article-title: GSPBOX: A toolbox for signal processing on graphs
  publication-title: ArXiv e-prints
– ident: ref4
  doi: 10.1109/JSTSP.2016.2600859
– ident: ref42
  doi: 10.1109/TSP.2015.2424203
– year: 2016
  ident: ref38
  article-title: Global and local uncertainty principles for signals on graphs
  publication-title: arXiv 1603 03030
– year: 2015
  ident: ref20
  article-title: Graph Signal Processing-A Probabilistic Framework
– ident: ref41
  doi: 10.1109/SSP.2012.6319640
– year: 2016
  ident: ref39
  publication-title: An Introduction to Frames and Riesz Bases
– ident: ref1
  doi: 10.1038/srep02980
– ident: ref47
  doi: 10.1109/CVPR.2005.38
– year: 2016
  ident: ref31
  article-title: Stationary time-vertex signal processing
– start-page: 585
  year: 2001
  ident: ref7
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in neural information processing systems
– ident: ref22
  doi: 10.1093/comnet/cnu016
– ident: ref33
  doi: 10.1016/j.acha.2015.02.005
– ident: ref14
  doi: 10.1007/978-3-540-45167-9_12
– start-page: 419
  year: 2014
  ident: ref46
  publication-title: The Large Time-Frequency Analysis Toolbox
– ident: ref32
  doi: 10.4171/JST/83
– ident: ref13
  doi: 10.1023/B:MACH.0000033120.25363.1e
– ident: ref35
  doi: 10.1145/2737095.2737101
– ident: ref25
  doi: 10.1109/LSP.2015.2448655
– ident: ref37
  doi: 10.1109/DCOSS.2011.5982158
– year: 2013
  ident: ref50
  publication-title: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics
– year: 2017
  ident: ref24
  article-title: Graph-variate signal analysis: Framework and applications
– ident: ref21
  doi: 10.1109/MSP.2014.2329213
– start-page: 920
  year: 2016
  ident: ref15
  article-title: How to learn a graph from smooth signals
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref36
  doi: 10.1098/rspa.1927.0118
– ident: ref9
  doi: 10.1109/TSP.2017.2690388
– ident: ref12
  doi: 10.1016/j.acha.2006.04.004
– ident: ref11
  doi: 10.1016/j.acha.2010.04.005
– ident: ref8
  doi: 10.1109/JSTSP.2016.2555239
– ident: ref48
  doi: 10.1109/TIP.2011.2158229
– ident: ref18
  doi: 10.1109/GlobalSIP.2016.7905862
– ident: ref26
  doi: 10.1109/VAST.2015.7347624
SSID ssj0014496
Score 2.6254797
Snippet An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 817
SubjectTerms Fourier transforms
graph signal processing
Graphical models
Harmonic analysis
Laplace equations
partial differential equations
Signal processing algorithms
Time-vertex signal processing
Title A Time-Vertex Signal Processing Framework: Scalable Processing and Meaningful Representations for Time-Series on Graphs
URI https://ieeexplore.ieee.org/document/8115204
Volume 66
WOSCitedRecordID wos000422953900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFB5q8aAHtyrWjTl4EUyXWfpmvBWxerEUW6G3MJm8EaGk0kX9-c4kaelBBG8heS-E-ULmy1u-R8h1GwxnhvHIiZaJRAIuSlTioiBV5hLXYUaafNgE9PtqPNaDCrld98IgYl58ho1wmOfy06ldhlBZU3n6woL45xYAFL1a64yBEPksLk8XeCQVjFcpyZZujoaDUMMFDQYgZRjovrEFbcxUybeU3v7_HuaA7JXUkXYLrA9JBbMjsrshKFgjX10aejpClG6B33T4_hY8ymYAb0F7q1qsOzr06IS-qc3LJkvpM5oQK3HLCX3Jy2TL7qRsTj3BLe4fYmo4p9OMPgbB6_kxee09jO6fonK0QmRZhy8iBjbx3Ce1ykHbSKZsmmpAy4XTqARH7YmfbDsFqU6BCWXQuQS4SrDjGEp-QqrZNMNTQtvSepbjPw0dhgINGCM0Cs1TaYU1QtRJc7XasS11x8P4i0mc_3-0dOzxiQM-cYlPndysPT4KzY0_bGsBmrVdicrZ76fPyY53VkXV9QWpLmZLvCTb9nPxPp9d5S_UD2D3ypM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5DBfXB2xTnNQ--CHZbc1kS34Y4J25juAl7K2l6IoJ0sov6803abuxBBN9KexJKv9J8PTnn-xC6CoWmRBMaWFbXAYuFDWIZ28BLldnYNojmOjObEL2eHI1Uv4Rulr0wAJAVn0HVH2Z7-cnYzH2qrCYdfSFe_HOdM0bCvFtruWfAWObG5QgDDbgUo8WmZF3VhoO-r-ISVSIE597SfWURWnFVyRaV1u7_bmcP7RTkETdztPdRCdIDtL0iKVhGX03suzp8nm4G33jw9upHFO0ALgK3FtVYt3jg8PGdU6uXdZrgLmifLbHzd_ycFcoW_UnpFDuKm8_vs2owxeMUP3jJ6-khemndD-_aQWGuEBjSoLOACBM79pMYaUWoOZEmSZQAQ5lVIBkF5agfD60UiUoEYVKDtbGgMoaGJcDpEVpLxykcIxxy43iO-zg0CDDQQmumgCmacMOMZqyCaounHZlCedwbYLxH2R9IXUUOn8jjExX4VND1csRHrrrxR2zZQ7OMK1A5-f30JdpsD7udqPPYezpFW24imddgn6G12WQO52jDfM7eppOL7OX6ARLDzdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Time-Vertex+Signal+Processing+Framework%3A+Scalable+Processing+and+Meaningful+Representations+for+Time-Series+on+Graphs&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Grassi%2C+Francesco&rft.au=Loukas%2C+Andreas&rft.au=Perraudin%2C+Nathanael&rft.au=Ricaud%2C+Benjamin&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=66&rft.issue=3&rft.spage=817&rft.epage=829&rft_id=info:doi/10.1109%2FTSP.2017.2775589&rft.externalDocID=8115204
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon