A Novel Two-Dimensional Tensor Sparse Coding Algorithm for Image Representation

Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional sparse coding vectorizes the input images, which breaks apart the local proximity of pixels and destructs the elementary objects of images. In this paper,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 131; s. 234 - 242
Hlavní autoři: Lu, Jiaren, Jiang, Fei, Shen, Ruimin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2018
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Sparse coding (SC) is an automatic feature extraction and selection technique that is widely used in unsupervised learning. However, conventional sparse coding vectorizes the input images, which breaks apart the local proximity of pixels and destructs the elementary objects of images. In this paper, we propose a novel two-dimensional sparse coding (2DSC) model that represents gray images as the tensor-linear combinations under a novel algebraic framework. 2DSC learns much more concise dictionaries because of the circular convolution operator, since the shifted versions of the learned atoms by conventional SC is treated the same. We apply 2DSC to natural images and demonstrate that 2DSC returns meaningful dictionaries for large patches, which is not true for conventional SC.
ISSN:1877-0509
1877-0509
DOI:10.1016/j.procs.2018.04.208