Empowering research in chemistry and materials science through intelligent algorithms
In this review, we explore the integration of intelligent algorithms in chemistry and materials science.We begin by delineating the core principles of Machine Learning, Deep Learning, and optimization algorithms, highlighting their bespoke adaptation to these scientific domains. The focus then shift...
Uloženo v:
| Vydáno v: | Artificial intelligence chemistry Ročník 2; číslo 1; s. 100035 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2024
Elsevier |
| Témata: | |
| ISSN: | 2949-7477, 2949-7477 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this review, we explore the integration of intelligent algorithms in chemistry and materials science.We begin by delineating the core principles of Machine Learning, Deep Learning, and optimization algorithms, highlighting their bespoke adaptation to these scientific domains. The focus then shifts to the critical processes of data management, including collection, refinement, and feature engineering, alongside strategies for efficient data mining from targeted databases and literatures. Subsequently, we present a concise overview of the diverse applications of these algorithms, emphasizing their transformative impact in both fields. Finally, this review explores the future prospects and challenges of these emerging algorithms. |
|---|---|
| ISSN: | 2949-7477 2949-7477 |
| DOI: | 10.1016/j.aichem.2023.100035 |