A Time-Vertex Signal Processing Framework: Scalable Processing and Meaningful Representations for Time-Series on Graphs
An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This paper aims to elevate the notion of joint harmonic analysis to a ful...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 66; číslo 3; s. 817 - 829 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.02.2018
|
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This paper aims to elevate the notion of joint harmonic analysis to a full-fledged framework denoted as time-vertex signal processing, that links together the time-domain signal processing techniques with the new tools of graph signal processing. This entails three main contributions: a) We provide a formal motivation for harmonic time-vertex analysis as an analysis tool for the state evolution of simple partial differential equations on graphs; b) we improve the accuracy of joint filtering operators by up-to two orders of magnitude; c) using our joint filters, we construct time-vertex dictionaries analyzing the different scales and the local time-frequency content of a signal. The utility of our tools is illustrated in numerous applications and datasets, such as dynamic mesh denoising and classification, still-video inpainting, and source localization in seismic events. Our results suggest that joint analysis of time-vertex signals can bring benefits to regression and learning. |
|---|---|
| AbstractList | An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have begun to emerge related to the analysis of time-varying graph signals. This paper aims to elevate the notion of joint harmonic analysis to a full-fledged framework denoted as time-vertex signal processing, that links together the time-domain signal processing techniques with the new tools of graph signal processing. This entails three main contributions: a) We provide a formal motivation for harmonic time-vertex analysis as an analysis tool for the state evolution of simple partial differential equations on graphs; b) we improve the accuracy of joint filtering operators by up-to two orders of magnitude; c) using our joint filters, we construct time-vertex dictionaries analyzing the different scales and the local time-frequency content of a signal. The utility of our tools is illustrated in numerous applications and datasets, such as dynamic mesh denoising and classification, still-video inpainting, and source localization in seismic events. Our results suggest that joint analysis of time-vertex signals can bring benefits to regression and learning. |
| Author | Grassi, Francesco Ricaud, Benjamin Loukas, Andreas Perraudin, Nathanael |
| Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0002-2360-0354 surname: Grassi fullname: Grassi, Francesco email: francesco.grassi@polito.it organization: Politecnico di Torino, Torino, Italy – sequence: 2 givenname: Andreas surname: Loukas fullname: Loukas, Andreas email: andreas.loukas@epfl.ch organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 3 givenname: Nathanael orcidid: 0000-0001-8285-1308 surname: Perraudin fullname: Perraudin, Nathanael email: nathanael.perraudin@sdsc.ethz.ch organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 4 givenname: Benjamin surname: Ricaud fullname: Ricaud, Benjamin email: benjamin.ricaud@epfl.ch organization: Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland |
| BookMark | eNp9kMFKAzEQhoNUsFbvgpe8wNYku9kk3kqxVahYbBVvSzY7qdFttiQr1be3ZYuIB0_zw8z3M3ynqOcbDwhdUDKklKir5WI-ZISKIROCc6mOUJ-qjCYkE3lvlwlPEy7Fywk6jfGNEJplKu-j7Qgv3RqSZwgtfOKFW3ld43loDMTo_ApPgl7Dtgnv13hhdK3LGn6vta_wPWi_y_ajxo-wCRDBt7p1jY_YNqHrX0BwEHHj8TTozWs8Q8dW1xHOD3OAniY3y_FtMnuY3o1Hs8SwPG0TJkzJCa-MtIJqzqSpKiXApJlVILMUlGIpp1aKSlWCZVKDtaVIZQm5ZcDTAcq7XhOaGAPYwrjuuTZoVxeUFHt9xU5fsddXHPTtQPIH3AS31uHrP-SyQxwA_JxLSjkjWfoN_A9_hA |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0324087 crossref_primary_10_1109_TCSII_2020_3017800 crossref_primary_10_1109_TSP_2022_3184455 crossref_primary_10_1186_s13634_019_0631_7 crossref_primary_10_1007_s00041_021_09826_1 crossref_primary_10_1016_j_sigpro_2022_108662 crossref_primary_10_1109_TSIPN_2020_3010613 crossref_primary_10_1016_j_sigpro_2021_108302 crossref_primary_10_1109_LSP_2021_3086391 crossref_primary_10_1109_MSP_2020_3014590 crossref_primary_10_1016_j_comcom_2023_10_021 crossref_primary_10_1016_j_dsp_2024_104728 crossref_primary_10_1080_01431161_2024_2391104 crossref_primary_10_1109_MSP_2023_3262906 crossref_primary_10_1109_TSP_2020_3033962 crossref_primary_10_1109_TSP_2023_3329948 crossref_primary_10_1109_TSP_2021_3075145 crossref_primary_10_1109_LSP_2020_3029699 crossref_primary_10_1016_j_dsp_2021_103360 crossref_primary_10_3389_fncom_2022_1078150 crossref_primary_10_1016_j_chaos_2021_110676 crossref_primary_10_1016_j_engappai_2022_104695 crossref_primary_10_1109_TSIPN_2020_2964214 crossref_primary_10_1016_j_sigpro_2022_108574 crossref_primary_10_1016_j_sigpro_2025_110025 crossref_primary_10_1109_TSIPN_2022_3156886 crossref_primary_10_1109_TSP_2018_2881658 crossref_primary_10_1007_s00034_021_01930_3 crossref_primary_10_1109_TSIPN_2025_3597466 crossref_primary_10_1109_ACCESS_2020_3021580 crossref_primary_10_1109_TSP_2023_3347646 crossref_primary_10_1016_j_neuroimage_2021_117791 crossref_primary_10_1016_j_cie_2024_110329 crossref_primary_10_1016_j_crhy_2019_08_003 crossref_primary_10_1109_MSP_2020_3013555 crossref_primary_10_1109_TSP_2022_3166401 crossref_primary_10_1109_TSP_2024_3395021 crossref_primary_10_1007_s43670_021_00019_x crossref_primary_10_1109_TSP_2018_2864654 crossref_primary_10_1109_TPAMI_2023_3311912 crossref_primary_10_1109_TSIPN_2025_3572698 crossref_primary_10_1109_TSP_2019_2952055 crossref_primary_10_1016_j_sigpro_2022_108480 crossref_primary_10_1016_j_neuroimage_2021_118611 crossref_primary_10_1109_TSP_2021_3079804 crossref_primary_10_1109_TNNLS_2024_3381069 crossref_primary_10_1109_LSP_2024_3396664 crossref_primary_10_1109_TSP_2024_3503063 crossref_primary_10_1109_TITS_2021_3098637 crossref_primary_10_1109_TSP_2023_3263675 crossref_primary_10_1140_epjp_s13360_021_01457_1 crossref_primary_10_1109_TGRS_2025_3586372 crossref_primary_10_1007_s11760_024_03610_6 crossref_primary_10_1109_TSIPN_2023_3299511 crossref_primary_10_1109_TSP_2024_3439211 crossref_primary_10_1145_3742784 crossref_primary_10_1016_j_dsp_2024_104414 crossref_primary_10_1016_j_jfranklin_2024_106805 crossref_primary_10_1109_TSIPN_2020_3038475 crossref_primary_10_1109_TSP_2021_3064984 crossref_primary_10_1016_j_sigpro_2020_107749 crossref_primary_10_1016_j_sigpro_2024_109522 crossref_primary_10_1016_j_sigpro_2025_109944 crossref_primary_10_1016_j_dsp_2022_103762 crossref_primary_10_1016_j_jfranklin_2022_08_059 crossref_primary_10_1007_s00034_020_01548_x crossref_primary_10_1109_TSP_2020_3032408 crossref_primary_10_3390_a13110295 crossref_primary_10_1109_JSEN_2024_3366346 crossref_primary_10_1109_TCSS_2021_3062884 crossref_primary_10_1109_ACCESS_2022_3167055 crossref_primary_10_1109_TSIPN_2025_3525978 crossref_primary_10_1007_s00034_023_02298_2 crossref_primary_10_1016_j_neuroimage_2023_120337 crossref_primary_10_1109_ACCESS_2021_3109288 crossref_primary_10_1186_s13634_022_00926_8 crossref_primary_10_1109_TSIPN_2023_3279513 crossref_primary_10_1109_TSIPN_2025_3540714 crossref_primary_10_1109_TSP_2019_2929930 crossref_primary_10_1007_s00034_023_02483_3 crossref_primary_10_1109_ACCESS_2019_2946899 crossref_primary_10_1109_JIOT_2023_3294470 crossref_primary_10_1186_s13636_023_00272_z crossref_primary_10_1109_TSP_2023_3284364 crossref_primary_10_1109_TSP_2024_3349788 |
| Cites_doi | 10.1145/1460412.1460444 10.1109/TSP.2013.2238935 10.1109/MSP.2012.2235192 10.1109/TSP.2016.2614793 10.1109/TSIPN.2016.2524500 10.1017/CBO9780511807107 10.1109/MSP.2007.4286567 10.1109/EUSIPCO.2016.7760238 10.1109/ICASSP.2017.7952890 10.1109/ICASSP.2015.7179022 10.1103/RevModPhys.87.925 10.1109/TSP.2017.2739099 10.1016/0024-3795(94)90486-3 10.1109/JSTSP.2016.2600859 10.1109/TSP.2015.2424203 10.1109/SSP.2012.6319640 10.1038/srep02980 10.1109/CVPR.2005.38 10.1093/comnet/cnu016 10.1016/j.acha.2015.02.005 10.1007/978-3-540-45167-9_12 10.4171/JST/83 10.1023/B:MACH.0000033120.25363.1e 10.1145/2737095.2737101 10.1109/LSP.2015.2448655 10.1109/DCOSS.2011.5982158 10.1109/MSP.2014.2329213 10.1098/rspa.1927.0118 10.1109/TSP.2017.2690388 10.1016/j.acha.2006.04.004 10.1016/j.acha.2010.04.005 10.1109/JSTSP.2016.2555239 10.1109/TIP.2011.2158229 10.1109/GlobalSIP.2016.7905862 10.1109/VAST.2015.7347624 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSP.2017.2775589 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 829 |
| ExternalDocumentID | 10_1109_TSP_2017_2775589 8115204 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION |
| ID | FETCH-LOGICAL-c263t-27cb505dc8f71a528cdd97ec34f9e843e992351f87d9d7248aeffb738be6f2e53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000422953900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Tue Nov 18 21:39:57 EST 2025 Sat Nov 29 04:10:44 EST 2025 Tue Aug 26 17:04:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-27cb505dc8f71a528cdd97ec34f9e843e992351f87d9d7248aeffb738be6f2e53 |
| ORCID | 0000-0001-8285-1308 0000-0002-2360-0354 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_8115204 crossref_citationtrail_10_1109_TSP_2017_2775589 crossref_primary_10_1109_TSP_2017_2775589 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Feb.1,-1 2018-2-1 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-Feb.1,-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2018 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref14 pr?ša (ref46) 2014 ref11 ref10 perraudin (ref44) 2014 durran (ref50) 2013 ref17 belkin (ref7) 2001 loukas (ref31) 2016 ref18 perraudin (ref38) 2016 dahlhaus (ref19) 2003 ref48 ref47 ref42 ref41 loukas (ref30) 2016 ref43 zhang (ref20) 2015 ref49 perraudin (ref45) 2014 ref8 ref9 ref4 kalofolias (ref15) 2016 ref3 ref6 ref5 christensen (ref39) 2016 ref35 ref34 ref37 ref36 ref33 ref32 ref1 loukas (ref16) 2016 gröchenig (ref40) 2001 smith (ref24) 2017 ref23 ref26 ref25 mohan (ref2) 2008 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – start-page: 323 year: 2008 ident: ref2 article-title: Nericell: Rich monitoring of road and traffic conditions using mobile smartphones publication-title: Proceedings of ACM SENSYS doi: 10.1145/1460412.1460444 – ident: ref6 doi: 10.1109/TSP.2013.2238935 – ident: ref5 doi: 10.1109/MSP.2012.2235192 – year: 2014 ident: ref45 article-title: UNLocBoX A matlab convex optimization toolbox using proximal splitting methods publication-title: ArXiv e-prints – ident: ref28 doi: 10.1109/TSP.2016.2614793 – ident: ref23 doi: 10.1109/TSIPN.2016.2524500 – start-page: 115 year: 2003 ident: ref19 article-title: Causality and graphical models in time series analysis publication-title: Oxford Statistical Science Series – year: 2016 ident: ref30 article-title: Predicting the evolution of stationary graph signals publication-title: arXiv 1607 03313 – start-page: 346 year: 2016 ident: ref16 article-title: Frequency analysis of temporal graph signals publication-title: Proc IEEE Global Conf Signal Inf Process – ident: ref49 doi: 10.1017/CBO9780511807107 – year: 2001 ident: ref40 publication-title: Foundations of Time-Frequency Analysis (Applied and Numerical Harmonic Analysis) – ident: ref43 doi: 10.1109/MSP.2007.4286567 – ident: ref17 doi: 10.1109/EUSIPCO.2016.7760238 – ident: ref29 doi: 10.1109/ICASSP.2017.7952890 – ident: ref27 doi: 10.1109/ICASSP.2015.7179022 – ident: ref3 doi: 10.1103/RevModPhys.87.925 – ident: ref10 doi: 10.1109/TSP.2017.2739099 – ident: ref34 doi: 10.1016/0024-3795(94)90486-3 – year: 2014 ident: ref44 article-title: GSPBOX: A toolbox for signal processing on graphs publication-title: ArXiv e-prints – ident: ref4 doi: 10.1109/JSTSP.2016.2600859 – ident: ref42 doi: 10.1109/TSP.2015.2424203 – year: 2016 ident: ref38 article-title: Global and local uncertainty principles for signals on graphs publication-title: arXiv 1603 03030 – year: 2015 ident: ref20 article-title: Graph Signal Processing-A Probabilistic Framework – ident: ref41 doi: 10.1109/SSP.2012.6319640 – year: 2016 ident: ref39 publication-title: An Introduction to Frames and Riesz Bases – ident: ref1 doi: 10.1038/srep02980 – ident: ref47 doi: 10.1109/CVPR.2005.38 – year: 2016 ident: ref31 article-title: Stationary time-vertex signal processing – start-page: 585 year: 2001 ident: ref7 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Advances in neural information processing systems – ident: ref22 doi: 10.1093/comnet/cnu016 – ident: ref33 doi: 10.1016/j.acha.2015.02.005 – ident: ref14 doi: 10.1007/978-3-540-45167-9_12 – start-page: 419 year: 2014 ident: ref46 publication-title: The Large Time-Frequency Analysis Toolbox – ident: ref32 doi: 10.4171/JST/83 – ident: ref13 doi: 10.1023/B:MACH.0000033120.25363.1e – ident: ref35 doi: 10.1145/2737095.2737101 – ident: ref25 doi: 10.1109/LSP.2015.2448655 – ident: ref37 doi: 10.1109/DCOSS.2011.5982158 – year: 2013 ident: ref50 publication-title: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics – year: 2017 ident: ref24 article-title: Graph-variate signal analysis: Framework and applications – ident: ref21 doi: 10.1109/MSP.2014.2329213 – start-page: 920 year: 2016 ident: ref15 article-title: How to learn a graph from smooth signals publication-title: Proc Int Conf Artif Intell Statist – ident: ref36 doi: 10.1098/rspa.1927.0118 – ident: ref9 doi: 10.1109/TSP.2017.2690388 – ident: ref12 doi: 10.1016/j.acha.2006.04.004 – ident: ref11 doi: 10.1016/j.acha.2010.04.005 – ident: ref8 doi: 10.1109/JSTSP.2016.2555239 – ident: ref48 doi: 10.1109/TIP.2011.2158229 – ident: ref18 doi: 10.1109/GlobalSIP.2016.7905862 – ident: ref26 doi: 10.1109/VAST.2015.7347624 |
| SSID | ssj0014496 |
| Score | 2.6254797 |
| Snippet | An emerging way to deal with high-dimensional noneuclidean data is to assume that the underlying structure can be captured by a graph. Recently, ideas have... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 817 |
| SubjectTerms | Fourier transforms graph signal processing Graphical models Harmonic analysis Laplace equations partial differential equations Signal processing algorithms Time-vertex signal processing |
| Title | A Time-Vertex Signal Processing Framework: Scalable Processing and Meaningful Representations for Time-Series on Graphs |
| URI | https://ieeexplore.ieee.org/document/8115204 |
| Volume | 66 |
| WOSCitedRecordID | wos000422953900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qHvTgW3yTgxfBut08Nok3EVcvyuKusLfSJhMRlq64XfXnm2m7pQcRvJV2ppR8hUzm8X2EnMcCfCx1FoXzdBwJnfaiTOo4Mr0sZcpxznRWik2opyc9HpvBErlsZmEAoGw-gyu8LGv5bmrnmCrr6BC-MCT_XFZKVbNaTcVAiFKLK4QLPJJajRclydh0RsMB9nCpK6aUlCjo3tqCWpoq5ZbS3_zfx2yRjTp0pDcV1ttkCfIdst4iFNwlXzcUZzowS1fANx2-vaJHPQwQLGh_0Yt1TYcBHZybaj9Oc0cfIcVciZ9P6HPZJltPJ-UzGgLc6v2YU4MZneb0HgmvZ3vkpX83un2IammFyLIeLyKmbBZiH2e1V91UMm2dMwosF96AFhxMCPxk12vljFMsYAjeZ4rrDHqegeT7ZCWf5nBAKNLtiK52znkjmLNGWC65dFoi1Z1mh6SzWO3E1rzjKH8xScrzR2ySgE-C-CQ1PofkovF4rzg3_rDdRWgauxqVo99vH5O14KyrrusTslJ8zOGUrNrP4m32cVb-UD-T9Mkq |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA1DBfXBb_HbPPgiWNflY0l8G-JU1CFuwt5Km9yIIJ24Tf355rbd2IMIvpX2JpSeQm5u7jmHkJNYgI-lzqKwn44jodNmlEkdR6aZpUw5zpnOCrMJ1enoft881sjZlAsDAEXzGZzjZXGW7wZ2jKWyug7pC0Pxz3kpBGuUbK3pmYEQhRtXSBh4JLXqTw4lY1PvdR-xi0udM6WkREv3mUVoxlWlWFTaq_97nTWyUiWPtFWivU5qkG-Q5RlJwU3y1aLI6sA63Qi-aff1BUdUdIAQQduTbqwL2g34IHNq9nGaO_oAKVZL_PiNPhWNshU_KR_SkOKW82NVDYZ0kNNrlLwebpHn9lXv8iaqzBUiy5p8FDFls5D9OKu9aqSSaeucUWC58Aa04GBC6icbXitnnGIBRfA-U1xn0PQMJN8mc_kghx1CUXBHNLRzzhvBnDXCcsml0xLF7jTbJfXJ105spTyOBhhvSbEDiU0S8EkQn6TCZ5ecTke8l6obf8RuIjTTuAqVvd9vH5PFm97DfXJ_27nbJ0thIl32YB-QudHHGA7Jgv0cvQ4_joqf6wcy9Mxx |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Time-Vertex+Signal+Processing+Framework%3A+Scalable+Processing+and+Meaningful+Representations+for+Time-Series+on+Graphs&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Grassi%2C+Francesco&rft.au=Loukas%2C+Andreas&rft.au=Perraudin%2C+Nathanael&rft.au=Ricaud%2C+Benjamin&rft.date=2018-02-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=66&rft.issue=3&rft.spage=817&rft.epage=829&rft_id=info:doi/10.1109%2FTSP.2017.2775589&rft.externalDocID=8115204 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |