On the Cauchy-Kovalevskaya theorem for Caputo fractional differential equations

We aim at proving the Cauchy-Kovalevskaya theorem for systems of nonlinear fractional differential equations in the Caputo sense, not necessarily polynomial or compartmental. Essentially, the theorem states that if the input function has a Taylor series, then the solution can be locally expressed as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Physica. D Ročník 462; s. 134139
Hlavní autor: Jornet, Marc
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2024
Témata:
ISSN:0167-2789, 1872-8022
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We aim at proving the Cauchy-Kovalevskaya theorem for systems of nonlinear fractional differential equations in the Caputo sense, not necessarily polynomial or compartmental. Essentially, the theorem states that if the input function has a Taylor series, then the solution can be locally expressed as a fractional power series. We use, in the real field, the method of majorants and the analytic version of the implicit-function theorem, in a way that circumvents difficulties associated to fractional calculus. Some corollaries on continuity are derived, with computational examples for illustration, and a discussion on fractional partial differential equations is included with a case study and counterexamples. Open problems are raised at the end. •We investigate systems of nonlinear Caputo fractional differential equations.•We prove the Cauchy-Kovalevskaya theorem on convergence of fractional power series.•We use majorants and the implicit-function theorem adequately.•Corollaries on continuity and computational examples (e.g. Gompertz) are included.•We address and discuss Caputo fractional PDEs (quasilinear, heat and Schrödinger).
AbstractList We aim at proving the Cauchy-Kovalevskaya theorem for systems of nonlinear fractional differential equations in the Caputo sense, not necessarily polynomial or compartmental. Essentially, the theorem states that if the input function has a Taylor series, then the solution can be locally expressed as a fractional power series. We use, in the real field, the method of majorants and the analytic version of the implicit-function theorem, in a way that circumvents difficulties associated to fractional calculus. Some corollaries on continuity are derived, with computational examples for illustration, and a discussion on fractional partial differential equations is included with a case study and counterexamples. Open problems are raised at the end. •We investigate systems of nonlinear Caputo fractional differential equations.•We prove the Cauchy-Kovalevskaya theorem on convergence of fractional power series.•We use majorants and the implicit-function theorem adequately.•Corollaries on continuity and computational examples (e.g. Gompertz) are included.•We address and discuss Caputo fractional PDEs (quasilinear, heat and Schrödinger).
ArticleNumber 134139
Author Jornet, Marc
Author_xml – sequence: 1
  givenname: Marc
  orcidid: 0000-0003-0748-3730
  surname: Jornet
  fullname: Jornet, Marc
  email: marc.jornet@uv.es
