A Hybrid Deep Contractive Autoencoder and Restricted Boltzmann Machine Approach to Differentiate Representation of Female Brain Disorder

Deep Learning approach dragged the full attention of researcher in medical images due to their superior literature reported success and promising directions. Concluding the most discriminative set of features greatly represents a valuable guide for achieving the satisfaction performance of a medical...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Procedia computer science Ročník 176; s. 1033 - 1042
Hlavní autori: M.Mahmoud, Abeer, Alrowais, Fadwa, Karamti, Hanen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 2020
Predmet:
ISSN:1877-0509, 1877-0509
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep Learning approach dragged the full attention of researcher in medical images due to their superior literature reported success and promising directions. Concluding the most discriminative set of features greatly represents a valuable guide for achieving the satisfaction performance of a medical diagnosing system. Despite, many methods proposed for such objective, the restricted Boltzmann machines outperform as they learn features directly from data, however they lack the optimal classification performance due to data complexity. Additionally, the contractive au-toencoder offers regularized term that explicitly increases the robustness of features representation and enhancement in overall performance. This paper proposes a novel deep learning framework for diagnosing female brain disorder from fMRI scans. The configuration combines the contractive autoencoder and the discriminative restricted Boltz-mann machine (DRBM) as we seek an improvement for the classification of fMRI. The demonstrated effectiveness of the contractive autoencoder supports fitting the probability distribution model of the DRBM and transfer learning to a deeper level. Our experimental indicates that the proposed model is able to detect female brain disorder with an accuracy of 88.17% and improved literature reported results on common issues.
AbstractList Deep Learning approach dragged the full attention of researcher in medical images due to their superior literature reported success and promising directions. Concluding the most discriminative set of features greatly represents a valuable guide for achieving the satisfaction performance of a medical diagnosing system. Despite, many methods proposed for such objective, the restricted Boltzmann machines outperform as they learn features directly from data, however they lack the optimal classification performance due to data complexity. Additionally, the contractive au-toencoder offers regularized term that explicitly increases the robustness of features representation and enhancement in overall performance. This paper proposes a novel deep learning framework for diagnosing female brain disorder from fMRI scans. The configuration combines the contractive autoencoder and the discriminative restricted Boltz-mann machine (DRBM) as we seek an improvement for the classification of fMRI. The demonstrated effectiveness of the contractive autoencoder supports fitting the probability distribution model of the DRBM and transfer learning to a deeper level. Our experimental indicates that the proposed model is able to detect female brain disorder with an accuracy of 88.17% and improved literature reported results on common issues.
Author Alrowais, Fadwa
Karamti, Hanen
M.Mahmoud, Abeer
Author_xml – sequence: 1
  givenname: Abeer
  surname: M.Mahmoud
  fullname: M.Mahmoud, Abeer
  email: abeer_f13@yahoo.com
  organization: Computer Sciences Department, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
– sequence: 2
  givenname: Fadwa
  surname: Alrowais
  fullname: Alrowais, Fadwa
  organization: Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, Saudi Arabia
– sequence: 3
  givenname: Hanen
  surname: Karamti
  fullname: Karamti, Hanen
  organization: Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, Saudi Arabia
BookMark eNqFkMtKQzEQhoNUsNY-gZu8QGty7lm46MVaQRFE1yEnmWDKaXJIYqE-gY9tal2ICx0G5g_MN5n5z9HAOgsIXVIypYRWV5tp750M04xkZEpYSnaChrSp6wkpCRv80GdoHMKGpMibhtF6iD5meL1vvVF4CdDjhbPRCxnNDvDsLTqw0inwWFiFnyBEb2QEheeui-9bYS1-EPLV2NTcpyWSxtHhpdEaPNhoRISE9R5CeolonMVO4xVsRQd47oWxqTk4n764QKdadAHG33WEXlY3z4v15P7x9m4xu5_IrMrZpCiVaEoNTNGGyLLWFWsLyapcNzrpgjSs1RXVNRFNIVpVVRlNSKszIkDqPB8hdpwrvQvBg-bSHFdLh5uOU8IPrvIN_3KVH1zlhKVkic1_sb03W-H3_1DXRwrSWTsDngdpkrGgjAcZuXLmT_4T8FOXxQ
CitedBy_id crossref_primary_10_1007_s13369_021_05674_9
Cites_doi 10.1109/CDC.2012.6427042
10.1038/mp.2013.78
10.1016/j.media.2016.08.003
10.1109/ISBI.2018.8363798
10.1016/j.jaac.2012.05.018
10.3389/fnins.2017.00460
10.5220/0009397605400547
10.1007/s40489-019-00158-x
10.1016/j.procs.2018.07.213
10.1109/TMI.2016.2553401
10.1007/s10803-008-0558-6
10.3389/fnhum.2013.00599
10.1007/978-3-030-00919-9_35
10.1007/s10278-018-0093-8
10.1109/BIBM.2018.8621472
10.1016/j.nicl.2017.08.017
10.1016/j.nicl.2014.12.013
10.1016/j.procs.2019.09.168
10.1017/S0954579408000370
10.1016/j.neuroimage.2014.03.048
10.1016/j.procs.2019.09.265
10.1007/978-3-030-00931-1_24
10.1016/j.neuroimage.2016.10.001
10.1038/ncomms15037
10.1137/130924688
10.1007/s11682-018-9899-8
10.1016/j.cortex.2014.08.011
10.1016/j.pnpbp.2015.06.014
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2020.09.099
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1042
ExternalDocumentID 10_1016_j_procs_2020_09_099
S1877050920319992
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c2639-45da85fe9d180c57f69b4c963f8ff694089bf61f70a84abd66215dabf20aecf33
ISSN 1877-0509
IngestDate Tue Nov 18 22:11:18 EST 2025
Sat Nov 29 06:55:49 EST 2025
Wed May 17 01:22:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Restricted Boltzmann Machine
Deep Learning
Contractive Autoencoder
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2639-45da85fe9d180c57f69b4c963f8ff694089bf61f70a84abd66215dabf20aecf33
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2020.09.099
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2020_09_099
crossref_primary_10_1016_j_procs_2020_09_099
elsevier_sciencedirect_doi_10_1016_j_procs_2020_09_099
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xi. Li, N. Dvornek, J. Zhuang, P. Ventolaz, and J. Duncan, (2018), "Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI". Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, MICCAI: Medical Image Computing and Computer Assisted Intervention, pp.206--214.
Xi. Li, N. Dvornek, J. Zhuang, L. Staib, P. Ventola, and J. Duncan, (2018), "2-Channel Convolutional 3d Deep Neural Network (2CC3D) For fMRI Analysis: ASD Classification and Feature Learning". IEEE 15th Int. Symposium on Biomedical Imaging (ISBI).
Rossi (bib4) 2019; vol.159
Hinton (bib16) 2012
Iidaka (bib22) 2015; vol.63
Heinsfeld, Franco, Buchweitz, Meneguzzi (bib18) 2018; 17
Dworzynski, Ronald, Bolton, Happe (bib10) 2012; vol.51
Hinton (bib19) 2010; 9
Hyde (bib21) 2019; 6
Ximenes, Fambrini, Goulart, Saito (bib24) 2019; vol.159
Friedman, Hastie, Tibshirani (bib14) 2001; volume 1
Martino (bib9) 2014; vol.19
Xing, X., Ji, J., and Yao, Y. (2018). "Convolutional neural network with element wise filters to extract hierarchical topo-logical features for brain networks," in IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM), pp.780--783.
Williams (bib31) 2008; vol.38
Li, Liu, Sun, Shen, Wang (bib23) 2018; vol.11046
Choi, H. (2017). "Functional connectivity patterns of autism spectrum disorder identified by deep feature Learning".
Dawson (bib11) 2008; vol.20
Greenspan, Summers, van Ginneken (bib17) 2016; 35
Plitt, Barnes, Martin (bib26) 2015; vol.7
Horikawa, Kamitani (bib20) 2017; 8
Guo, Dominick, Minai Li, Erickson, Lu (bib32) 2017; 11
Subbaraju, Suresh, Sundaram, Narasimhan (bib30) 2017; vol.35
Kim, Tagare (bib36) 2014; vol.7
Eickenberg, Gramfort, Varoquaux, Thirion (bib12) 2017; vol.152
Aghdam, Sharifi, Pedram (bib3) 2018; 31
S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio,(2011)," Contractive auto-encoders: Explicit invariance during feature extraction", in Proc. 28th Int.Conf.Machine Learning (ICML-11), pp.833--840.
Fenske, Zalenski, Krantz, McClannahan (bib13) 1985; vol.5
Zu, Gao, Munsell (bib6) 2018; vol.13
Alain, Bengio (bib15) 2014; 15
Hjelm (bib27) 2014; vol.96
Chen (bib7) 2016; vol.64
Schirru, A., Susto, G.A., Pampuri, S., McLoone, S., (2012). "Learning from time series: Supervised aggregative feature extraction", in: Decision and Control (CDC), IEEE 51st Annual Conf., pp.5254--5259.
Abeer M. Mahmoud, Hanen Karamti and Fadwa Alrowais,(2020) "An Effective Sparse Autoencoders Based Deep Learning Framework for fMRI Scans Classification", proceeding of 22nd international Conference of enterprise information systems (ICEIS) vol.1, pp.540--547.
Nielsen (bib25) 2013; vol.7
Hervella, Rouco, Novo, Ortega (bib5) 2018; vol.126
Abeer Mahmoud, Karamti, Alrowais, Hadjouni (bib1) 2020; 29
10.1016/j.procs.2020.09.099_bib2
Hjelm (10.1016/j.procs.2020.09.099_bib27) 2014; vol.96
Eickenberg (10.1016/j.procs.2020.09.099_bib12) 2017; vol.152
Plitt (10.1016/j.procs.2020.09.099_bib26) 2015; vol.7
Friedman (10.1016/j.procs.2020.09.099_bib14) 2001; volume 1
Aghdam (10.1016/j.procs.2020.09.099_bib3) 2018; 31
Nielsen (10.1016/j.procs.2020.09.099_bib25) 2013; vol.7
Guo (10.1016/j.procs.2020.09.099_bib32) 2017; 11
10.1016/j.procs.2020.09.099_bib35
Hinton (10.1016/j.procs.2020.09.099_bib16) 2012
10.1016/j.procs.2020.09.099_bib33
10.1016/j.procs.2020.09.099_bib34
Williams (10.1016/j.procs.2020.09.099_bib31) 2008; vol.38
Ximenes (10.1016/j.procs.2020.09.099_bib24) 2019; vol.159
Rossi (10.1016/j.procs.2020.09.099_bib4) 2019; vol.159
Hyde (10.1016/j.procs.2020.09.099_bib21) 2019; 6
Alain (10.1016/j.procs.2020.09.099_bib15) 2014; 15
Martino (10.1016/j.procs.2020.09.099_bib9) 2014; vol.19
Horikawa (10.1016/j.procs.2020.09.099_bib20) 2017; 8
10.1016/j.procs.2020.09.099_bib8
Dworzynski (10.1016/j.procs.2020.09.099_bib10) 2012; vol.51
Hervella (10.1016/j.procs.2020.09.099_bib5) 2018; vol.126
Zu (10.1016/j.procs.2020.09.099_bib6) 2018; vol.13
Chen (10.1016/j.procs.2020.09.099_bib7) 2016; vol.64
Kim (10.1016/j.procs.2020.09.099_bib36) 2014; vol.7
Li (10.1016/j.procs.2020.09.099_bib23) 2018; vol.11046
Hinton (10.1016/j.procs.2020.09.099_bib19) 2010; 9
Subbaraju (10.1016/j.procs.2020.09.099_bib30) 2017; vol.35
Iidaka (10.1016/j.procs.2020.09.099_bib22) 2015; vol.63
10.1016/j.procs.2020.09.099_bib28
10.1016/j.procs.2020.09.099_bib29
Abeer Mahmoud (10.1016/j.procs.2020.09.099_bib1) 2020; 29
Fenske (10.1016/j.procs.2020.09.099_bib13) 1985; vol.5
Greenspan (10.1016/j.procs.2020.09.099_bib17) 2016; 35
Heinsfeld (10.1016/j.procs.2020.09.099_bib18) 2018; 17
Dawson (10.1016/j.procs.2020.09.099_bib11) 2008; vol.20
References_xml – volume: vol.159
  start-page: 135
  year: 2019
  end-page: 144
  ident: bib24
  article-title: “Coffee Leaf Disease Recognition Based on Deep Learning and Texture Attributes”
  publication-title: Procedia Computer Science
– volume: vol.7
  start-page: 359
  year: 2015
  end-page: 366
  ident: bib26
  article-title: “Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards”
  publication-title: Neuroimage Clin.
– volume: volume 1
  year: 2001
  ident: bib14
  article-title: “The elements of statistical learning”
  publication-title: Springer series in statistics.
– volume: vol.63
  start-page: 55
  year: 2015
  end-page: 67
  ident: bib22
  article-title: “Resting state functional magnetic resonance imaging and neural network classified autism and control”
  publication-title: Cortex
– volume: vol.7
  start-page: 528
  year: 2014
  end-page: 557
  ident: bib36
  article-title: “Intensity Nonuniformity Correction for Brain MR Images with Known Voxel Classes”
  publication-title: SiAM 1. imaging Sci.
– volume: vol.64
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib7
  article-title: “Multivariate classification of autism spectrum disorder using frequency specific resting-state functional connectivity a multi-center study”
  publication-title: Prog. Neuro-psychopharmacol. Biol. Psychiatry.
– reference: S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio,(2011)," Contractive auto-encoders: Explicit invariance during feature extraction", in Proc. 28th Int.Conf.Machine Learning (ICML-11), pp.833--840.
– volume: vol.38
  start-page: 1731
  year: 2008
  end-page: 1739
  ident: bib31
  article-title: “ The childhood autism spectrum test (cast): sex differences”
  publication-title: J. Autism Dev. Disord.
– volume: vol.7
  start-page: 599
  year: 2013
  ident: bib25
  article-title: “ Multisite functional connectivity MRI classification of autism: ABIDE results”
  publication-title: Front. Hum. Neurosci.
– volume: vol.19
  start-page: 659
  year: 2014
  end-page: 667
  ident: bib9
  article-title: “The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism”
  publication-title: Mol. Psychiatry
– volume: 15
  start-page: 3563
  year: 2014
  end-page: 3593
  ident: bib15
  article-title: “ What regularized auto-encoders learn from the data-generating distribution”
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 3111
  year: 2020
  end-page: 3123
  ident: bib1
  article-title: “Effective Health Care Analytics & Diagnosing using Artificial intelligence Approaches”
  publication-title: International Journal of Advanced Science and Technology
– volume: 8
  start-page: 15037
  year: 2017
  ident: bib20
  article-title: “Generic decoding of seen and imagined objects using hierarchical visual features”
  publication-title: Nat Commun
– reference: Schirru, A., Susto, G.A., Pampuri, S., McLoone, S., (2012). "Learning from time series: Supervised aggregative feature extraction", in: Decision and Control (CDC), IEEE 51st Annual Conf., pp.5254--5259.
– volume: vol.152
  start-page: 184
  year: 2017
  end-page: 194
  ident: bib12
  article-title: “ Seeing it all: convolutional network layers map the function of the human visual system”
  publication-title: NeuroImage
– reference: Xi. Li, N. Dvornek, J. Zhuang, L. Staib, P. Ventola, and J. Duncan, (2018), "2-Channel Convolutional 3d Deep Neural Network (2CC3D) For fMRI Analysis: ASD Classification and Feature Learning". IEEE 15th Int. Symposium on Biomedical Imaging (ISBI).
– start-page: 599
  year: 2012
  end-page: 619
  ident: bib16
  article-title: “A practical guide to training restricted Boltzmann machines”
  publication-title: in Neural Networks
– volume: 6
  start-page: 1
  year: 2019
  end-page: 19
  ident: bib21
  article-title: “ Applications of supervised machine learning in autism spectrum disorder research: a review”
  publication-title: Rev. J. Autism Develop. Disord
– volume: 35
  start-page: 1153
  year: 2016
  end-page: 1159
  ident: bib17
  article-title: “Deep learning in medical imaging: Overview and future promise of an exciting new technique”
  publication-title: IEEE Trans Med Imaging
– reference: Choi, H. (2017). "Functional connectivity patterns of autism spectrum disorder identified by deep feature Learning".
– volume: vol.159
  start-page: 981
  year: 2019
  end-page: 989
  ident: bib4
  article-title: “Analysis of brain NMR images for age estimation with deep learning”
  publication-title: Procedia Computer Science
– volume: 9
  start-page: 926
  year: 2010
  ident: bib19
  article-title: “A practical guide to training restricted Boltzmann machines”
  publication-title: Momentum
– reference: Xing, X., Ji, J., and Yao, Y. (2018). "Convolutional neural network with element wise filters to extract hierarchical topo-logical features for brain networks," in IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM), pp.780--783.
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: bib18
  article-title: “Identification of autism spectrum disorder using deep learning and the ABIDE dataset”
  publication-title: Neuroimage Clin.
– volume: vol.35
  start-page: 375
  year: 2017
  end-page: 389
  ident: bib30
  article-title: “Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: a spatial filtering approach”
  publication-title: Medical Image Analysis.
– volume: 11
  year: 2017
  ident: bib32
  article-title: “Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method”
  publication-title: Front. Neurosci.
– volume: vol.96
  start-page: 245
  year: 2014
  end-page: 260
  ident: bib27
  article-title: “Restricted Boltzmann machines for neuroimaging: An application in identifying intrinsic networks”
  publication-title: NeuroImage
– volume: vol.5
  start-page: 49
  year: 1985
  end-page: 58
  ident: bib13
  article-title: “Age at intervention and treatment outcome for autistic children in a comprehensive intervention program”
  publication-title: Anal. Interv. Dev. Disabil.
– volume: vol.13
  start-page: 879
  year: 2018
  end-page: 892
  ident: bib6
  article-title: “ Identifying disease-related sub-network connectome biomarkers by sparse hyper-graph learning”
  publication-title: Brain Imaging and Behavior
– volume: vol.11046
  start-page: 303
  year: 2018
  end-page: 309
  ident: bib23
  article-title: “Early diagnosis of autism disease by multi-channel CNNs”
  publication-title: Mach. Learn. Med. Imaging
– volume: vol.126
  start-page: 97
  year: 2018
  end-page: 104
  ident: bib5
  article-title: “Multimodal registration of retinal images using domain-specific landmarks and vessel enhancement”
  publication-title: Procedia Computer Science
– volume: vol.51
  start-page: 788
  year: 2012
  end-page: 797
  ident: bib10
  article-title: “ How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders”
  publication-title: J.Am. Acad. Child Adolesc. Psychiatry
– volume: vol.20
  start-page: 775
  year: 2008
  ident: bib11
  article-title: “Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder”
  publication-title: Dev. Psychopathol.
– reference: Xi. Li, N. Dvornek, J. Zhuang, P. Ventolaz, and J. Duncan, (2018), "Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI". Int. Conf. on Medical Image Computing and Computer-Assisted Intervention, MICCAI: Medical Image Computing and Computer Assisted Intervention, pp.206--214.
– reference: Abeer M. Mahmoud, Hanen Karamti and Fadwa Alrowais,(2020) "An Effective Sparse Autoencoders Based Deep Learning Framework for fMRI Scans Classification", proceeding of 22nd international Conference of enterprise information systems (ICEIS) vol.1, pp.540--547.
– volume: 31
  start-page: 895
  year: 2018
  end-page: 903
  ident: bib3
  article-title: “Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network”
  publication-title: J. Digit. Imaging
– volume: 29
  start-page: 3111
  issue: no. 5
  year: 2020
  ident: 10.1016/j.procs.2020.09.099_bib1
  article-title: “Effective Health Care Analytics & Diagnosing using Artificial intelligence Approaches”
  publication-title: International Journal of Advanced Science and Technology
– volume: 15
  start-page: 3563
  issue: no. 1
  year: 2014
  ident: 10.1016/j.procs.2020.09.099_bib15
  article-title: “ What regularized auto-encoders learn from the data-generating distribution”
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.procs.2020.09.099_bib29
  doi: 10.1109/CDC.2012.6427042
– volume: vol.19
  start-page: 659
  year: 2014
  ident: 10.1016/j.procs.2020.09.099_bib9
  article-title: “The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism”
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2013.78
– volume: vol.35
  start-page: 375
  year: 2017
  ident: 10.1016/j.procs.2020.09.099_bib30
  article-title: “Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: a spatial filtering approach”
  publication-title: Medical Image Analysis.
  doi: 10.1016/j.media.2016.08.003
– ident: 10.1016/j.procs.2020.09.099_bib34
  doi: 10.1109/ISBI.2018.8363798
– volume: vol.51
  start-page: 788
  year: 2012
  ident: 10.1016/j.procs.2020.09.099_bib10
  article-title: “ How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders”
  publication-title: J.Am. Acad. Child Adolesc. Psychiatry
  doi: 10.1016/j.jaac.2012.05.018
– volume: 11
  year: 2017
  ident: 10.1016/j.procs.2020.09.099_bib32
  article-title: “Diagnosing Autism Spectrum Disorder from Brain Resting-State Functional Connectivity Patterns Using a Deep Neural Network with a Novel Feature Selection Method”
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00460
– volume: vol.5
  start-page: 49
  year: 1985
  ident: 10.1016/j.procs.2020.09.099_bib13
  article-title: “Age at intervention and treatment outcome for autistic children in a comprehensive intervention program”
  publication-title: Anal. Interv. Dev. Disabil.
– ident: 10.1016/j.procs.2020.09.099_bib28
– ident: 10.1016/j.procs.2020.09.099_bib2
  doi: 10.5220/0009397605400547
– volume: 6
  start-page: 1
  year: 2019
  ident: 10.1016/j.procs.2020.09.099_bib21
  article-title: “ Applications of supervised machine learning in autism spectrum disorder research: a review”
  publication-title: Rev. J. Autism Develop. Disord
  doi: 10.1007/s40489-019-00158-x
– volume: vol.126
  start-page: 97
  year: 2018
  ident: 10.1016/j.procs.2020.09.099_bib5
  article-title: “Multimodal registration of retinal images using domain-specific landmarks and vessel enhancement”
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2018.07.213
– volume: 35
  start-page: 1153
  issue: 5
  year: 2016
  ident: 10.1016/j.procs.2020.09.099_bib17
  article-title: “Deep learning in medical imaging: Overview and future promise of an exciting new technique”
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2553401
– volume: vol.38
  start-page: 1731
  year: 2008
  ident: 10.1016/j.procs.2020.09.099_bib31
  article-title: “ The childhood autism spectrum test (cast): sex differences”
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-008-0558-6
– volume: vol.7
  start-page: 599
  year: 2013
  ident: 10.1016/j.procs.2020.09.099_bib25
  article-title: “ Multisite functional connectivity MRI classification of autism: ABIDE results”
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2013.00599
– volume: 9
  start-page: 926
  issue: 1
  year: 2010
  ident: 10.1016/j.procs.2020.09.099_bib19
  article-title: “A practical guide to training restricted Boltzmann machines”
  publication-title: Momentum
– volume: vol.11046
  start-page: 303
  year: 2018
  ident: 10.1016/j.procs.2020.09.099_bib23
  article-title: “Early diagnosis of autism disease by multi-channel CNNs”
  publication-title: Mach. Learn. Med. Imaging
  doi: 10.1007/978-3-030-00919-9_35
– volume: 31
  start-page: 895
  year: 2018
  ident: 10.1016/j.procs.2020.09.099_bib3
  article-title: “Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network”
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-018-0093-8
– ident: 10.1016/j.procs.2020.09.099_bib35
  doi: 10.1109/BIBM.2018.8621472
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.procs.2020.09.099_bib18
  article-title: “Identification of autism spectrum disorder using deep learning and the ABIDE dataset”
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2017.08.017
– volume: vol.7
  start-page: 359
  year: 2015
  ident: 10.1016/j.procs.2020.09.099_bib26
  article-title: “Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards”
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.12.013
– volume: vol.159
  start-page: 135
  year: 2019
  ident: 10.1016/j.procs.2020.09.099_bib24
  article-title: “Coffee Leaf Disease Recognition Based on Deep Learning and Texture Attributes”
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.09.168
– volume: volume 1
  year: 2001
  ident: 10.1016/j.procs.2020.09.099_bib14
  article-title: “The elements of statistical learning”
  publication-title: Springer series in statistics.
– volume: vol.20
  start-page: 775
  year: 2008
  ident: 10.1016/j.procs.2020.09.099_bib11
  article-title: “Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder”
  publication-title: Dev. Psychopathol.
  doi: 10.1017/S0954579408000370
– ident: 10.1016/j.procs.2020.09.099_bib8
– volume: vol.96
  start-page: 245
  year: 2014
  ident: 10.1016/j.procs.2020.09.099_bib27
  article-title: “Restricted Boltzmann machines for neuroimaging: An application in identifying intrinsic networks”
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.048
– volume: vol.159
  start-page: 981
  year: 2019
  ident: 10.1016/j.procs.2020.09.099_bib4
  article-title: “Analysis of brain NMR images for age estimation with deep learning”
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.09.265
– start-page: 599
  year: 2012
  ident: 10.1016/j.procs.2020.09.099_bib16
  article-title: “A practical guide to training restricted Boltzmann machines”
  publication-title: in Neural Networks
– ident: 10.1016/j.procs.2020.09.099_bib33
  doi: 10.1007/978-3-030-00931-1_24
– volume: vol.152
  start-page: 184
  year: 2017
  ident: 10.1016/j.procs.2020.09.099_bib12
  article-title: “ Seeing it all: convolutional network layers map the function of the human visual system”
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.001
– volume: 8
  start-page: 15037
  year: 2017
  ident: 10.1016/j.procs.2020.09.099_bib20
  article-title: “Generic decoding of seen and imagined objects using hierarchical visual features”
  publication-title: Nat Commun
  doi: 10.1038/ncomms15037
– volume: vol.7
  start-page: 528
  issue: no.1
  year: 2014
  ident: 10.1016/j.procs.2020.09.099_bib36
  article-title: “Intensity Nonuniformity Correction for Brain MR Images with Known Voxel Classes”
  publication-title: SiAM 1. imaging Sci.
  doi: 10.1137/130924688
– volume: vol.13
  start-page: 879
  issue: 4
  year: 2018
  ident: 10.1016/j.procs.2020.09.099_bib6
  article-title: “ Identifying disease-related sub-network connectome biomarkers by sparse hyper-graph learning”
  publication-title: Brain Imaging and Behavior
  doi: 10.1007/s11682-018-9899-8
– volume: vol.63
  start-page: 55
  year: 2015
  ident: 10.1016/j.procs.2020.09.099_bib22
  article-title: “Resting state functional magnetic resonance imaging and neural network classified autism and control”
  publication-title: Cortex
  doi: 10.1016/j.cortex.2014.08.011
– volume: vol.64
  start-page: 1
  year: 2016
  ident: 10.1016/j.procs.2020.09.099_bib7
  article-title: “Multivariate classification of autism spectrum disorder using frequency specific resting-state functional connectivity a multi-center study”
  publication-title: Prog. Neuro-psychopharmacol. Biol. Psychiatry.
  doi: 10.1016/j.pnpbp.2015.06.014
SSID ssj0000388917
Score 2.211495
Snippet Deep Learning approach dragged the full attention of researcher in medical images due to their superior literature reported success and promising directions....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1033
SubjectTerms Contractive Autoencoder
Deep Learning
Restricted Boltzmann Machine
Title A Hybrid Deep Contractive Autoencoder and Restricted Boltzmann Machine Approach to Differentiate Representation of Female Brain Disorder
URI https://dx.doi.org/10.1016/j.procs.2020.09.099
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZh20MvfZduty069Ja6OIpjSUf3EQKlS6Fb2JuRbYndJbFN6mS3e-i5f6T_szOS_Fg2LG2hEIwjIitkvsyMxHzfEPJqqqZGZGoSMG5gg6LZNBCxFMEMcl2pdBZpZWyzCX54KI6P5efR6FfLhdkueVmKiwtZ_1dTwxgYG6mzf2Hu7qEwAPdgdLiC2eH6R4ZPxovvSMMCV6JrZPQ1lgi11eNk01SoW4nyEY6XiE07csw531bL5nKlyhI7EZ1g5pnUPdnqve-iAt6gwT4Pdc9ZstnmXK8gzgBO1GnZ6XkO015LRwAk2gp2bCIx9pG3s_ebT-pkVW3cKXem-5rhZLmuzpVTQpir4rwLIx_VWq1cMcJClZ7R5s8vWNgfp12j1FgPLDgPUJTGBagdY63b5kPHOwmdnoYP4rDJZDsDhDurOMPwlKNaOwutzK2UfTzsqhS_4Lq4LEOql5QQ6W8xDjswrBD90R_loaCOtL2duy_a6lvZSsJra-3OgQZ5zdF9ctdvSGjigPSAjHT5kNxrm31Q7_sfkZ8JdbiiiCs6wBUd4IoCrmiPK9rhinpc0RZXtKnoFVzRq7iilaEOV9Tiira4eky-zj8cvVsEvo1HkLMY6wxmhRJY01hMRJjPuIllFuXg-I0wcB-FQmYmnhgeKhGprIhjSEMLlRkWKp2b6fQJ2SurUj8lVBhwIRnLcBMTxZqrQmRYxjDjMA9stU9Y-8Omude4x1Yry7QtZjxLrTVStEYaSnjJffK6m1Q7iZebPx63Fkv9f8Vlnylg7KaJz_514gG5g-_cwd9zstesN_oFuZ1vm9Nv65cWi78BTLi8-A
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Deep+Contractive+Autoencoder+and+Restricted+Boltzmann+Machine+Approach+to+Differentiate+Representation+of+Female+Brain+Disorder&rft.jtitle=Procedia+computer+science&rft.au=M.Mahmoud%2C+Abeer&rft.au=Alrowais%2C+Fadwa&rft.au=Karamti%2C+Hanen&rft.date=2020&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=176&rft.spage=1033&rft.epage=1042&rft_id=info:doi/10.1016%2Fj.procs.2020.09.099&rft.externalDocID=S1877050920319992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon