On-orbit operation results of the powered descent guidance algorithm for pinpoint lunar landing

This paper discusses the on-orbit operation results of the powered descent guidance algorithm that played a key role in the navigation, guidance, and control of the Smart Lander for Investigating Moon (SLIM) mission, which made a pinpoint lunar landing in January 2024. The SLIM mission successfully...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta astronautica Ročník 236; s. 47 - 61
Hlavní autoři: Ueda, Satoshi, Ito, Takahiro, Yokota, Kentaro, Sakai, Shinichiro, Ishida, Takayuki, Miyazawa, Yu, Kushiki, Kenichi, Fukuda, Seisuke, Sawai, Shujiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2025
Témata:
ISSN:0094-5765
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper discusses the on-orbit operation results of the powered descent guidance algorithm that played a key role in the navigation, guidance, and control of the Smart Lander for Investigating Moon (SLIM) mission, which made a pinpoint lunar landing in January 2024. The SLIM mission successfully demonstrated pinpoint lunar landing, confirmed within 100 m. The technology required for a pinpoint lunar landing consists of a variety of elements: a vision-based navigation system that accurately detects the position of the spacecraft relative to the lunar surface, a propulsion system that operates stably, a landing descent reference trajectory that is in harmony with the system design, mature spacecraft navigation, guidance, and control technology, and precise guidance algorithms to guide the spacecraft to its target location. The SLIM landing descent sequence consists of a powered descent phase to reduce the horizontal velocity and a vertical descent phase to reduce the remaining vertical velocity after the powered descent. Dedicated guidance algorithms applied to both phases use advanced mathematical methods for high-precision landing and backup options. This paper focuses on the powered descent guidance algorithm. The powered descent phase consists of three boost parts and two coasting parts. The coasting sections adjust the attitude of the spacecraft and the direction of the body-fixed navigation camera. Image acquisition for vision-based navigation and guidance calculation for the next boost section are performed before each boost section. In the boost section, the spacecraft's translational control law follows the trajectory generated by the guidance algorithm. The powered descent guidance algorithm uses an explicit guidance method that sequentially calculates the optimal trajectory and necessary controls during flight. Highly accurate guidance algorithms are required to adapt the control acceleration to the thrust acceleration of the spacecraft. To achieve this, unique mechanisms are introduced: the trajectory is generated based on polynomials with dimensionless time and the boost start time is corrected based on navigation and machine learning. This combination achieved a guidance accuracy of 0.2 %, contributing to the pinpoint lunar landing. This paper presents details of these mechanisms and their evaluation based on telemetry from the landing.
AbstractList This paper discusses the on-orbit operation results of the powered descent guidance algorithm that played a key role in the navigation, guidance, and control of the Smart Lander for Investigating Moon (SLIM) mission, which made a pinpoint lunar landing in January 2024. The SLIM mission successfully demonstrated pinpoint lunar landing, confirmed within 100 m. The technology required for a pinpoint lunar landing consists of a variety of elements: a vision-based navigation system that accurately detects the position of the spacecraft relative to the lunar surface, a propulsion system that operates stably, a landing descent reference trajectory that is in harmony with the system design, mature spacecraft navigation, guidance, and control technology, and precise guidance algorithms to guide the spacecraft to its target location. The SLIM landing descent sequence consists of a powered descent phase to reduce the horizontal velocity and a vertical descent phase to reduce the remaining vertical velocity after the powered descent. Dedicated guidance algorithms applied to both phases use advanced mathematical methods for high-precision landing and backup options. This paper focuses on the powered descent guidance algorithm. The powered descent phase consists of three boost parts and two coasting parts. The coasting sections adjust the attitude of the spacecraft and the direction of the body-fixed navigation camera. Image acquisition for vision-based navigation and guidance calculation for the next boost section are performed before each boost section. In the boost section, the spacecraft's translational control law follows the trajectory generated by the guidance algorithm. The powered descent guidance algorithm uses an explicit guidance method that sequentially calculates the optimal trajectory and necessary controls during flight. Highly accurate guidance algorithms are required to adapt the control acceleration to the thrust acceleration of the spacecraft. To achieve this, unique mechanisms are introduced: the trajectory is generated based on polynomials with dimensionless time and the boost start time is corrected based on navigation and machine learning. This combination achieved a guidance accuracy of 0.2 %, contributing to the pinpoint lunar landing. This paper presents details of these mechanisms and their evaluation based on telemetry from the landing.
Author Ueda, Satoshi
Sakai, Shinichiro
Kushiki, Kenichi
Ishida, Takayuki
Fukuda, Seisuke
Sawai, Shujiro
Yokota, Kentaro
Ito, Takahiro
Miyazawa, Yu
Author_xml – sequence: 1
  givenname: Satoshi
  orcidid: 0000-0001-9014-4822
  surname: Ueda
  fullname: Ueda, Satoshi
  email: ueda.satoshi@jaxa.jp
  organization: Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 2
  givenname: Takahiro
  orcidid: 0000-0003-1491-1940
  surname: Ito
  fullname: Ito, Takahiro
  email: ito.takahiro@jaxa.jp
  organization: Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 3
  givenname: Kentaro
  orcidid: 0000-0001-8160-1446
  surname: Yokota
  fullname: Yokota, Kentaro
  email: yokota.kentaro@jaxa.jp
  organization: Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 4
  givenname: Shinichiro
  orcidid: 0009-0007-4685-3622
  surname: Sakai
  fullname: Sakai, Shinichiro
  email: sakai.shin-ichiro@jaxa.jp
  organization: Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 5
  givenname: Takayuki
  orcidid: 0009-0003-4111-5859
  surname: Ishida
  fullname: Ishida, Takayuki
  email: ishida.takayuki@jaxa.jp
  organization: Research and Development Directorate, Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 6
  givenname: Yu
  surname: Miyazawa
  fullname: Miyazawa, Yu
  email: miyazawa.yu@jaxa.jp
  organization: Space Exploration Innovation Hub Center, Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 7
  givenname: Kenichi
  orcidid: 0000-0002-6840-092X
  surname: Kushiki
  fullname: Kushiki, Kenichi
  email: kushiki.kenichi@jaxa.jp
  organization: Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 8
  givenname: Seisuke
  surname: Fukuda
  fullname: Fukuda, Seisuke
  email: fukuda.seisuke@jaxa.jp
  organization: Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
– sequence: 9
  givenname: Shujiro
  surname: Sawai
  fullname: Sawai, Shujiro
  email: sawai.shujiro@jaxa.jp
  organization: Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan
BookMark eNqFkM1uwjAQhH2gUoH2GeoXSLpxwCZHhPonIXFpz9bG3oBRsCPbtOrbN4iq157mMJrRzDdjEx88MfZQQVlBJR-PJZqMmHIMpQCxLEGWUDcTNgVoFsVSyeUtm6V0BAAlVs2U6Z0vQmxd5mGgiNkFzyOlc58TDx3PB-JD-KJIlltKhnzm-7Oz6A1x7Pchunw48S5EPjg_BDf6_dlj5D166_z-jt102Ce6_9U5-3h-et-8Ftvdy9tmvS2MkHUuqtoslLUAKNFI25JYtFKqDmRFSkqxsl2NiEo0tloIVNCapl0Kg1YIq4yq50xde00MKUXq9BDdCeO3rkBf2Oij_mOjL2w0SD2yGZPra5LGeZ-Ook7G0fjPukgmaxvcvx0_PV54dQ
Cites_doi 10.1016/0005-1098(74)90019-3
10.2514/3.7400
10.2514/1.A33208
10.2514/1.40649
10.2514/1.A35980
10.1016/j.actaastro.2017.05.032
10.1016/j.actaastro.2025.05.047
10.2514/1.G008746
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.actaastro.2025.06.039
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 61
ExternalDocumentID 10_1016_j_actaastro_2025_06_039
S0094576525003911
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELOY
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
VOH
WUQ
ZMT
~02
~G-
~HD
9DU
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-13c47dd00a6ac6dbe24b667f061e76628df3aaa729d142a70bc9b52cad22d7c73
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001524180400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-5765
IngestDate Sat Nov 29 06:55:47 EST 2025
Sat Oct 04 17:01:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Precise lunar landing
Powered descent
Guidance algorithm
Space exploration
Trajectory control
Navigation guidance and control
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c263t-13c47dd00a6ac6dbe24b667f061e76628df3aaa729d142a70bc9b52cad22d7c73
ORCID 0009-0003-4111-5859
0009-0007-4685-3622
0000-0001-9014-4822
0000-0003-1491-1940
0000-0001-8160-1446
0000-0002-6840-092X
OpenAccessLink https://dx.doi.org/10.1016/j.actaastro.2025.06.039
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_actaastro_2025_06_039
elsevier_sciencedirect_doi_10_1016_j_actaastro_2025_06_039
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Acta astronautica
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Shi, Liu, Long, Liu, Yuan (bib23) 2017; 138
Aoki, Yasumitsu, Kunugi, Takeya, Takatsuka, Yoshikawa, Fujii (bib14) 2011, 5–12 June
Sakai, Kushiki, Sawai, Fukuda, Miyazawa, Ishida, Kariya, Ito, Ueda, Yokota, Kawano, Ohtake, Saiki, Nakauchi, Michigami, Furukawa, Akizuki, Kanaya, Kinjo, Goto, Sawada, Sugimoto, Takeuchi, Tomiki, Toyota, Nagata, Nakatsuka, Maki, Mizuno, Shiratori, Nishino, Usami, Kikuchi, Hamori, Hirasawa, Shibasaki, Saito (bib3) 2025; 235
Sternberg, Chodas, Jewison, Jones, de Weck (bib19) 2015, 7–14 March
Sakai, Sawai, Fukuda, Sato, Kawano, Kukita, Maru, Miyazawa, Mizuno, Nakatsuka, Okazaki, Saiki, Tobe, Higuchi, Hokamoto, Kamata, Kitazono, Noumi, Takadama, Ueno (bib1) 2015, 9–11 June
Sawai, Mizuno, Fukuda, Nakaya, Haruyama, Okada, Nakatsuka, Saiki, Yasumitsu, Morishima (bib2) 2011, 5–12 June
Mathavaraj, Negi (bib9) 2025; 62–1
Ueno, Yamaguchi (bib12) 1999, 9-11 August
Cai, Fang, Zheng, Tong, Chen, Wang (bib22) 2010; 26–1
Ueda, Sakai (bib17) 2021; 19–3
Kitamura, Shibasaki, Ogura, Sugimoto, Ueda, Sawai, Sakai (bib18) 2025, 19–23 January
Kawasaki (bib13) 2011, 5–12 June
Kariya, Ishida, Sawai, Fukuda (bib4) 2017, 3–9 June
Stewart, Johnson, Hollister, Leonard, Mathews (bib10) 2025, 19–23 January
Klumpp (bib7) 1974; 10–2
Ito, Ueda, Sakai, Sawai, Fukuda, Kushiki, Ueno, Higuchi, Shibasaki, Kuroda (bib6) 2017, 25–29 September
Haftka (bib21) 1977; 15–8
Li, Jiang, Tao (bib8) 2016; 53–2
Ueno, Itagaki, Yamaguchi (bib11) 1998, 25-30 May
Ueda, Ito, Sakai (bib5) 2017, 3–9 June
Kitahara, Ueno, Higuchi (bib15) 2017, 19–22 September
Ueda, Ito, Sakai (bib20) 2024; 2
Ito, Ueda, Yokota, Sakai, Sawai, Sugita, Shibasaki, Mukumoto, Watabe, Shimizu (bib16) 2025; 48–6
Kitamura (10.1016/j.actaastro.2025.06.039_bib18) 2025
Haftka (10.1016/j.actaastro.2025.06.039_bib21) 1977; 15–8
Shi (10.1016/j.actaastro.2025.06.039_bib23) 2017; 138
Ueda (10.1016/j.actaastro.2025.06.039_bib5) 2017
Ueno (10.1016/j.actaastro.2025.06.039_bib11) 1998
Stewart (10.1016/j.actaastro.2025.06.039_bib10) 2025
Aoki (10.1016/j.actaastro.2025.06.039_bib14) 2011
Sakai (10.1016/j.actaastro.2025.06.039_bib3) 2025; 235
Ueda (10.1016/j.actaastro.2025.06.039_bib17) 2021; 19–3
Kawasaki (10.1016/j.actaastro.2025.06.039_bib13) 2011
Kitahara (10.1016/j.actaastro.2025.06.039_bib15) 2017
Ito (10.1016/j.actaastro.2025.06.039_bib6) 2017
Ito (10.1016/j.actaastro.2025.06.039_bib16) 2025; 48–6
Sawai (10.1016/j.actaastro.2025.06.039_bib2) 2011
Ueda (10.1016/j.actaastro.2025.06.039_bib20) 2024; 2
Mathavaraj (10.1016/j.actaastro.2025.06.039_bib9) 2025; 62–1
Kariya (10.1016/j.actaastro.2025.06.039_bib4) 2017
Cai (10.1016/j.actaastro.2025.06.039_bib22) 2010; 26–1
Sakai (10.1016/j.actaastro.2025.06.039_bib1) 2015
Sternberg (10.1016/j.actaastro.2025.06.039_bib19) 2015
Klumpp (10.1016/j.actaastro.2025.06.039_bib7) 1974; 10–2
Li (10.1016/j.actaastro.2025.06.039_bib8) 2016; 53–2
Ueno (10.1016/j.actaastro.2025.06.039_bib12) 1999
References_xml – year: 2011, 5–12 June
  ident: bib14
  article-title: A study on guidance, navigation and control about SLIM
  publication-title: 28th International Symposium on Space Technology and Science (ISTS)
– year: 2015, 7–14 March
  ident: bib19
  article-title: Multidisciplinary system design optimization of on orbit satellite assembly architectures
  publication-title: IEEE Aerospace Conference
– year: 2025, 19–23 January
  ident: bib10
  article-title: IM-1 powered descent reconstruction
  publication-title: Proceedings of 2025 AAS/AIAA Space Flight Mechanics Meeting
– year: 2017, 3–9 June
  ident: bib4
  article-title: Position and displacement estimation using crater-based line segments for pinpoint lunar landing
  publication-title: 31st International Symposium on Space Technology and Science (ISTS)
– year: 2017, 3–9 June
  ident: bib5
  article-title: A study on guidance technique for precise lunar landing, ISSFD-2017-053
  publication-title: Proceedings of the 26th International Symposium on Space Flight Dynamics
– year: 2011, 5–12 June
  ident: bib13
  article-title: Study on polynomial guidance law for the smart lander for investigating moon
  publication-title: 28th International Symposium on Space Technology and Science (ISTS)
– volume: 2
  start-page: 179
  year: 2024
  ident: bib20
  article-title: Multidisciplinary system design optimization on precise lunar landing trajectories and spacecraft systems
  publication-title: J. evol. space act
– volume: 138
  start-page: 301
  year: 2017
  end-page: 317
  ident: bib23
  article-title: Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite
  publication-title: Acta Astronaut.
– year: 2015, 9–11 June
  ident: bib1
  article-title: Small lunar-lander “SLIM” for the pinpoint landing technology demonstration
  publication-title: The 11th Low-Cost Planetary Missions Conference
– year: 2017, 19–22 September
  ident: bib15
  article-title: Robust polynomial guidance law for power descending phase of lunar lander
  publication-title: 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE)
– year: 2025, 19–23 January
  ident: bib18
  article-title: Trajectory design and flight results of SLIM mission
  publication-title: Proceedings of 2025 AAS/AIAA Space Flight Mechanics Meeting
– year: 1998, 25-30 May
  ident: bib11
  article-title: Near-minimum fuel guidance and control system for a lunar landing module
  publication-title: 21st International Symposium on Space Technology and Science (ISTS)
– volume: 10–2
  start-page: 133
  year: 1974
  end-page: 146
  ident: bib7
  article-title: Apollo lunar descent guidance
  publication-title: Automatica
– year: 2011, 5–12 June
  ident: bib2
  article-title: Conceptual study on SLIM
  publication-title: 28th International Symposium on Space Technology and Science (ISTS)
– volume: 235
  start-page: 47
  year: 2025
  end-page: 54
  ident: bib3
  article-title: Moon landing results of SLIM : a smart Lander for investigating the Moon
  publication-title: Acta Astronaut.
– volume: 19–3
  start-page: 334
  year: 2021
  end-page: 343
  ident: bib17
  article-title: Low-energy lunar transfer with specific landing conditions, trans. Jpn. Soc. Aeronaut
  publication-title: Space Sci
– volume: 53–2
  start-page: 258
  year: 2016
  end-page: 277
  ident: bib8
  article-title: Guidance summary and assessment of the Chang’e-3 powered descent and landing
  publication-title: J. Spacecraft Rockets
– year: 2017, 25–29 September
  ident: bib6
  article-title: Preliminary study on vertical descent guidance for precise lunar landing, C1, IP, 26, x39307
  publication-title: International Astronautical Congress
– volume: 62–1
  start-page: 159
  year: 2025
  end-page: 166
  ident: bib9
  article-title: Chandrayaan-3 trajectory design: injection to successful landing
  publication-title: J. Spacecraft Rockets
– volume: 15–8
  start-page: 1101
  year: 1977
  end-page: 1106
  ident: bib21
  article-title: Optimization of flexible wing structures subject to strength and induced drag constraints
  publication-title: AIAA J.
– volume: 48–6
  start-page: 1298
  year: 2025
  end-page: 1313
  ident: bib16
  article-title: Terminal powered descent guidance for the smart lander for investigating moon
  publication-title: J. Guid. Control Dynam.
– year: 1999, 9-11 August
  ident: bib12
  article-title: 3-Dimensional near-minimum fuel guidance law of a lunar landing module, AIAA guidance
  publication-title: Navigation, and Control Conference and Exhibit
– volume: 26–1
  start-page: 113
  year: 2010
  end-page: 119
  ident: bib22
  article-title: Optimization of system parameters for liquid rocket engines with gas-generator cycles
  publication-title: J. Propul. Power
– volume: 19–3
  start-page: 334
  year: 2021
  ident: 10.1016/j.actaastro.2025.06.039_bib17
  article-title: Low-energy lunar transfer with specific landing conditions, trans. Jpn. Soc. Aeronaut
  publication-title: Space Sci
– year: 1999
  ident: 10.1016/j.actaastro.2025.06.039_bib12
  article-title: 3-Dimensional near-minimum fuel guidance law of a lunar landing module, AIAA guidance
– year: 2025
  ident: 10.1016/j.actaastro.2025.06.039_bib10
  article-title: IM-1 powered descent reconstruction
– year: 1998
  ident: 10.1016/j.actaastro.2025.06.039_bib11
  article-title: Near-minimum fuel guidance and control system for a lunar landing module
– year: 2015
  ident: 10.1016/j.actaastro.2025.06.039_bib1
  article-title: Small lunar-lander “SLIM” for the pinpoint landing technology demonstration
– year: 2011
  ident: 10.1016/j.actaastro.2025.06.039_bib14
  article-title: A study on guidance, navigation and control about SLIM
– year: 2017
  ident: 10.1016/j.actaastro.2025.06.039_bib4
  article-title: Position and displacement estimation using crater-based line segments for pinpoint lunar landing
– volume: 10–2
  start-page: 133
  year: 1974
  ident: 10.1016/j.actaastro.2025.06.039_bib7
  article-title: Apollo lunar descent guidance
  publication-title: Automatica
  doi: 10.1016/0005-1098(74)90019-3
– year: 2011
  ident: 10.1016/j.actaastro.2025.06.039_bib13
  article-title: Study on polynomial guidance law for the smart lander for investigating moon
– volume: 2
  start-page: 179
  year: 2024
  ident: 10.1016/j.actaastro.2025.06.039_bib20
  article-title: Multidisciplinary system design optimization on precise lunar landing trajectories and spacecraft systems
  publication-title: J. evol. space act
– volume: 15–8
  start-page: 1101
  year: 1977
  ident: 10.1016/j.actaastro.2025.06.039_bib21
  article-title: Optimization of flexible wing structures subject to strength and induced drag constraints
  publication-title: AIAA J.
  doi: 10.2514/3.7400
– year: 2011
  ident: 10.1016/j.actaastro.2025.06.039_bib2
  article-title: Conceptual study on SLIM
– volume: 53–2
  start-page: 258
  year: 2016
  ident: 10.1016/j.actaastro.2025.06.039_bib8
  article-title: Guidance summary and assessment of the Chang’e-3 powered descent and landing
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A33208
– year: 2017
  ident: 10.1016/j.actaastro.2025.06.039_bib6
  article-title: Preliminary study on vertical descent guidance for precise lunar landing, C1, IP, 26, x39307
– year: 2017
  ident: 10.1016/j.actaastro.2025.06.039_bib15
  article-title: Robust polynomial guidance law for power descending phase of lunar lander
– volume: 26–1
  start-page: 113
  year: 2010
  ident: 10.1016/j.actaastro.2025.06.039_bib22
  article-title: Optimization of system parameters for liquid rocket engines with gas-generator cycles
  publication-title: J. Propul. Power
  doi: 10.2514/1.40649
– year: 2025
  ident: 10.1016/j.actaastro.2025.06.039_bib18
  article-title: Trajectory design and flight results of SLIM mission
– volume: 62–1
  start-page: 159
  year: 2025
  ident: 10.1016/j.actaastro.2025.06.039_bib9
  article-title: Chandrayaan-3 trajectory design: injection to successful landing
  publication-title: J. Spacecraft Rockets
  doi: 10.2514/1.A35980
– volume: 138
  start-page: 301
  year: 2017
  ident: 10.1016/j.actaastro.2025.06.039_bib23
  article-title: Surrogate assisted multidisciplinary design optimization for an all-electric GEO satellite
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.05.032
– volume: 235
  start-page: 47
  year: 2025
  ident: 10.1016/j.actaastro.2025.06.039_bib3
  article-title: Moon landing results of SLIM : a smart Lander for investigating the Moon
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2025.05.047
– year: 2017
  ident: 10.1016/j.actaastro.2025.06.039_bib5
  article-title: A study on guidance technique for precise lunar landing, ISSFD-2017-053
– year: 2015
  ident: 10.1016/j.actaastro.2025.06.039_bib19
  article-title: Multidisciplinary system design optimization of on orbit satellite assembly architectures
– volume: 48–6
  start-page: 1298
  year: 2025
  ident: 10.1016/j.actaastro.2025.06.039_bib16
  article-title: Terminal powered descent guidance for the smart lander for investigating moon
  publication-title: J. Guid. Control Dynam.
  doi: 10.2514/1.G008746
SSID ssj0007289
Score 2.4107738
Snippet This paper discusses the on-orbit operation results of the powered descent guidance algorithm that played a key role in the navigation, guidance, and control...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 47
SubjectTerms Guidance algorithm
Navigation guidance and control
Powered descent
Precise lunar landing
Space exploration
Trajectory control
Title On-orbit operation results of the powered descent guidance algorithm for pinpoint lunar landing
URI https://dx.doi.org/10.1016/j.actaastro.2025.06.039
Volume 236
WOSCitedRecordID wos001524180400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0094-5765
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007289
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbLpof2UPqk6QsdeltcHPkhqbdQUvqAtLAb2JuRJTnrZGsbrzfk0v_e0cu7bQNtKb0YY1uWrPk8mhlmPiH0itFEpRkVUVxmJEplpiJOKxmJPOZM6kpzUdnNJujpKVsu-ZfJ5Fuohbla06Zh19e8-6-ihmsgbFM6-xfiHl8KF-AchA5HEDsc_0jwn5uo7ct6mLWd9uIFl3q7dkkbtjLK7IwGhqZyVE6z822tXOXA-rzt62H11SYfdnXTtTXcX28bYSOb4zoXaGvlIGZiY6LpwgbFg_jOtBIu3jy0m1U94s_u2TRbiEuxqvt2p3EuW2fEfjKZ7Lsbc3jQZhvMV6Z-c2zjoxQk8-V6Y-gslM_scpWsOuZpBA5Ptq-OSbKvUB0dp1-aHW37L0rfxR8uAICDsN_82ozA0rI6oqSfGLXnpl_TLZh_hiAfnOcDQjPOpujg-MPJ8uO4lFPCnP_kx_lDguCN3d1s3uyZLIt76K73NfCxw8h9NNHNA3Rnj4HyISoCWvCIFuzRgtsKA1qwRwv2aMEBLXhECwa04IAWbNGCPVoeobN3J4u37yO_50YkSZ4M0VEiU6pUHItcyFyVmqRlntMKzD5N85wwVSVCCHDJ1FFKBI1LyeEvl0IRoqikyWM0bdpGP0FYUFZliSS6NCGzNGeJVlWqBHSUccXoIYrDVBWdo1YpQs7hRTHObmFmtzDZlwk_RG_ClBbeQnSWXwFY-F3jp__S-Bm6vYP1czQd-q1-gW7Jq6He9C89br4DdpWWLw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On-orbit+operation+results+of+the+powered+descent+guidance+algorithm+for+pinpoint+lunar+landing&rft.jtitle=Acta+astronautica&rft.au=Ueda%2C+Satoshi&rft.au=Ito%2C+Takahiro&rft.au=Yokota%2C+Kentaro&rft.au=Sakai%2C+Shinichiro&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0094-5765&rft.volume=236&rft.spage=47&rft.epage=61&rft_id=info:doi/10.1016%2Fj.actaastro.2025.06.039&rft.externalDocID=S0094576525003911
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-5765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-5765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-5765&client=summon