  organization: Departament de Matemàtiques, Universitat de València, 46100 Burjassot, Spain
BookMark eNqFkMtOwzAQRS1UJNrCF7DJDyT4kcTxggWqeIlK2cDacuyx6pLGxU4r5e9JWlYsYDWae-eMZu4CzTrfAUK3BGcEk_Jum-03QzQZxTTPCMsJExdoTipO0wpTOkPzcYqnlFfiCi1i3GKMCWd8juq6S_oNJCt10JshffNH1cIxfqpBTboPsEusD6O_P_Q-sUHp3vlOtYlx1kKArndjA18HNenxGl1a1Ua4-alL9PH0-L56Sdf18-vqYZ1qWjKR5qbRleWmpJZqJhgA5azRpqCq4bkhqiS6GF2AsjRUFA3HuRLUVKJgrLA5WyJx3quDjzGAldr1pxP6oFwrCZZTMnIrT8nIKRl5TmZk2S92H9xOheEf6v5MwfjW0UGQUTvoNBgXQPfSePcn_w2L5YG3
CitedBy_id crossref_primary_10_1088_1402_4896_ad9eea
crossref_primary_10_3390_s24196488
crossref_primary_10_1007_s40314_024_03072_z
crossref_primary_10_1007_s40314_025_03209_8
crossref_primary_10_3390_fractalfract8070411
crossref_primary_10_1038_s41598_025_10172_1
crossref_primary_10_1142_S0219477525500373
crossref_primary_10_1016_j_chaos_2024_115263
crossref_primary_10_1016_j_mechrescom_2025_104425
crossref_primary_10_1007_s12215_025_01271_z
crossref_primary_10_3390_fractalfract8060348
crossref_primary_10_1016_j_cjph_2024_10_002
crossref_primary_10_1007_s13540_024_00287_z
Cites_doi 10.1016/j.physa.2021.125947
10.1007/s00521-023-08268-8
10.1155/2014/238459
10.1186/s13662-017-1456-z
10.1016/j.net.2021.07.026
10.1016/j.na.2021.112340
10.3390/fractalfract4030044
10.1007/s40324-022-00314-0
10.1016/j.jmaa.2006.05.061
10.3390/e22121359
10.1016/j.jcp.2014.07.019
10.1111/j.1365-246X.1967.tb02303.x
10.3934/mbe.2021163
10.1186/s13662-021-03345-5
10.1016/j.chaos.2021.110652
10.1186/s13662-015-0613-5
10.3390/fractalfract2040023
10.1119/1.15432
10.3390/fractalfract5020057
10.1016/j.cnsns.2021.105764
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.physd.2024.134139
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
ExternalDocumentID 10_1016_j_physd_2024_134139
S0167278924000903
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c2639-4dbc8f7d62f2c393ee273bcd52ab74d1a61c5d62ee66d295b704a92d895335f43
ISSN 0167-2789
IngestDate Sat Nov 29 03:57:39 EST 2025
Tue Nov 18 21:35:48 EST 2025
Sat Apr 27 15:44:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Fractional differential equation
Implicit-function theorem
Convergent power series
Cauchy-Kovalevskaya theorem
Analytical solution
Vector function
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2639-4dbc8f7d62f2c393ee273bcd52ab74d1a61c5d62ee66d295b704a92d895335f43
ORCID 0000-0003-0748-3730
OpenAccessLink https://dx.doi.org/10.1016/j.physd.2024.134139
ParticipantIDs crossref_citationtrail_10_1016_j_physd_2024_134139
crossref_primary_10_1016_j_physd_2024_134139
elsevier_sciencedirect_doi_10_1016_j_physd_2024_134139
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Physica. D
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Area, Nieto (b21) 2021; 573
Area, Nieto (b22) 2023; 4
Srivastava, Area Carracedo, Nieto (b17) 2021; 18
Fairén, López, Conde (b38) 1988; 56
Carvalho, Pinto, Baleanu (b6) 2018; 2018
Dunkl, Xu (b31) 2014; Vol. 155
Kilbas, Srivastava, Trujillo (b1) 2006
Wei, Wu, Liu, Nieto (b40) 2023; 35
Shchedrin, Smith, Gladkina, Carr (b28) 2018
Jornet (b39) 2023; 80
Balzotti, D’Ovidio, Loreti (b24) 2020; 4
Ortigueira, Machado (b4) 2015; 293
Thelwell, Warne, Warne (b27) 2012; 2012
Abbas, Benchohra, Lazreg, Nieto, Zhou (b2) 2023
Jornet (b20) 2021; 209
Rudin (b35) 1976
Area, Batarfi, Losada, Nieto, Shammakh, Torres (b10) 2015; 2015
Ali, Kalim, Khan (b26) 2021; 2021
Tarasov (b11) 2018; 2
Mainardi (b36) 2020; 22
Cruz-López, Espinosa-Paredes (b12) 2022; 54
D’Ovidio, Lai, Loreti (b23) 2021; 5
Webb (b33) 2019; 2019
De Oliveira, Tenreiro Machado (b3) 2014; 2014
Rudin (b32) 1987
Carvalho, Pinto, de Carvalho (b5) 2020; 17
Ye, Gao, Ding (b34) 2007; 328
Jornet (b25) 2024; 43
Alshomrani, Ullah, Baleanu (b8) 2021; 2021
Jornet (b13) 2023; 457
Gerasimov (b14) 1948; 12
Caputo (b15) 1967; 13
Coroian (b30) 2004; 20
Biala, Khaliq (b7) 2021; 98
Teschl (b16) 2012
Himonas, Petronilho (b18) 2020; 6
Ndaïrou, Area, Nieto, Silva, Torres (b9) 2021; 144
Jornet (b19) 2021; 391
(b37) 2020
Kaup, Kaup (b29) 2011
Alshomrani (10.1016/j.physd.2024.134139_b8) 2021; 2021
Ali (10.1016/j.physd.2024.134139_b26) 2021; 2021
Kilbas (10.1016/j.physd.2024.134139_b1) 2006
Biala (10.1016/j.physd.2024.134139_b7) 2021; 98
Area (10.1016/j.physd.2024.134139_b22) 2023; 4
Jornet (10.1016/j.physd.2024.134139_b20) 2021; 209
Ortigueira (10.1016/j.physd.2024.134139_b4) 2015; 293
Carvalho (10.1016/j.physd.2024.134139_b6) 2018; 2018
Jornet (10.1016/j.physd.2024.134139_b39) 2023; 80
Mainardi (10.1016/j.physd.2024.134139_b36) 2020; 22
Rudin (10.1016/j.physd.2024.134139_b32) 1987
Thelwell (10.1016/j.physd.2024.134139_b27) 2012; 2012
Ndaïrou (10.1016/j.physd.2024.134139_b9) 2021; 144
Dunkl (10.1016/j.physd.2024.134139_b31) 2014; Vol. 155
Balzotti (10.1016/j.physd.2024.134139_b24) 2020; 4
Shchedrin (10.1016/j.physd.2024.134139_b28) 2018
Caputo (10.1016/j.physd.2024.134139_b15) 1967; 13
Coroian (10.1016/j.physd.2024.134139_b30) 2004; 20
Rudin (10.1016/j.physd.2024.134139_b35) 1976
Jornet (10.1016/j.physd.2024.134139_b25) 2024; 43
Wei (10.1016/j.physd.2024.134139_b40) 2023; 35
Area (10.1016/j.physd.2024.134139_b10) 2015; 2015
Himonas (10.1016/j.physd.2024.134139_b18) 2020; 6
Ye (10.1016/j.physd.2024.134139_b34) 2007; 328
Tarasov (10.1016/j.physd.2024.134139_b11) 2018; 2
Area (10.1016/j.physd.2024.134139_b21) 2021; 573
(10.1016/j.physd.2024.134139_b37) 2020
Webb (10.1016/j.physd.2024.134139_b33) 2019; 2019
Gerasimov (10.1016/j.physd.2024.134139_b14) 1948; 12
Fairén (10.1016/j.physd.2024.134139_b38) 1988; 56
De Oliveira (10.1016/j.physd.2024.134139_b3) 2014; 2014
Teschl (10.1016/j.physd.2024.134139_b16) 2012
Jornet (10.1016/j.physd.2024.134139_b19) 2021; 391
Carvalho (10.1016/j.physd.2024.134139_b5) 2020; 17
Abbas (10.1016/j.physd.2024.134139_b2) 2023
Srivastava (10.1016/j.physd.2024.134139_b17) 2021; 18
Jornet (10.1016/j.physd.2024.134139_b13) 2023; 457
D’Ovidio (10.1016/j.physd.2024.134139_b23) 2021; 5
Kaup (10.1016/j.physd.2024.134139_b29) 2011
Cruz-López (10.1016/j.physd.2024.134139_b12) 2022; 54
References_xml – volume: 391
  year: 2021
  ident: b19
  article-title: Beyond the hypothesis of boundedness for the random coefficient of the Legendre differential equation with uncertainties
  publication-title: Appl. Math. Comput.
– volume: 43
  year: 2024
  ident: b25
  article-title: Power-series solutions of fractional-order compartmental models
  publication-title: Comput. Appl. Math.
– volume: 328
  start-page: 1075
  year: 2007
  end-page: 1081
  ident: b34
  article-title: A generalized Grönwall inequality and its application to a fractional differential equation
  publication-title: J. Math. Anal. Appl.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 8
  ident: b27
  article-title: Cauchy-Kowalevski and polynomial ordinary differential equations
  publication-title: Electron. J. Differential Equations
– volume: Vol. 155
  year: 2014
  ident: b31
  article-title: Orthogonal polynomials of several variables
  publication-title: Encyclopedia of Mathematics and Its Applications
– year: 2012
  ident: b16
  article-title: Ordinary Differential Equations and Dynamical Systems
– volume: 4
  year: 2023
  ident: b22
  article-title: On the fractional allee logistic equation in the Caputo sense
  publication-title: Ex. Counterexamples
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 22
  ident: b6
  article-title: HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load
  publication-title: Adv. Difference Equ.
– volume: 2021
  start-page: 185
  year: 2021
  ident: b8
  article-title: Caputo SIR model for COVID-19 under optimized fractional order
  publication-title: Adv. Difference Equ.
– year: 1987
  ident: b32
  article-title: Real and Complex Analysis
– volume: 5
  start-page: 57
  year: 2021
  ident: b23
  article-title: Solutions of Bernoulli equations in the fractional setting
  publication-title: Fract. Fract.
– volume: 13
  start-page: 529
  year: 1967
  end-page: 539
  ident: b15
  article-title: Linear model of dissipation whose Q is almost frequency independent-II
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 35
  start-page: 10837
  year: 2023
  end-page: 10846
  ident: b40
  article-title: An optimal neural network design for fractional deep learning of logistic growth
  publication-title: Neural Comput. Appl.
– year: 2011
  ident: b29
  article-title: Holomorphic Functions of Several Variables: An Introduction to the Fundamental Theory, Vol. 3
– volume: 293
  start-page: 4
  year: 2015
  end-page: 13
  ident: b4
  article-title: What is a fractional derivative?
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 3274
  year: 2021
  end-page: 3290
  ident: b17
  article-title: Power-series solution of compartmental epidemiological models
  publication-title: Math. Biosci. Eng.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 17
  ident: b26
  article-title: Solution of fractional partial differential equations using fractional power series method
  publication-title: Int. J. Differ. Equ. Appl.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 12
  ident: b10
  article-title: On a fractional order Ebola epidemic model
  publication-title: Adv. Difference Equ.
– volume: 17
  start-page: 5
  year: 2020
  end-page: 185
  ident: b5
  article-title: Fractional model for type 1 diabetes
  publication-title: Math. Model. Optim. Eng. Prob.
– volume: 144
  year: 2021
  ident: b9
  article-title: Fractional model of COVID-19 applied to Galicia, Spain and Portugal
  publication-title: Chaos, Solitons Fract.
– volume: 22
  start-page: 1359
  year: 2020
  ident: b36
  article-title: Why the Mittag-Leffler function can be considered the queen function on the fractional calculus?
  publication-title: Entropy
– volume: 56
  start-page: 57
  year: 1988
  end-page: 61
  ident: b38
  article-title: Power series approximation to solutions of nonlinear systems of differential equations
  publication-title: Amer. J. Phys.
– year: 1976
  ident: b35
  publication-title: Principles of Mathematical Analysis
– volume: 573
  year: 2021
  ident: b21
  article-title: Power series solution of the fractional logistic equation
  publication-title: Physica A
– volume: 457
  year: 2023
  ident: b13
  article-title: On the random fractional Bateman equations
  publication-title: Appl. Math. Comput.
– volume: 54
  start-page: 275
  year: 2022
  end-page: 282
  ident: b12
  article-title: Fractional radioactive decay law and Bateman equations
  publication-title: Nucl. Eng. Technol.
– year: 2020
  ident: b37
  article-title: Mathematica, Version 12.1
– year: 2006
  ident: b1
  publication-title: Theory and Applications of the Fractional Differential Equations
– volume: 20
  start-page: 7
  year: 2004
  end-page: 14
  ident: b30
  article-title: The connection between the implicit function theorem and the existence theorem for differential equations
  publication-title: Carpathian J. Math.
– volume: 6
  start-page: 1
  year: 2020
  end-page: 16
  ident: b18
  article-title: Analyticity in partial differential equations
  publication-title: Complex Anal. Synerg.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 32
  ident: b33
  article-title: Initial value problems for Caputo fractional equations with singular nonlinearities
  publication-title: Electron. J. Differential Equations
– volume: 98
  year: 2021
  ident: b7
  article-title: A fractional-order compartmental model for the spread of the COVID-19 pandemic
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 4
  start-page: 44
  year: 2020
  ident: b24
  article-title: Fractional SIS epidemic models
  publication-title: Fract. Fract.
– volume: 80
  start-page: 549
  year: 2023
  end-page: 579
  ident: b39
  article-title: Theory and methods for random differential equations: a survey
  publication-title: SeMA J.
– year: 2023
  ident: b2
  article-title: Fractional Differential Equations and Inclusions. Classical and Advanced Topics
– volume: 209
  year: 2021
  ident: b20
  article-title: Uncertainty quantification for the random viscous Burgers’ partial differential equation by using the differential transform method
  publication-title: Nonlinear Anal.
– volume: 2
  start-page: 23
  year: 2018
  ident: b11
  article-title: Generalized memory: Fractional calculus approach
  publication-title: Fract. Fract.
– volume: 12
  start-page: 251
  year: 1948
  end-page: 259
  ident: b14
  article-title: A generalization of linear laws of deformation and its application to problems of internal friction
  publication-title: Akad. Nauk SSSR, Prikladnaya Matematika i Mekhanika
– volume: 2014
  year: 2014
  ident: b3
  article-title: A review of definitions for fractional derivatives and integral
  publication-title: Math. Probl. Eng.
– year: 2018
  ident: b28
  article-title: Fractional derivative of composite functions: exact results and physical applications
– volume: 573
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b21
  article-title: Power series solution of the fractional logistic equation
  publication-title: Physica A
  doi: 10.1016/j.physa.2021.125947
– volume: 4
  year: 2023
  ident: 10.1016/j.physd.2024.134139_b22
  article-title: On the fractional allee logistic equation in the Caputo sense
  publication-title: Ex. Counterexamples
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b26
  article-title: Solution of fractional partial differential equations using fractional power series method
  publication-title: Int. J. Differ. Equ. Appl.
– volume: 35
  start-page: 10837
  issue: 15
  year: 2023
  ident: 10.1016/j.physd.2024.134139_b40
  article-title: An optimal neural network design for fractional deep learning of logistic growth
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08268-8
– volume: 2019
  start-page: 1
  issue: 117
  year: 2019
  ident: 10.1016/j.physd.2024.134139_b33
  article-title: Initial value problems for Caputo fractional equations with singular nonlinearities
  publication-title: Electron. J. Differential Equations
– volume: 43
  issue: 67
  year: 2024
  ident: 10.1016/j.physd.2024.134139_b25
  article-title: Power-series solutions of fractional-order compartmental models
  publication-title: Comput. Appl. Math.
– volume: 2014
  year: 2014
  ident: 10.1016/j.physd.2024.134139_b3
  article-title: A review of definitions for fractional derivatives and integral
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2014/238459
– year: 2012
  ident: 10.1016/j.physd.2024.134139_b16
– volume: 2018
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.physd.2024.134139_b6
  article-title: HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load
  publication-title: Adv. Difference Equ.
  doi: 10.1186/s13662-017-1456-z
– volume: 54
  start-page: 275
  issue: 1
  year: 2022
  ident: 10.1016/j.physd.2024.134139_b12
  article-title: Fractional radioactive decay law and Bateman equations
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2021.07.026
– volume: 457
  year: 2023
  ident: 10.1016/j.physd.2024.134139_b13
  article-title: On the random fractional Bateman equations
  publication-title: Appl. Math. Comput.
– volume: 391
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b19
  article-title: Beyond the hypothesis of boundedness for the random coefficient of the Legendre differential equation with uncertainties
  publication-title: Appl. Math. Comput.
– volume: 2012
  start-page: 1
  issue: 11
  year: 2012
  ident: 10.1016/j.physd.2024.134139_b27
  article-title: Cauchy-Kowalevski and polynomial ordinary differential equations
  publication-title: Electron. J. Differential Equations
– year: 2023
  ident: 10.1016/j.physd.2024.134139_b2
– volume: 209
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b20
  article-title: Uncertainty quantification for the random viscous Burgers’ partial differential equation by using the differential transform method
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2021.112340
– volume: 4
  start-page: 44
  issue: 3
  year: 2020
  ident: 10.1016/j.physd.2024.134139_b24
  article-title: Fractional SIS epidemic models
  publication-title: Fract. Fract.
  doi: 10.3390/fractalfract4030044
– year: 1987
  ident: 10.1016/j.physd.2024.134139_b32
– volume: 80
  start-page: 549
  year: 2023
  ident: 10.1016/j.physd.2024.134139_b39
  article-title: Theory and methods for random differential equations: a survey
  publication-title: SeMA J.
  doi: 10.1007/s40324-022-00314-0
– volume: 328
  start-page: 1075
  year: 2007
  ident: 10.1016/j.physd.2024.134139_b34
  article-title: A generalized Grönwall inequality and its application to a fractional differential equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2006.05.061
– volume: 17
  start-page: 5
  year: 2020
  ident: 10.1016/j.physd.2024.134139_b5
  article-title: Fractional model for type 1 diabetes
  publication-title: Math. Model. Optim. Eng. Prob.
– volume: 22
  start-page: 1359
  issue: 12
  year: 2020
  ident: 10.1016/j.physd.2024.134139_b36
  article-title: Why the Mittag-Leffler function can be considered the queen function on the fractional calculus?
  publication-title: Entropy
  doi: 10.3390/e22121359
– volume: 20
  start-page: 7
  issue: 1
  year: 2004
  ident: 10.1016/j.physd.2024.134139_b30
  article-title: The connection between the implicit function theorem and the existence theorem for differential equations
  publication-title: Carpathian J. Math.
– volume: 293
  start-page: 4
  year: 2015
  ident: 10.1016/j.physd.2024.134139_b4
  article-title: What is a fractional derivative?
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.07.019
– volume: 13
  start-page: 529
  year: 1967
  ident: 10.1016/j.physd.2024.134139_b15
  article-title: Linear model of dissipation whose Q is almost frequency independent-II
  publication-title: Geophys. J. R. Astron. Soc.
  doi: 10.1111/j.1365-246X.1967.tb02303.x
– year: 2018
  ident: 10.1016/j.physd.2024.134139_b28
– volume: 18
  start-page: 3274
  issue: 4
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b17
  article-title: Power-series solution of compartmental epidemiological models
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2021163
– volume: 2021
  start-page: 185
  issue: 1
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b8
  article-title: Caputo SIR model for COVID-19 under optimized fractional order
  publication-title: Adv. Difference Equ.
  doi: 10.1186/s13662-021-03345-5
– year: 2020
  ident: 10.1016/j.physd.2024.134139_b37
– volume: Vol. 155
  year: 2014
  ident: 10.1016/j.physd.2024.134139_b31
  article-title: Orthogonal polynomials of several variables
– volume: 144
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b9
  article-title: Fractional model of COVID-19 applied to Galicia, Spain and Portugal
  publication-title: Chaos, Solitons Fract.
  doi: 10.1016/j.chaos.2021.110652
– volume: 2015
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.physd.2024.134139_b10
  article-title: On a fractional order Ebola epidemic model
  publication-title: Adv. Difference Equ.
  doi: 10.1186/s13662-015-0613-5
– year: 2011
  ident: 10.1016/j.physd.2024.134139_b29
– year: 1976
  ident: 10.1016/j.physd.2024.134139_b35
– volume: 2
  start-page: 23
  issue: 4
  year: 2018
  ident: 10.1016/j.physd.2024.134139_b11
  article-title: Generalized memory: Fractional calculus approach
  publication-title: Fract. Fract.
  doi: 10.3390/fractalfract2040023
– year: 2006
  ident: 10.1016/j.physd.2024.134139_b1
– volume: 56
  start-page: 57
  issue: 1
  year: 1988
  ident: 10.1016/j.physd.2024.134139_b38
  article-title: Power series approximation to solutions of nonlinear systems of differential equations
  publication-title: Amer. J. Phys.
  doi: 10.1119/1.15432
– volume: 5
  start-page: 57
  issue: 2
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b23
  article-title: Solutions of Bernoulli equations in the fractional setting
  publication-title: Fract. Fract.
  doi: 10.3390/fractalfract5020057
– volume: 98
  year: 2021
  ident: 10.1016/j.physd.2024.134139_b7
  article-title: A fractional-order compartmental model for the spread of the COVID-19 pandemic
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.105764
– volume: 6
  start-page: 1
  issue: 15
  year: 2020
  ident: 10.1016/j.physd.2024.134139_b18
  article-title: Analyticity in partial differential equations
  publication-title: Complex Anal. Synerg.
– volume: 12
  start-page: 251
  year: 1948
  ident: 10.1016/j.physd.2024.134139_b14
  article-title: A generalization of linear laws of deformation and its application to problems of internal friction
  publication-title: Akad. Nauk SSSR, Prikladnaya Matematika i Mekhanika
SSID ssj0001737
Score 2.425661
Snippet We aim at proving the Cauchy-Kovalevskaya theorem for systems of nonlinear fractional differential equations in the Caputo sense, not necessarily polynomial or...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 134139
SubjectTerms Analytical solution
Cauchy-Kovalevskaya theorem
Convergent power series
Fractional differential equation
Implicit-function theorem
Vector function
Title On the Cauchy-Kovalevskaya theorem for Caputo fractional differential equations
URI https://dx.doi.org/10.1016/j.physd.2024.134139
Volume 462
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8022
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001737
  issn: 0167-2789
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZp0kJ6KGnakvQRdOixu9iyLFnHsKS0acgGmsLejCzJtEnr3e4jJP--I4_8CBtCW8jFGNuylvnEaPbzNzOEvBeuiEoe64HlkWer4Exx5RN8ZGaZY9ZindkTeXqaTSbqLDSGXNTtBGRVZdfXavagUMM1ANunzv4D3O1L4QKcA-hwBNjh-FfAj1G4ONIr8_1m8GUK73ZXi0t9o0PW4q9aWjjSsxXEneUcMxvqbzXYK2XpSXT3e9Xj8kL0eoagDjuZ8PF0Xrkm6cf0KQTGO6kT8lpruS1INYIL9XmyuFOge8wk-M-I3fKfHN3pmi9GWuBi6CkaX5OV8aGvHpeobutpBYFf_Wx-Mi9p9dTRI7LFZKrAT20dfj6aHLe7ayyxDmrz65pKUrVmb22qu6ONXgRxvkOehdCfHiJkz8mGq3bJ015ByF3yBC28eEHG44oCXPQOGGmAkQKMFGGkHYy0DyNtYXxJvn08Oh99GoTmFwPDhP86bwuTldIKVjKTqMQ5CDQLY1OmC8ltrEVsUrjrnBCWqbSQEdeK2czrhdOSJ6_IZjWt3B6h1liRuKKAP6-KszLWOmFOJJzpyGZREe0T1hgpN6EyvG9Q8jNvJIAXeW3Z3Fs2R8vukw_toBkWRrn_cdFYPw-xHcZsOSyX-wa-_t-Bb8h2t9bfks3lfOXekcfmavljMT8Iy-oPEOBzOg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Cauchy-Kovalevskaya+theorem+for+Caputo+fractional+differential+equations&rft.jtitle=Physica.+D&rft.au=Jornet%2C+Marc&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=462&rft_id=info:doi/10.1016%2Fj.physd.2024.134139&rft.externalDocID=S0167278924000903
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon