A Hybrid DL Architecture for Improved Generalizability with Self-Adaptive Jaya Optimizer for Diabetic Retinopathy
Anomalies such as microaneurysms, exudates, and hemorrhages are diagnosed by retinal vessel segmentation to identify different phases of Diabetic Retinopathy (DR); several typical ways to detect Hard Exudates (HE) in retinal images have been used to determine the severity of diabetes. This work prop...
Saved in:
| Published in: | Procedia computer science Vol. 235; pp. 2090 - 2100 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
2024
|
| Subjects: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Anomalies such as microaneurysms, exudates, and hemorrhages are diagnosed by retinal vessel segmentation to identify different phases of Diabetic Retinopathy (DR); several typical ways to detect Hard Exudates (HE) in retinal images have been used to determine the severity of diabetes. This work proposes a hybrid approach to better segment such abnormal cells. It optimizes the learning parameters of a Convolutional Neural Network (CNN) with a nature-inspired optimizer, the Self-Adaptive Jaya Optimization Algorithm (SAJOA). The SAJOA helps in avoiding trapping in local minima. It uses the SAJOA to steer the search for obtaining near-optimal parameter values for the CNN training. We choose the learning parameters such as batch size, dropout rate, learning rate, etc. The batch size affects the batch normalization performance, and the dropout rate involves the regularization property of the model. The near-optimal values of these two parameters help improve the generalization ability of the deep learning architecture. Thus, this hybrid approach improves the CNN performance and generalizability, leading to precise segmentation of unseen data, which aids in diagnosing diabetic retinopathy. The results of many trials were evaluated against the DRIVE dataset; the proposed method achieved accuracy and F1 score on average, higher by 7 to 8% than the state-of-the-art methods. |
|---|---|
| AbstractList | Anomalies such as microaneurysms, exudates, and hemorrhages are diagnosed by retinal vessel segmentation to identify different phases of Diabetic Retinopathy (DR); several typical ways to detect Hard Exudates (HE) in retinal images have been used to determine the severity of diabetes. This work proposes a hybrid approach to better segment such abnormal cells. It optimizes the learning parameters of a Convolutional Neural Network (CNN) with a nature-inspired optimizer, the Self-Adaptive Jaya Optimization Algorithm (SAJOA). The SAJOA helps in avoiding trapping in local minima. It uses the SAJOA to steer the search for obtaining near-optimal parameter values for the CNN training. We choose the learning parameters such as batch size, dropout rate, learning rate, etc. The batch size affects the batch normalization performance, and the dropout rate involves the regularization property of the model. The near-optimal values of these two parameters help improve the generalization ability of the deep learning architecture. Thus, this hybrid approach improves the CNN performance and generalizability, leading to precise segmentation of unseen data, which aids in diagnosing diabetic retinopathy. The results of many trials were evaluated against the DRIVE dataset; the proposed method achieved accuracy and F1 score on average, higher by 7 to 8% than the state-of-the-art methods. |
| Author | Rawat, Akhilesh Kumar, Rajeev |
| Author_xml | – sequence: 1 givenname: Akhilesh surname: Rawat fullname: Rawat, Akhilesh organization: Data to Knowledge (D2K) Lab, School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India – sequence: 2 givenname: Rajeev surname: Kumar fullname: Kumar, Rajeev email: rajeevkumar.cse@gmail.com organization: Data to Knowledge (D2K) Lab, School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, 110 067, India |
| BookMark | eNqFkMtuwjAQRa2KSqWUL-jGP5DUxglxFl2gPqmQkPpYW4MzEYNCQh2XKnx9DXRRddHOYuZuzpXmnLNe3dTI2KUUsRRyfLWKN66xbTwSoyQWSSxzfcL6UmdZJFKR937kMzZs25UIo7TOZdZn7xP-2C0cFfx2xifOLsmj9R8Oedk4Pl2H6i0W_AFrdFDRDhZUke_4J_klf8GqjCYFbDxtkT9BB3we8pp26A78LcECPVn-HHbdbMAvuwt2WkLV4vD7Dtjb_d3rzWM0mz9MbyazyI7GSkdpmgAqbZM8SbNMliqDVCy0tWmuRDmCXOQ2HD3WqNNSobZaIiBkAqTSmVADlh97rWva1mFpLHnw1NTeAVVGCrPXZ1bmoM_s9RmRmKAvsOoXu3G0Btf9Q10fKQxvbQmdaS1hbbEgF6SaoqE_-S_pV44o |
| CitedBy_id | crossref_primary_10_1093_ijlct_ctae211 crossref_primary_10_1038_s41598_024_80888_z |
| Cites_doi | 10.1016/j.imu.2020.100377 10.1016/j.bspc.2023.105195 10.1016/j.procs.2019.05.028 10.1016/j.eswa.2022.119269 10.1016/j.advengsoft.2013.12.007 10.1016/j.compbiomed.2021.104688 10.1016/j.swevo.2020.100794 10.1016/j.asoc.2012.06.021 10.1142/S0219649223500107 10.1016/j.advengsoft.2017.01.004 10.1007/s00521-020-04789-8 10.1016/j.cor.2011.09.026 10.1016/j.energy.2022.125961 10.1016/j.ejca.2021.06.047 10.1016/j.inpa.2019.09.002 10.1016/j.asoc.2011.05.047 10.1109/ICNN.1995.488968 10.1109/72.712155 10.1016/j.compbiomed.2020.103758 10.1371/journal.pone.0278126 10.1007/s00530-021-00776-8 10.1016/j.jcjo.2018.04.019 10.1109/TMI.2004.825627 10.1007/s11042-020-09457-6 10.1007/s11277-023-10255-0 10.1007/s11042-021-11118-1 10.1007/s40998-023-00611-y |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procs.2024.04.198 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 2100 |
| ExternalDocumentID | 10_1016_j_procs_2024_04_198 S1877050924008743 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ 9DU AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEUPX AFPUW AIGII AKBMS AKYEP CITATION ~HD |
| ID | FETCH-LOGICAL-c2638-554ae38c4945771f37a50b8cc5930f2a909cf2a868e85f3e8c81eaea70a138703 |
| ISSN | 1877-0509 |
| IngestDate | Sat Nov 29 03:08:07 EST 2025 Tue Nov 18 22:35:07 EST 2025 Sat Jul 13 15:31:26 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Convolutional Neural Network Hard Exudates Jaya Optimization Algorithm Nature-Inspired Algorithms Generalization Deep Learning Diabetic Retinopathy |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2638-554ae38c4945771f37a50b8cc5930f2a909cf2a868e85f3e8c81eaea70a138703 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procs.2024.04.198 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_procs_2024_04_198 crossref_primary_10_1016_j_procs_2024_04_198 elsevier_sciencedirect_doi_10_1016_j_procs_2024_04_198 |
| PublicationCentury | 2000 |
| PublicationDate | 2024 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | J. M. Challab, F. Mardukhi, Ant colony optimization–rain optimization algorithm based on hybrid deep learning for diagnosis of lung involvement in coronavirus patients, Iranian J. Science & Technology, Trans. Electrical Engineering (2023) 1–16. Ramesh, Vydeki (bib1941) 2020; 7 Abualigah, Diabat (bib1938) 2020; 32 Kuruba, Gopalan (bib1935) 2023; 86 S. Chhikara, R. Kumar, Image steganalysis with entropy hybridized with chaotic grasshopper optimizer, Multimedia Tools & Applications 80 (2021) 31865 – 31885. doi Naser, Deen (bib1928) 2020; 121 Yang, Deb (bib1922) 2013; 40 Saremi, Mirjalili, Lewis (bib1926) 2017; 105 S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proc. Int. Conf. Machine Learning (ICML), PMLR, 2015, pp. 448–456. Gao, Almekkawy (bib1930) 2021; 136 Kumar, Banerjee (bib1950) 2011; 11 Das, Nayak, Dash, Majhi (bib1944) 2020; 79 Rao (bib1923) 2016; 7 S. Prashanth, H. Iqbal, B. Illuri, An enhanced Grey Wolf optimisation–deterministic convolutional neural network (GWO–DCNN) model-based IDS in MANET, J. Information & Knowledge Management (2023) 2350010. R. V. Rao, Jaya: an advanced optimization algorithm and its engineering applications, Springer, 2019. Shen, Zhang, Gharehchopogh, Mirjalili (bib1924) 2023; 215 Grewal, Oloumi, Rubin, Tennant (bib1929) 2018; 53 Wang, Ji, Shi, Yang, Wang, Ge, Chang, Meng, Wang (bib1948) 2023; 263 Saha, Kumar, Baboo (bib1951) 2013; 13 H. Alshahrani, H. K. Alkahtani, K. Mahmood, M. Alymani, G. P. Mohammed, A. A. Abdelmageed, S. Abdelbagi, S. Drar, Chaotic Jaya optimization algorithm with computer vision-based soil type classification for smart farming, IEEE Access. Mirjalili, Mirjalili, Lewis (bib1925) 2014; 69 Maron, Schlager, Haggenmüller, von Kalle, Utikal, Meier, Gellrich, Hobelsberger, Hauschild, French (bib1931) 2021; 155 Liu, Gao, Zhang, Wang, Zhou, Liu (bib1933) 2022; 17 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. Int. Conf. Neural Networks (ICNN), Vol. 4, IEEE, 1995, pp. 1942–1948. . Staal, Abràmoff, Niemeijer, Viergever, Van Ginneken (bib1953) 2004; 23 Alyoubi, Shalash, Abulkhair (bib1927) 2020; 20 Dinç, Kaya (bib1934) 2023; 129 Liu, Li, Jiao, Chen, Shang (bib1946) 2021; 60 A. Kausar, I. Razzak, M. I. Shapiai, A. Beheshti, 3D shallow deep NN for fast and precise LA segmentation, Multimedia Systems (2021) 1–11. T. M. Khan, S. S. Naqvi, A. Robles-Kelly, I. Razzak, Retinal vessel segmentation via a multi-resolution contextual network and adversarial learning, Neural Networks. Noshad, Fallahi (bib1942) 2023; 11 Kumar, Rockett (bib1947) 1998; 9 Rajinikanth, Dey, Kumar, Panneerselvam, Raja (bib1940) 2019; 152 Shen (10.1016/j.procs.2024.04.198_bib1924) 2023; 215 10.1016/j.procs.2024.04.198_bib1921 10.1016/j.procs.2024.04.198_bib1943 Das (10.1016/j.procs.2024.04.198_bib1944) 2020; 79 Kumar (10.1016/j.procs.2024.04.198_bib1950) 2011; 11 10.1016/j.procs.2024.04.198_bib1945 Grewal (10.1016/j.procs.2024.04.198_bib1929) 2018; 53 Dinç (10.1016/j.procs.2024.04.198_bib1934) 2023; 129 10.1016/j.procs.2024.04.198_bib1949 Gao (10.1016/j.procs.2024.04.198_bib1930) 2021; 136 Liu (10.1016/j.procs.2024.04.198_bib1946) 2021; 60 Noshad (10.1016/j.procs.2024.04.198_bib1942) 2023; 11 Maron (10.1016/j.procs.2024.04.198_bib1931) 2021; 155 Rao (10.1016/j.procs.2024.04.198_bib1923) 2016; 7 Saremi (10.1016/j.procs.2024.04.198_bib1926) 2017; 105 Yang (10.1016/j.procs.2024.04.198_bib1922) 2013; 40 Wang (10.1016/j.procs.2024.04.198_bib1948) 2023; 263 Liu (10.1016/j.procs.2024.04.198_bib1933) 2022; 17 Ramesh (10.1016/j.procs.2024.04.198_bib1941) 2020; 7 Abualigah (10.1016/j.procs.2024.04.198_bib1938) 2020; 32 Staal (10.1016/j.procs.2024.04.198_bib1953) 2004; 23 10.1016/j.procs.2024.04.198_bib1932 Kuruba (10.1016/j.procs.2024.04.198_bib1935) 2023; 86 Rajinikanth (10.1016/j.procs.2024.04.198_bib1940) 2019; 152 Alyoubi (10.1016/j.procs.2024.04.198_bib1927) 2020; 20 10.1016/j.procs.2024.04.198_bib1952 Saha (10.1016/j.procs.2024.04.198_bib1951) 2013; 13 10.1016/j.procs.2024.04.198_bib1936 Kumar (10.1016/j.procs.2024.04.198_bib1947) 1998; 9 10.1016/j.procs.2024.04.198_bib1937 10.1016/j.procs.2024.04.198_bib1939 Mirjalili (10.1016/j.procs.2024.04.198_bib1925) 2014; 69 Naser (10.1016/j.procs.2024.04.198_bib1928) 2020; 121 |
| References_xml | – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: bib1923 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int publication-title: Journal Industrial Engineering Computations – reference: H. Alshahrani, H. K. Alkahtani, K. Mahmood, M. Alymani, G. P. Mohammed, A. A. Abdelmageed, S. Abdelbagi, S. Drar, Chaotic Jaya optimization algorithm with computer vision-based soil type classification for smart farming, IEEE Access. – reference: A. Kausar, I. Razzak, M. I. Shapiai, A. Beheshti, 3D shallow deep NN for fast and precise LA segmentation, Multimedia Systems (2021) 1–11. – reference: J. M. Challab, F. Mardukhi, Ant colony optimization–rain optimization algorithm based on hybrid deep learning for diagnosis of lung involvement in coronavirus patients, Iranian J. Science & Technology, Trans. Electrical Engineering (2023) 1–16. – volume: 13 start-page: 2812 year: 2013 end-page: 2822 ident: bib1951 article-title: Characterization of graph properties for improved pareto fronts using heuristics and EA for bi-objective graph coloring problem publication-title: Applied Soft Computing – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. Int. Conf. Neural Networks (ICNN), Vol. 4, IEEE, 1995, pp. 1942–1948. – reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proc. Int. Conf. Machine Learning (ICML), PMLR, 2015, pp. 448–456. – volume: 11 start-page: 1549 year: 2023 end-page: 1566 ident: bib1942 article-title: A new hybrid framework based on deep neural networks and Jaya optimization algorithm for feature selection using SVM applied to classification of acute lymphoblastic leukaemia publication-title: Computer Methods in Biomechanics & Biomedical Engineering: Imaging & Visualization – volume: 17 start-page: e0278126 year: 2022 ident: bib1933 article-title: MTNet: A combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images publication-title: Plos one – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: bib1926 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Advances in Engineering Software – volume: 121 start-page: 103758 year: 2020 ident: bib1928 article-title: Brain tumor segmentation and grading of lower-grade glioma using DL in MRI images publication-title: Computers in Biology & Medicine – volume: 20 start-page: 100377 year: 2020 ident: bib1927 article-title: Diabetic retinopathy detection through deep learning techniques: A review publication-title: Informatics in Medicine Unlocked – volume: 155 start-page: 191 year: 2021 end-page: 199 ident: bib1931 article-title: A benchmark for neural network robustness in skin cancer classification publication-title: European Journal of Cancer – volume: 60 start-page: 100794 year: 2021 ident: bib1946 article-title: Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification publication-title: Swarm & Evolutionary Computation – volume: 86 start-page: 105195 year: 2023 ident: bib1935 article-title: Robust blood vessel detection with image enhancement using relative intensity order transformation and deep learning publication-title: Biomedical Signal Processing & Control – volume: 23 start-page: 501 year: 2004 end-page: 509 ident: bib1953 article-title: Ridge-based vessel segmentation in color images of the retina, IEEE Trans publication-title: Medical Imaging – volume: 40 start-page: 1616 year: 2013 end-page: 1624 ident: bib1922 article-title: Multiobjective cuckoo search for design optimization publication-title: Computers & Operations Research – volume: 7 start-page: 249 year: 2020 end-page: 260 ident: bib1941 article-title: Recognition and classification of paddy leaf diseases using optimized deep neural network with Jaya algorithm publication-title: Information Processing in Agriculture – volume: 79 start-page: 33023 year: 2020 end-page: 33042 ident: bib1944 article-title: MJCN: Multi-objective Jaya convolutional network for handwritten optical character recognition publication-title: Multimedia Tools & Applications – volume: 9 start-page: 822 year: 1998 end-page: 830 ident: bib1947 article-title: Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy, IEEE Trans publication-title: Neural Networks (TNN) – volume: 32 start-page: 15533 year: 2020 end-page: 15556 ident: bib1938 article-title: A comprehensive survey of the Grasshopper optimization algorithm: results publication-title: variants, and applications, Neural Computing & Applications – reference: T. M. Khan, S. S. Naqvi, A. Robles-Kelly, I. Razzak, Retinal vessel segmentation via a multi-resolution contextual network and adversarial learning, Neural Networks. – reference: . – reference: S. Chhikara, R. Kumar, Image steganalysis with entropy hybridized with chaotic grasshopper optimizer, Multimedia Tools & Applications 80 (2021) 31865 – 31885. doi: – reference: R. V. Rao, Jaya: an advanced optimization algorithm and its engineering applications, Springer, 2019. – volume: 152 start-page: 66 year: 2019 end-page: 73 ident: bib1940 article-title: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation publication-title: Procedia Computer Science – volume: 215 start-page: 119269 year: 2023 ident: bib1924 article-title: An improved Whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems publication-title: Expert Systems with Applications – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: bib1925 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 263 start-page: 125961 year: 2023 ident: bib1948 article-title: Multiobjective optimization of a hydrogen-fueled wankel rotary engine based on machine learning and genetic algorithm publication-title: Energy – reference: S. Prashanth, H. Iqbal, B. Illuri, An enhanced Grey Wolf optimisation–deterministic convolutional neural network (GWO–DCNN) model-based IDS in MANET, J. Information & Knowledge Management (2023) 2350010. – volume: 11 start-page: 5120 year: 2011 end-page: 5128 ident: bib1950 article-title: Multiobjective network topology design publication-title: Applied Soft Computing – volume: 53 start-page: 309 year: 2018 end-page: 313 ident: bib1929 article-title: Deep learning in ophthalmology: a review publication-title: Canadian Journal of Ophthalmology – volume: 136 start-page: 104688 year: 2021 ident: bib1930 article-title: ASU-Net++: A nested U-Net with adaptive feature extractions for liver tumor segmentation publication-title: Computers in Biology & Medicine – volume: 129 start-page: 2727 year: 2023 end-page: 2748 ident: bib1934 article-title: A novel hybrid optic disc detection and fovea localization method integrating region-based ConvNet and mathematical approach publication-title: Wireless Personal Communications – volume: 20 start-page: 100377 year: 2020 ident: 10.1016/j.procs.2024.04.198_bib1927 article-title: Diabetic retinopathy detection through deep learning techniques: A review publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2020.100377 – volume: 86 start-page: 105195 year: 2023 ident: 10.1016/j.procs.2024.04.198_bib1935 article-title: Robust blood vessel detection with image enhancement using relative intensity order transformation and deep learning publication-title: Biomedical Signal Processing & Control doi: 10.1016/j.bspc.2023.105195 – volume: 152 start-page: 66 year: 2019 ident: 10.1016/j.procs.2024.04.198_bib1940 article-title: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.05.028 – volume: 215 start-page: 119269 year: 2023 ident: 10.1016/j.procs.2024.04.198_bib1924 article-title: An improved Whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.119269 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.procs.2024.04.198_bib1925 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 136 start-page: 104688 year: 2021 ident: 10.1016/j.procs.2024.04.198_bib1930 article-title: ASU-Net++: A nested U-Net with adaptive feature extractions for liver tumor segmentation publication-title: Computers in Biology & Medicine doi: 10.1016/j.compbiomed.2021.104688 – volume: 60 start-page: 100794 year: 2021 ident: 10.1016/j.procs.2024.04.198_bib1946 article-title: Multiobjective evolutionary algorithm assisted stacked autoencoder for PolSAR image classification publication-title: Swarm & Evolutionary Computation doi: 10.1016/j.swevo.2020.100794 – volume: 13 start-page: 2812 issue: 5 year: 2013 ident: 10.1016/j.procs.2024.04.198_bib1951 article-title: Characterization of graph properties for improved pareto fronts using heuristics and EA for bi-objective graph coloring problem publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.06.021 – ident: 10.1016/j.procs.2024.04.198_bib1939 doi: 10.1142/S0219649223500107 – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.procs.2024.04.198_bib1923 article-title: Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, Int publication-title: Journal Industrial Engineering Computations – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.procs.2024.04.198_bib1926 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 – volume: 32 start-page: 15533 issue: 19 year: 2020 ident: 10.1016/j.procs.2024.04.198_bib1938 article-title: A comprehensive survey of the Grasshopper optimization algorithm: results publication-title: variants, and applications, Neural Computing & Applications doi: 10.1007/s00521-020-04789-8 – ident: 10.1016/j.procs.2024.04.198_bib1937 – volume: 40 start-page: 1616 issue: 6 year: 2013 ident: 10.1016/j.procs.2024.04.198_bib1922 article-title: Multiobjective cuckoo search for design optimization publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.09.026 – volume: 11 start-page: 1549 issue: 4 year: 2023 ident: 10.1016/j.procs.2024.04.198_bib1942 article-title: A new hybrid framework based on deep neural networks and Jaya optimization algorithm for feature selection using SVM applied to classification of acute lymphoblastic leukaemia publication-title: Computer Methods in Biomechanics & Biomedical Engineering: Imaging & Visualization – volume: 263 start-page: 125961 year: 2023 ident: 10.1016/j.procs.2024.04.198_bib1948 article-title: Multiobjective optimization of a hydrogen-fueled wankel rotary engine based on machine learning and genetic algorithm publication-title: Energy doi: 10.1016/j.energy.2022.125961 – volume: 155 start-page: 191 year: 2021 ident: 10.1016/j.procs.2024.04.198_bib1931 article-title: A benchmark for neural network robustness in skin cancer classification publication-title: European Journal of Cancer doi: 10.1016/j.ejca.2021.06.047 – volume: 7 start-page: 249 issue: 2 year: 2020 ident: 10.1016/j.procs.2024.04.198_bib1941 article-title: Recognition and classification of paddy leaf diseases using optimized deep neural network with Jaya algorithm publication-title: Information Processing in Agriculture doi: 10.1016/j.inpa.2019.09.002 – ident: 10.1016/j.procs.2024.04.198_bib1945 – volume: 11 start-page: 5120 issue: 8 year: 2011 ident: 10.1016/j.procs.2024.04.198_bib1950 article-title: Multiobjective network topology design publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.05.047 – ident: 10.1016/j.procs.2024.04.198_bib1943 – ident: 10.1016/j.procs.2024.04.198_bib1921 doi: 10.1109/ICNN.1995.488968 – volume: 9 start-page: 822 issue: 5 year: 1998 ident: 10.1016/j.procs.2024.04.198_bib1947 article-title: Multiobjective genetic algorithm partitioning for hierarchical learning of high-dimensional pattern spaces: a learning-follows-decomposition strategy, IEEE Trans publication-title: Neural Networks (TNN) doi: 10.1109/72.712155 – volume: 121 start-page: 103758 year: 2020 ident: 10.1016/j.procs.2024.04.198_bib1928 article-title: Brain tumor segmentation and grading of lower-grade glioma using DL in MRI images publication-title: Computers in Biology & Medicine doi: 10.1016/j.compbiomed.2020.103758 – volume: 17 start-page: e0278126 issue: 11 year: 2022 ident: 10.1016/j.procs.2024.04.198_bib1933 article-title: MTNet: A combined diagnosis algorithm of vessel segmentation and diabetic retinopathy for retinal images publication-title: Plos one doi: 10.1371/journal.pone.0278126 – ident: 10.1016/j.procs.2024.04.198_bib1936 – ident: 10.1016/j.procs.2024.04.198_bib1932 doi: 10.1007/s00530-021-00776-8 – volume: 53 start-page: 309 issue: 4 year: 2018 ident: 10.1016/j.procs.2024.04.198_bib1929 article-title: Deep learning in ophthalmology: a review publication-title: Canadian Journal of Ophthalmology doi: 10.1016/j.jcjo.2018.04.019 – volume: 23 start-page: 501 issue: 4 year: 2004 ident: 10.1016/j.procs.2024.04.198_bib1953 article-title: Ridge-based vessel segmentation in color images of the retina, IEEE Trans publication-title: Medical Imaging doi: 10.1109/TMI.2004.825627 – volume: 79 start-page: 33023 year: 2020 ident: 10.1016/j.procs.2024.04.198_bib1944 article-title: MJCN: Multi-objective Jaya convolutional network for handwritten optical character recognition publication-title: Multimedia Tools & Applications doi: 10.1007/s11042-020-09457-6 – volume: 129 start-page: 2727 issue: 4 year: 2023 ident: 10.1016/j.procs.2024.04.198_bib1934 article-title: A novel hybrid optic disc detection and fovea localization method integrating region-based ConvNet and mathematical approach publication-title: Wireless Personal Communications doi: 10.1007/s11277-023-10255-0 – ident: 10.1016/j.procs.2024.04.198_bib1952 doi: 10.1007/s11042-021-11118-1 – ident: 10.1016/j.procs.2024.04.198_bib1949 doi: 10.1007/s40998-023-00611-y |
| SSID | ssj0000388917 |
| Score | 2.3082142 |
| Snippet | Anomalies such as microaneurysms, exudates, and hemorrhages are diagnosed by retinal vessel segmentation to identify different phases of Diabetic Retinopathy... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2090 |
| SubjectTerms | Convolutional Neural Network Deep Learning Diabetic Retinopathy Generalization Hard Exudates Jaya Optimization Algorithm Nature-Inspired Algorithms |
| Title | A Hybrid DL Architecture for Improved Generalizability with Self-Adaptive Jaya Optimizer for Diabetic Retinopathy |
| URI | https://dx.doi.org/10.1016/j.procs.2024.04.198 |
| Volume | 235 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZgcOAyfosBQz5wC5GcOKntY7QxTWgMpA1pt8h1bdEystJ2Y9uBv533bCfNtmoCJC5pGtV15ff1-fn58_cIeWscE7lTNtXZEBYomXWpLpEmZg0fOCUck84XmxD7-_LoSH2OWaW5Lycgmkaen6vpfzU1PANj49HZvzB396XwAO7B6HAFs8P1jwxfJbsXeAwr2d5Lqv42ARIKQw4BgswoN42crrGPxH1C9sAeu7Qa6aknFH3QFzr5BPffx5d25tsHAo0n3y_GzQnWM76yL-zPHQDkPFUdq0UkcYpd7if91EHp4NtXcEjzLhu95HrribVn_WxEvsxD3jwg4_2pFCJFiZkw3ax4Fp1wzsu-G2WhhmickmFZyla6-5B5mOBkY1B7PS9QtzYLda2v6WgfYL_YLbJmJQROd8m9XJQKeYAffy0TcyiPo3yl5u6HtmpVnhd4o6_VEU0vSjl8RNbj8oJWARaPyR3bPCEP29IdNHryp-RHRQNK6PYe7aOEgpVpixJ6HSUUUUKvoIQiSmiHEt--RQntoeQZ-bLz_nBrN43VN1KTg1NOIc7UlktTqKIUInNc6JINpTHwV2Yu14opAy9yIK0sHbfSyMxqqwXTGYdZgD8na81JY18QWmgIQuUIpRVd4dRI20LwIRdcQ0BacL1B8nYEaxOl6bFCynHdchAntR_2Goe9ZkUNw75B3nWNpkGZ5faPD1rT1BH5IWisAUy3NXz5rw1fkQf4LuTrXpO1xezUbpL75mwxns_eeND9BvVcoes |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+DL+Architecture+for+Improved+Generalizability+with+Self-Adaptive+Jaya+Optimizer+for+Diabetic+Retinopathy&rft.jtitle=Procedia+computer+science&rft.au=Rawat%2C+Akhilesh&rft.au=Kumar%2C+Rajeev&rft.date=2024&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=235&rft.spage=2090&rft.epage=2100&rft_id=info:doi/10.1016%2Fj.procs.2024.04.198&rft.externalDocID=S1877050924008743 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |