A deep learning approach for error detection and quantification in extrusion-based bioprinting

Quality control in extrusion-based bioprinting (EBB) represents a crucial step to: i) reduce the trial-and-error process and associated material consumption, ii) achieve standard results across different set-ups and laboratories to comply with relevant health standards, and iii) so accelerate the tr...

Full description

Saved in:
Bibliographic Details
Published in:Materials today : proceedings Vol. 70; pp. 131 - 135
Main Authors: Bonatti, Amedeo Franco, Vozzi, Giovanni, Kai Chua, Chee, De Maria, Carmelo
Format: Journal Article
Language:English
Published: Elsevier Ltd 2022
Subjects:
ISSN:2214-7853, 2214-7853
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quality control in extrusion-based bioprinting (EBB) represents a crucial step to: i) reduce the trial-and-error process and associated material consumption, ii) achieve standard results across different set-ups and laboratories to comply with relevant health standards, and iii) so accelerate the translation of Tissue Engineered products to more impactful clinical applications. In this context, machine learning algorithms represent a key enabling technology that is currently being explored in literature for quality control in EBB, thanks to their ability to learn relevant features from a training dataset and generalize to new, unseen data. In this work, we present a novel application of a deep learning model to EBB, namely a convolutional Long Short-Term Memory (LSTM) autoencoder, to extract a relevant quality measure from videos taken from a frontal view during the printing process. In particular, a comprehensive dataset was built by varying multiple printing parameters and using different EBB set-ups. The data was then used to train the model and validate it using videos containing different types of errors (i.e., under- or over-extrusion). Results highlight that the approach can effectively detect relevant extrusion-related problems in a proportional way to the error magnitude, and so can be applied as a quality control solution for the EBB process.
AbstractList Quality control in extrusion-based bioprinting (EBB) represents a crucial step to: i) reduce the trial-and-error process and associated material consumption, ii) achieve standard results across different set-ups and laboratories to comply with relevant health standards, and iii) so accelerate the translation of Tissue Engineered products to more impactful clinical applications. In this context, machine learning algorithms represent a key enabling technology that is currently being explored in literature for quality control in EBB, thanks to their ability to learn relevant features from a training dataset and generalize to new, unseen data. In this work, we present a novel application of a deep learning model to EBB, namely a convolutional Long Short-Term Memory (LSTM) autoencoder, to extract a relevant quality measure from videos taken from a frontal view during the printing process. In particular, a comprehensive dataset was built by varying multiple printing parameters and using different EBB set-ups. The data was then used to train the model and validate it using videos containing different types of errors (i.e., under- or over-extrusion). Results highlight that the approach can effectively detect relevant extrusion-related problems in a proportional way to the error magnitude, and so can be applied as a quality control solution for the EBB process.
Author Kai Chua, Chee
Vozzi, Giovanni
Bonatti, Amedeo Franco
De Maria, Carmelo
Author_xml – sequence: 1
  givenname: Amedeo Franco
  surname: Bonatti
  fullname: Bonatti, Amedeo Franco
  email: amedeofranco.bonatti@phd.unipi.it
  organization: Department of Information Engineering and Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
– sequence: 2
  givenname: Giovanni
  surname: Vozzi
  fullname: Vozzi, Giovanni
  email: giovanni.vozzi@unipi.it
  organization: Department of Information Engineering and Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
– sequence: 3
  givenname: Chee
  surname: Kai Chua
  fullname: Kai Chua, Chee
  email: cheekai_chua@sutd.edu.sg
  organization: Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore
– sequence: 4
  givenname: Carmelo
  surname: De Maria
  fullname: De Maria, Carmelo
  email: carmelo.demaria@unipi.it
  organization: Department of Information Engineering and Research Center “Enrico Piaggio”, University of Pisa, Pisa, Italy
BookMark eNqFkM1OwzAMgCM0JMbYE3DJC7QkbZemBw7TxJ80iQtciZzEGZm2tKQdgrcn2zggDnCJY8ufZX_nZBTagIRccpZzxsXVOt_C0MW8YEWRsyZnTJyQcVHwKqvlrBz9-J-Rad-vGWN8JpjkYkxe5tQidnSDEIMPKwpdF1swr9S1kWKM6bU4oBl8GygES992EAbvvIFDyQeKH0Pc9SnJNPRoqfZtF31qCqsLcupg0-P0O07I8-3N0-I-Wz7ePSzmy8wUohSZrLQpdFU7wUSlKw5aGlebEkEwAwgaa9mAFeVMOlejrsDKRrPGOlkiw6qckOY418S27yM6ZfxwWHCI4DeKM7V3pdbq4ErtXSnWqOQqseUvNm2_hfj5D3V9pDCd9e4xqt54DAatj8mWsq3_k_8CkG2JhA
CitedBy_id crossref_primary_10_1088_1758_5090_ad2189
crossref_primary_10_1002_adfm_202424553
crossref_primary_10_1088_1758_5090_ad8966
crossref_primary_10_1177_08853282241276799
crossref_primary_10_1016_j_bioactmat_2024_11_021
crossref_primary_10_1016_j_bprint_2025_e00441
crossref_primary_10_2217_3dp_2022_0023
crossref_primary_10_1088_1758_5090_ade62f
crossref_primary_10_1016_j_bprint_2024_e00331
crossref_primary_10_1016_j_bprint_2025_e00431
crossref_primary_10_1002_aisy_202400102
crossref_primary_10_1016_j_mtcomm_2024_111249
crossref_primary_10_1088_1758_5090_adaa22
crossref_primary_10_1016_j_stlm_2023_100132
Cites_doi 10.18063/ijb.v7i1.342
10.1088/1758-5090/ab6a1d
10.4081/bse.2019.108
10.1016/j.bprint.2021.e00172
10.1016/j.cviu.2020.102920
10.1109/ACCESS.2021.3064819
10.1117/12.456333
10.1016/j.apmt.2020.100914
10.18063/ijb.v6i1.253
10.1038/nature14539
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.matpr.2022.09.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 135
ExternalDocumentID 10_1016_j_matpr_2022_09_006
S2214785322057984
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
6I.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c2636-84bc2b47f6064b41ab8cf7c3ea60caeabe789ad6358ff7eb4ad89b09df83e0e43
ISSN 2214-7853
IngestDate Tue Nov 18 20:55:34 EST 2025
Sat Nov 29 06:54:31 EST 2025
Fri Feb 23 02:39:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Convolutional LSTM autoencoder
Extrusion-based bioprinting
Quality control
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2636-84bc2b47f6064b41ab8cf7c3ea60caeabe789ad6358ff7eb4ad89b09df83e0e43
OpenAccessLink https://dx.doi.org/10.1016/j.matpr.2022.09.006
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_matpr_2022_09_006
crossref_primary_10_1016_j_matpr_2022_09_006
elsevier_sciencedirect_doi_10_1016_j_matpr_2022_09_006
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chiesa, De Maria, Lapomarda, Fortunato, Montemurro, Di Gesù, Tuan, Vozzi, Gottardi (b0075) 2020; 12
Bonatti, A. F., Fortunato, G. M., Lapomarda A., De Acutis, A., De Maria, C., Vitale-Brovarone, C., Vozzi, G., (2021). Advanced Firmware and Hardware for Multiscale and Multimaterial Bioprinting, Proceedings of the Seventh National Congress of Bioengineering
Bonatti, Chiesa, Vozzi, De Maria (b0020) 2021; 24
Di Pietro, Ravizza, Vozzi, Lantada, Ahluwalia, De Maria (b0010) 2019; 3
He, Zhang, Ren, Sun (b0090) 2016
Ruberu, Senadeera, Rana, Gupta, Chung, Yue, Venkatesh, Wallace (b0050) 2021; 22
Ozbolat, Moncal, Gudapati (b0015) 2017; 13
Jin, Zhang, Shao, Gu (b0045) 2021
arXiv preprint arXiv:2003.05991. https://doi.org/10.48550/arXiv.2003.05991.
Multimedia systems and Applications V
LeCun, Bengio, Hinton (b0025) 2015; 521
Fu, Angeline, Sun (b0040) 2021; 7
Wickramasinghe, Marino, Manic (b0095) 2021; 9
Zhao, Deng, Shen, Liu, Lu, Hua (b0055) 2017
Fan, Wen, Li, Qiu, Levine, Xiao (b0060) 2020; 195
Srivastava, N., Mansimov, E., & Salakhudinov, R. (2015, June). Unsupervised learning of video representations using lstms. In International conference on machine learning (pp. 843-852). PMLR.
(Vol. 4861, pp. 325-332). International Society for Optics and Photonics. https://doi.org/10.1117/12.456333.
Zhao, M., Bu, J., & Chen, C. (2002, December). Robust background subtraction in HSV color space. In
Yu, Jiang (b0030) 2020; 6
Pati, Jang, Lee, Cho (b0005) 2015
Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders.
An, Chua, Mironov (b0035) 2021; 7
LeCun (10.1016/j.matpr.2022.09.006_b0025) 2015; 521
Pati (10.1016/j.matpr.2022.09.006_b0005) 2015
Ozbolat (10.1016/j.matpr.2022.09.006_b0015) 2017; 13
10.1016/j.matpr.2022.09.006_b0080
10.1016/j.matpr.2022.09.006_b0070
10.1016/j.matpr.2022.09.006_b0065
Chiesa (10.1016/j.matpr.2022.09.006_b0075) 2020; 12
10.1016/j.matpr.2022.09.006_b0085
An (10.1016/j.matpr.2022.09.006_b0035) 2021; 7
Jin (10.1016/j.matpr.2022.09.006_b0045) 2021
He (10.1016/j.matpr.2022.09.006_b0090) 2016
Wickramasinghe (10.1016/j.matpr.2022.09.006_b0095) 2021; 9
Bonatti (10.1016/j.matpr.2022.09.006_b0020) 2021; 24
Zhao (10.1016/j.matpr.2022.09.006_b0055) 2017
Fu (10.1016/j.matpr.2022.09.006_b0040) 2021; 7
Yu (10.1016/j.matpr.2022.09.006_b0030) 2020; 6
Ruberu (10.1016/j.matpr.2022.09.006_b0050) 2021; 22
Di Pietro (10.1016/j.matpr.2022.09.006_b0010) 2019; 3
Fan (10.1016/j.matpr.2022.09.006_b0060) 2020; 195
References_xml – volume: 7
  year: 2021
  ident: b0035
  article-title: Application of machine learning in 3D bioprinting: focus on development of big data and digital twin
  publication-title: Int. J. Bioprinting
– reference: Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders.
– start-page: 1933
  year: 2017
  end-page: 1941
  ident: b0055
  article-title: October). Spatio-temporal autoencoder for video anomaly detection
  publication-title: In ProceedIngs of the 25th ACM International Conference on Multimedia
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0025
  article-title: Deep learning
  publication-title: Nature
– volume: 22
  start-page: 100914
  year: 2021
  ident: b0050
  article-title: Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing
  publication-title: Appl. Mater. Today
– reference: Srivastava, N., Mansimov, E., & Salakhudinov, R. (2015, June). Unsupervised learning of video representations using lstms. In International conference on machine learning (pp. 843-852). PMLR.
– reference: (Vol. 4861, pp. 325-332). International Society for Optics and Photonics. https://doi.org/10.1117/12.456333.
– volume: 13
  start-page: 179
  year: 2017
  end-page: 200
  ident: b0015
  article-title: Evaluation of bioprinter technologies
  publication-title: Addit. Manuf.
– volume: 6
  year: 2020
  ident: b0030
  article-title: A perspective on using machine learning in 3D bioprinting
  publication-title: Int. J. Bioprinting
– reference: Bonatti, A. F., Fortunato, G. M., Lapomarda A., De Acutis, A., De Maria, C., Vitale-Brovarone, C., Vozzi, G., (2021). Advanced Firmware and Hardware for Multiscale and Multimaterial Bioprinting, Proceedings of the Seventh National Congress of Bioengineering
– start-page: 123
  year: 2015
  end-page: 152
  ident: b0005
  publication-title: Extrusion Bioprinting
– volume: 9
  start-page: 40511
  year: 2021
  end-page: 40520
  ident: b0095
  article-title: ResNet autoencoders for unsupervised feature learning from high-dimensional data: Deep models resistant to performance degradation
  publication-title: IEEE Access
– volume: 24
  year: 2021
  ident: b0020
  article-title: Open-source CAD-CAM simulator of the extrusion-based bioprinting process
  publication-title: Bioprinting
– volume: 195
  year: 2020
  ident: b0060
  article-title: Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder
  publication-title: Comput. Vis. Image Underst.
– year: 2021
  ident: b0045
  article-title: Monitoring anomalies in 3D bioprinting with deep neural networks
  publication-title: ACS Biomater. Sci. Eng.
– reference: arXiv preprint arXiv:2003.05991. https://doi.org/10.48550/arXiv.2003.05991.
– volume: 3
  year: 2019
  ident: b0010
  article-title: European regulatory framework for the clinical translation of bioprinted scaffolds and tissues
  publication-title: Biomed. Sci. Eng.
– volume: 7
  start-page: 343
  year: 2021
  ident: b0040
  article-title: Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation
  publication-title: International journal of bioprinting
– reference: Zhao, M., Bu, J., & Chen, C. (2002, December). Robust background subtraction in HSV color space. In
– start-page: 770
  year: 2016
  end-page: 778
  ident: b0090
  article-title: Deep residual learning for image recognition
  publication-title: In ProceedIngs of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 12
  start-page: 025013
  year: 2020
  ident: b0075
  article-title: Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting
  publication-title: Biofabrication
– reference: Multimedia systems and Applications V
– volume: 7
  issue: 1
  year: 2021
  ident: 10.1016/j.matpr.2022.09.006_b0035
  article-title: Application of machine learning in 3D bioprinting: focus on development of big data and digital twin
  publication-title: Int. J. Bioprinting
  doi: 10.18063/ijb.v7i1.342
– volume: 12
  start-page: 025013
  issue: 2
  year: 2020
  ident: 10.1016/j.matpr.2022.09.006_b0075
  article-title: Endothelial cells support osteogenesis in an in vitro vascularized bone model developed by 3D bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ab6a1d
– ident: 10.1016/j.matpr.2022.09.006_b0080
– volume: 3
  issue: s3
  year: 2019
  ident: 10.1016/j.matpr.2022.09.006_b0010
  article-title: European regulatory framework for the clinical translation of bioprinted scaffolds and tissues
  publication-title: Biomed. Sci. Eng.
  doi: 10.4081/bse.2019.108
– start-page: 770
  year: 2016
  ident: 10.1016/j.matpr.2022.09.006_b0090
  article-title: Deep residual learning for image recognition
– volume: 24
  year: 2021
  ident: 10.1016/j.matpr.2022.09.006_b0020
  article-title: Open-source CAD-CAM simulator of the extrusion-based bioprinting process
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2021.e00172
– volume: 7
  start-page: 343
  issue: 4
  year: 2021
  ident: 10.1016/j.matpr.2022.09.006_b0040
  article-title: Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation
  publication-title: International journal of bioprinting
– volume: 195
  year: 2020
  ident: 10.1016/j.matpr.2022.09.006_b0060
  article-title: Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2020.102920
– ident: 10.1016/j.matpr.2022.09.006_b0070
– volume: 9
  start-page: 40511
  year: 2021
  ident: 10.1016/j.matpr.2022.09.006_b0095
  article-title: ResNet autoencoders for unsupervised feature learning from high-dimensional data: Deep models resistant to performance degradation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3064819
– year: 2021
  ident: 10.1016/j.matpr.2022.09.006_b0045
  article-title: Monitoring anomalies in 3D bioprinting with deep neural networks
  publication-title: ACS Biomater. Sci. Eng.
– ident: 10.1016/j.matpr.2022.09.006_b0085
  doi: 10.1117/12.456333
– volume: 13
  start-page: 179
  year: 2017
  ident: 10.1016/j.matpr.2022.09.006_b0015
  article-title: Evaluation of bioprinter technologies
  publication-title: Addit. Manuf.
– volume: 22
  start-page: 100914
  year: 2021
  ident: 10.1016/j.matpr.2022.09.006_b0050
  article-title: Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2020.100914
– start-page: 1933
  year: 2017
  ident: 10.1016/j.matpr.2022.09.006_b0055
  article-title: October). Spatio-temporal autoencoder for video anomaly detection
– start-page: 123
  year: 2015
  ident: 10.1016/j.matpr.2022.09.006_b0005
– volume: 6
  issue: 1
  year: 2020
  ident: 10.1016/j.matpr.2022.09.006_b0030
  article-title: A perspective on using machine learning in 3D bioprinting
  publication-title: Int. J. Bioprinting
  doi: 10.18063/ijb.v6i1.253
– ident: 10.1016/j.matpr.2022.09.006_b0065
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.matpr.2022.09.006_b0025
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
SSID ssj0001560816
Score 2.2903583
Snippet Quality control in extrusion-based bioprinting (EBB) represents a crucial step to: i) reduce the trial-and-error process and associated material consumption,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Convolutional LSTM autoencoder
Deep learning
Extrusion-based bioprinting
Quality control
Title A deep learning approach for error detection and quantification in extrusion-based bioprinting
URI https://dx.doi.org/10.1016/j.matpr.2022.09.006
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2214-7853
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001560816
  issn: 2214-7853
  databaseCode: AIEXJ
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLaqjgMXBALE-CUfuI1MjuMm9jEq49dh4jBQT0S240Cm4lShm6b9S_yTPMd2WkZVsQOXqHEap_H75Pf8-vx9CL3iaSNTUc8SqmG56v46S6Se6YRmjChGG0lYPYhNFKenfLEQnyaTX3EvzOWysJZfXYnVfzU1tIGx3dbZW5h77BQa4DMYHY5gdjj-k-HLo9qYVZSD-Dayhnty777vnCT42gSJcFu7fZW-YkjGwkeYsPsLl0ZLnJODELXtXP5vHd1cVICSa_9CEMC67SQuu7BxiJv8u0vQ-6qBEnyv6byaRxevf-mur4er71xhrLXt6ARkezT_fiF9WYAZIfjG6SX1vsp3LvsfZtltJy_oViaT0pQlBfdMwcdmR1uYnr2uSJhf0-AyTDib7fQCPiFxfgwx_8pxvlI6cNmSHZzbN3zhWKEYi9_Oq6GTynVSEVEN9O4HtJgJMkUH5YeTxcdNSg-iRz6I7Y4vEnmuhorCv37O7lhoK745u4_uhYUJLj2gHqCJsQ_R1xI7MOEIJhzBhAFMeAATHsGEAUz4TzDh1uIbYMJbYHqEPr89OZu_T4IiR6Jp7pirmdJUsaKBZS9TLJWK66bQmZE50dJIZQouZA1BLG-awigmay4UEXXDM0MMyx6jqe2seYKwhlBTcKJkrg1TdcapbpoaJgdY73JF8kNE49hUOtDVO9WUZbXHNIfo9XjTyrO17P96Hge9CgGnDyQrQNK-G5_e7jnP0F135jN3z9EUht28QHf05br92b8MMPoNx1Snqg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+approach+for+error+detection+and+quantification+in+extrusion-based+bioprinting&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Bonatti%2C+Amedeo+Franco&rft.au=Vozzi%2C+Giovanni&rft.au=Kai+Chua%2C+Chee&rft.au=De+Maria%2C+Carmelo&rft.date=2022&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=70&rft.spage=131&rft.epage=135&rft_id=info:doi/10.1016%2Fj.matpr.2022.09.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matpr_2022_09_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon