A Novel Two-Dimensional Tensor Sparse Coding Algorithm for Image Representation

Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional sparse coding vectorizes the input images, which breaks apart the local proximity of pixels and destructs the elementary objects of images. In this paper,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 131; s. 234 - 242
Hlavní autoři: Lu, Jiaren, Jiang, Fei, Shen, Ruimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2018
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional sparse coding vectorizes the input images, which breaks apart the local proximity of pixels and destructs the elementary objects of images. In this paper, we propose a novel two-dimensional sparse coding (2DSC) model that represents gray images as the tensor-linear combinations under a novel algebraic framework. 2DSC learns much more concise dictionaries because of the circular convolution operator, since the shifted versions of the learned atoms by conventional SC is treated the same. We apply 2DSC to natural images and demonstrate that 2DSC returns meaningful dictionaries for large patches, which is not true for conventional SC.
AbstractList Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional sparse coding vectorizes the input images, which breaks apart the local proximity of pixels and destructs the elementary objects of images. In this paper, we propose a novel two-dimensional sparse coding (2DSC) model that represents gray images as the tensor-linear combinations under a novel algebraic framework. 2DSC learns much more concise dictionaries because of the circular convolution operator, since the shifted versions of the learned atoms by conventional SC is treated the same. We apply 2DSC to natural images and demonstrate that 2DSC returns meaningful dictionaries for large patches, which is not true for conventional SC.
Author Jiang, Fei
Lu, Jiaren
Shen, Ruimin
Author_xml – sequence: 1
  givenname: Jiaren
  surname: Lu
  fullname: Lu, Jiaren
  organization: Shanghai Jiao Tong University, No.800 Dongchuan RD, Shanghai 200240, China
– sequence: 2
  givenname: Fei
  surname: Jiang
  fullname: Jiang, Fei
  organization: Shanghai Jiao Tong University, No.800 Dongchuan RD, Shanghai 200240, China
– sequence: 3
  givenname: Ruimin
  surname: Shen
  fullname: Shen, Ruimin
  email: rmshen@sjtu.edu.cn
  organization: Shanghai Jiao Tong University, No.800 Dongchuan RD, Shanghai 200240, China
BookMark eNqFkE1OwzAQhS1UJErpCdjkAgn-aWJ7waIqUCpVVIKythxnUlwlcWRHRdwel7JALGA2741G32jmXaJR5zpA6JrgjGBS3Oyz3jsTMoqJyPAsqjhDYyI4T3GO5eiHv0DTEPY4FhNCEj5Gm3ny5A7QJNt3l97ZFrpgXadjH53zyUuvfYBk4Srb7ZJ5s3PeDm9tUsfZqtU7SJ6h9xCgG_QQySt0XusmwPRbJ-j14X67eEzXm-VqMV-nhhZMpMBBFozWBeW8opJUTOqa1bTEOZFQVqWYSVHrPKcl0FILwnTJGSa6yJnhWrIJYqe9xrsQPNSq97bV_kMRrI6xqL36ikUdY1F4FlVESv6ijD3dPXhtm3_Y2xML8a2DBa-CsdAZqKwHM6jK2T_5Tzi1gbg
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2910212
Cites_doi 10.1109/TIP.2016.2542360
10.1109/TIT.2011.2173241
10.1109/CVPR.2013.57
10.1109/ICIP.2013.6738064
10.1109/CVPR.2016.629
10.1137/110837711
10.1109/ICME.2017.8019522
10.1109/TIP.2006.881969
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2018.04.208
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 242
ExternalDocumentID 10_1016_j_procs_2018_04_208
S1877050918305830
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c2638-e7e9632f6277d291d39af3f2b0519ebdb8498fa552be2ba813ab7301a653c7a93
ISSN 1877-0509
IngestDate Sat Nov 29 04:09:53 EST 2025
Tue Nov 18 22:36:27 EST 2025
Tue May 16 23:59:31 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sparse Coding
Tensor-linear Combination
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2638-e7e9632f6277d291d39af3f2b0519ebdb8498fa552be2ba813ab7301a653c7a93
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2018.04.208
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_procs_2018_04_208
crossref_citationtrail_10_1016_j_procs_2018_04_208
elsevier_sciencedirect_doi_10_1016_j_procs_2018_04_208
PublicationCentury 2000
PublicationDate 2018
2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dong, Fu, Shi, Cao, Wu, Li, Li (bib0003) 2016; 25
Donoho, Tsaig, Drori, Starck (bib0004) 2012; 58
Kim, Lee, Lebanon, Park (bib0008) 2015
Quan Y, Xu Y, Sun Y, Huang Y, and Ji H. 2016. Sparse coding for classification via discrimination ensemble. In
Jiang F, Liu X. Y, Lu H, and Shen R. 2017. Graph regularized tensor sparse coding for image representation.
Lee, Battle, Raina, Ng (bib0009) 2007
Kilmer, Braman, Hao, Hoover (bib0007) 2013; 34
2828-2834.
Qi, Shi, Sun, Yin (bib00012) 2016
Elad, Aharon (bib0005) 2006; 15
.
Heide, Heidrich, Wetzstein (bib0006) 2015
1-6. IEEE.
Bristow, Eriksson, Lucey (bib0002) 2013
Qi N, Shi Y, Sun X, Wang J, and Yin B. 2013. Two dimensional synthesis sparse model. In 2013
Lu Z, Gao X, Wang L, Wen J.-R, and Huang S. 2015. Noise-robust semi-supervised learning by large-scale sparse coding. In
Ayyala D. N. 2008. Least angle regression. LARS 2:23.
5839-5847.
Donoho (10.1016/j.procs.2018.04.208_bib0004) 2012; 58
Heide (10.1016/j.procs.2018.04.208_bib0006) 2015
Bristow (10.1016/j.procs.2018.04.208_bib0002) 2013
10.1016/j.procs.2018.04.208_bib00011
10.1016/j.procs.2018.04.208_bib0001
10.1016/j.procs.2018.04.208_bib00013
10.1016/j.procs.2018.04.208_bib00014
Elad (10.1016/j.procs.2018.04.208_bib0005) 2006; 15
10.1016/j.procs.2018.04.208_bib00010
Dong (10.1016/j.procs.2018.04.208_bib0003) 2016; 25
Kilmer (10.1016/j.procs.2018.04.208_bib0007) 2013; 34
Qi (10.1016/j.procs.2018.04.208_bib00012) 2016
Lee (10.1016/j.procs.2018.04.208_bib0009) 2007
Kim (10.1016/j.procs.2018.04.208_bib0008) 2015
References_xml – volume: 34
  start-page: 148
  year: 2013
  end-page: 172
  ident: bib0007
  article-title: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging
  publication-title: SIAM Journal on Matrix Analysis and Applications
– volume: 58
  start-page: 1094
  year: 2012
  end-page: 1121
  ident: bib0004
  article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit
  publication-title: IEEE Transactions on Information Theory
– start-page: 5916
  year: 2016
  end-page: 5925
  ident: bib00012
  article-title: Tensr: Multidimensional tensor sparse representation.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 5135
  year: 2015
  end-page: 5143
  ident: bib0006
  article-title: Fast and flexible convolutional sparse coding. In 2015
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 801
  year: 2007
  end-page: 808
  ident: bib0009
  article-title: Efficient sparse coding algorithms.
  publication-title: Advances in neural information processing systems
– reference: Qi N, Shi Y, Sun X, Wang J, and Yin B. 2013. Two dimensional synthesis sparse model. In 2013
– reference: .
– reference: , 5839-5847.
– reference: Quan Y, Xu Y, Sun Y, Huang Y, and Ji H. 2016. Sparse coding for classification via discrimination ensemble. In
– volume: 15
  start-page: 3736
  year: 2006
  end-page: 3745
  ident: bib0005
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Transactions on Image Processing
– start-page: 391
  year: 2013
  end-page: 398
  ident: bib0002
  article-title: Fast convolutional sparse coding.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 25
  start-page: 2337
  year: 2016
  end-page: 2352
  ident: bib0003
  article-title: Hyperspectral image super-resolution via non-negative structured sparse representation
  publication-title: IEEE Transactions on Image Processing
– reference: Jiang F, Liu X. Y, Lu H, and Shen R. 2017. Graph regularized tensor sparse coding for image representation.
– reference: , 2828-2834.
– reference: , 1-6. IEEE.
– reference: Ayyala D. N. 2008. Least angle regression. LARS 2:23.
– reference: Lu Z, Gao X, Wang L, Wen J.-R, and Huang S. 2015. Noise-robust semi-supervised learning by large-scale sparse coding. In
– start-page: 2260
  year: 2015
  end-page: 2266
  ident: bib0008
  article-title: Local context sparse coding.
  publication-title: AAAI
– volume: 25
  start-page: 2337
  issue: 5
  year: 2016
  ident: 10.1016/j.procs.2018.04.208_bib0003
  article-title: Hyperspectral image super-resolution via non-negative structured sparse representation
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2016.2542360
– ident: 10.1016/j.procs.2018.04.208_bib00010
– ident: 10.1016/j.procs.2018.04.208_bib0001
– volume: 58
  start-page: 1094
  issue: 2
  year: 2012
  ident: 10.1016/j.procs.2018.04.208_bib0004
  article-title: Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2011.2173241
– start-page: 801
  year: 2007
  ident: 10.1016/j.procs.2018.04.208_bib0009
  article-title: Efficient sparse coding algorithms.
  publication-title: Advances in neural information processing systems
– start-page: 5135
  year: 2015
  ident: 10.1016/j.procs.2018.04.208_bib0006
  article-title: Fast and flexible convolutional sparse coding. In 2015
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 391
  year: 2013
  ident: 10.1016/j.procs.2018.04.208_bib0002
  article-title: Fast convolutional sparse coding.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2013.57
– start-page: 2260
  year: 2015
  ident: 10.1016/j.procs.2018.04.208_bib0008
  article-title: Local context sparse coding.
  publication-title: AAAI
– ident: 10.1016/j.procs.2018.04.208_bib00011
  doi: 10.1109/ICIP.2013.6738064
– ident: 10.1016/j.procs.2018.04.208_bib00013
  doi: 10.1109/CVPR.2016.629
– volume: 34
  start-page: 148
  issue: 1
  year: 2013
  ident: 10.1016/j.procs.2018.04.208_bib0007
  article-title: Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging
  publication-title: SIAM Journal on Matrix Analysis and Applications
  doi: 10.1137/110837711
– start-page: 5916
  year: 2016
  ident: 10.1016/j.procs.2018.04.208_bib00012
  article-title: Tensr: Multidimensional tensor sparse representation.
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: 10.1016/j.procs.2018.04.208_bib00014
  doi: 10.1109/ICME.2017.8019522
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  ident: 10.1016/j.procs.2018.04.208_bib0005
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2006.881969
SSID ssj0000388917
Score 2.0929182
Snippet Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional sparse coding...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 234
SubjectTerms Sparse Coding
Tensor-linear Combination
Title A Novel Two-Dimensional Tensor Sparse Coding Algorithm for Image Representation
URI https://dx.doi.org/10.1016/j.procs.2018.04.208
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfG4MCFb8TYQD7sFiyldlI7x2psgktBW5F2i-KPQKcuqbp27MTfznu2k3XrNAESh6aJVceV30-_9_z0PgjZB5VmrBSODZ3TLLNpzXRmLKvlwGS1McaK2jebkOOxOj0tvsZQ3gvfTkA2jbq6Kub_VdQwBsLG1Nm_EHf_UhiAexA6XEHscP0jwY-ScXvpZsnkZ8s-Yu3-UHcjmcBdu0hO5nCUxV51PptlNPveLqbLH-c-3PDzOUbwHPvg2JiT1Kxbrz6rAADlA9GxF0QSFWgf1rPyqJiuZ5jBU-CTIzft_TkxJ-R4hU3F1j0PkSa9I2wjGcZzp5KSYTmZoFruGOsIN_J-pMzozAzal4daWxvEHnwMZ6hWDFZZHyisUMtTda3H-ujCE1wVFwW6SnP4PCAPuYSTE0Z2_rp2wWEhnML3ZO7_ZleXykcAbqx1t-2yZo9MnpEn8SBBRwEAz8mWa16Qp12TDho5-yX5MqIeD_QWHmjAAw14oAEPtMcDBTxQjwd6Ew-vyLejw8nBJxa7aDDDgVyZkw5IltdDLqXlxcCKoqpFzTUa705brbJC1VWec-24rtRAVBppvxrmwsiqEK_JdtM27g2hQuau4k6IwlgsMgqU7SqHR2KV5trmO4R3-1OaWGIeO53Myi6W8Kz0m1rippZpBt9qh3zoJ81DhZX7fz7sNr6MGA_GXwlQuW_i23-duEse41Pwu-2R7eVi5d6RR-ZyOb1YvPeQ-g3tpI1f
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Two-Dimensional+Tensor+Sparse+Coding+Algorithm+for+Image+Representation&rft.jtitle=Procedia+computer+science&rft.au=Lu%2C+Jiaren&rft.au=Jiang%2C+Fei&rft.au=Shen%2C+Ruimin&rft.date=2018&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=131&rft.spage=234&rft.epage=242&rft_id=info:doi/10.1016%2Fj.procs.2018.04.208&rft.externalDocID=S1877050918305830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon