Approximation algorithms for bicriteria scheduling problems on identical parallel machines for makespan and total completion time

•Bicriteria scheduling problems on identical parallel machines.•Simultaneous optimization of the two objectives: the makespan and the total completion time.•Developing approximation algorithms relative to each objective’s optimal value.•A tradeoff curve of the approximation ratio.•Lower bound of the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 305; číslo 2; s. 594 - 607
Hlavní autoři: Jiang, Xiaojuan, Lee, Kangbok, Pinedo, Michael L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.03.2023
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Bicriteria scheduling problems on identical parallel machines.•Simultaneous optimization of the two objectives: the makespan and the total completion time.•Developing approximation algorithms relative to each objective’s optimal value.•A tradeoff curve of the approximation ratio.•Lower bound of the approximation ratio which cannot be improved by any algorithm. We consider bicriteria scheduling problems with identical machines in parallel and two popular but conflicting objectives, namely, the makespan and the total completion time. Assuming no prioritization of the two objectives, we are interested in the simultaneous optimization of the two objectives and approximation algorithms relative to an ideal schedule – which may not exist – that has both objectives at their minimum. For the problem with a given number of machines, we propose a fast (ρ1,ρ2)-approximation algorithm where ρ1 and ρ2 represent approximation ratios with regard to the makespan and the total completion time, respectively. We also analyze the problem’s inapproximability by proposing a lower bound of the approximation ratio, which cannot be improved by any algorithm.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2022.06.021