Constrained Consensus Algorithms With Fixed Step Size for Distributed Convex Optimization Over Multiagent Networks

In this technical note, we are concerned with constrained consensus algorithms for distributed convex optimization with a sum of convex objective functions subject to local bound and equality constraints. In multiagent networks, each agent has its own data on objective function and constraints. All...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 62; H. 8; S. 4259 - 4265
Hauptverfasser: Liu, Qingshan, Yang, Shaofu, Hong, Yiguang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2017
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this technical note, we are concerned with constrained consensus algorithms for distributed convex optimization with a sum of convex objective functions subject to local bound and equality constraints. In multiagent networks, each agent has its own data on objective function and constraints. All the agents cooperatively find the minimizer, while each agent can only communicate with its neighbors. The consensus of multiagent networks with time-invariant and undirected graphs is proven by the Lyapunov method. Compared with existing consensus algorithms for distributed optimization with diminishing step sizes, the proposed algorithms with fixed step size have better convergence rate. Simulation results on a numerical example are presented to substantiate the performance and characteristics of the proposed algorithms.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2017.2681200