Autoencoders Based Deep Learner for Image Denoising

Nowadays, digital images have a valuable role in our daily life, and can be used for various of applications like fingerprint recognition, video surveillance etc. Sometimes, images get infected with noise due to many reasons such as defects in camera sensors, transmission in noisy channel, faulty me...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Procedia computer science Ročník 171; s. 1535 - 1541
Hlavní autoři: Bajaj, Komal, Singh, Dushyant Kumar, Ansari, Mohd. Aquib
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 2020
Témata:
ISSN:1877-0509, 1877-0509
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nowadays, digital images have a valuable role in our daily life, and can be used for various of applications like fingerprint recognition, video surveillance etc. Sometimes, images get infected with noise due to many reasons such as defects in camera sensors, transmission in noisy channel, faulty memory locations in the hardware etc. Processing a noisy image is not advisable because usually it yields erroneous outcomes. So, as to improve it for subsequence processing, the noise must be eliminated from the image in advance. Therefore, there is a need of an efficient image denoising technique that helps to deal with noisy image. Image de-noising is a process to realign the original image from the degraded image. In this paper, autoencoders based deep learning model is proposed for image denoising. The autoencoders learns noise from the training images and then try to eliminate the noise for novel image. The experimental outcomes prove that this proposed model for PSNR has achieved higher result compared to the conventional models.
AbstractList Nowadays, digital images have a valuable role in our daily life, and can be used for various of applications like fingerprint recognition, video surveillance etc. Sometimes, images get infected with noise due to many reasons such as defects in camera sensors, transmission in noisy channel, faulty memory locations in the hardware etc. Processing a noisy image is not advisable because usually it yields erroneous outcomes. So, as to improve it for subsequence processing, the noise must be eliminated from the image in advance. Therefore, there is a need of an efficient image denoising technique that helps to deal with noisy image. Image de-noising is a process to realign the original image from the degraded image. In this paper, autoencoders based deep learning model is proposed for image denoising. The autoencoders learns noise from the training images and then try to eliminate the noise for novel image. The experimental outcomes prove that this proposed model for PSNR has achieved higher result compared to the conventional models.
Author Bajaj, Komal
Singh, Dushyant Kumar
Ansari, Mohd. Aquib
Author_xml – sequence: 1
  givenname: Komal
  surname: Bajaj
  fullname: Bajaj, Komal
  organization: Department of Computer Science & Engineering, MNNIT Allahabad, Prayagraj, U.P., INDIA
– sequence: 2
  givenname: Dushyant Kumar
  surname: Singh
  fullname: Singh, Dushyant Kumar
  email: dushyant@mnnit.ac.in
  organization: Department of Computer Science & Engineering, MNNIT Allahabad, Prayagraj, U.P., INDIA
– sequence: 3
  givenname: Mohd. Aquib
  surname: Ansari
  fullname: Ansari, Mohd. Aquib
  organization: Department of Computer Science & Engineering, MNNIT Allahabad, Prayagraj, U.P., INDIA
BookMark eNqFkE1LAzEQhoNUsNb-Ai_7B3adfOwme_BQ61eh4EXPIZvMlpQ2Kckq-O_dqgfxoHOZl4HnhWfOySTEgIRcUqgo0OZqWx1StLliwKACUdFGnJApVVKWUEM7-ZHPyDznLYzDlWqpnBK-eB0iBhsdplzcmIyuuEU8FGs0KWAq-piK1d5scDyH6LMPmwty2ptdxvn3npGX-7vn5WO5fnpYLRfr0rKGi1J1yFTHsRMSKYA1zrStdMzV0qpadILTvgZHayN7LhtJFXeMm0ayjregFJ8R_tVrU8w5Ya8Pye9NetcU9FFdb_Wnuj6qaxB6VB-p9hdl_WAGH8OQjN_9w15_sThqvXlMOls_fgedT2gH7aL_k_8Aw0x2aw
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113090
crossref_primary_10_3390_math13111768
crossref_primary_10_1016_j_fishres_2023_106790
crossref_primary_10_1007_s10439_025_03840_w
crossref_primary_10_1016_j_compbiomed_2025_109959
crossref_primary_10_57020_ject_1390428
crossref_primary_10_1016_j_bspc_2020_102396
crossref_primary_10_1016_j_oceaneng_2024_117280
crossref_primary_10_1016_j_asoc_2024_112337
crossref_primary_10_1080_13682199_2023_2229040
crossref_primary_10_1177_09544089241263455
crossref_primary_10_3390_electronics12204346
crossref_primary_10_1007_s11042_023_15911_y
crossref_primary_10_1038_s41467_024_48099_2
crossref_primary_10_3390_technologies13070310
crossref_primary_10_1016_j_engappai_2025_110107
crossref_primary_10_1109_TNNLS_2021_3080276
crossref_primary_10_1016_j_radi_2024_10_009
crossref_primary_10_1049_htl2_12091
crossref_primary_10_1109_ACCESS_2024_3352431
crossref_primary_10_1007_s11042_021_11573_w
crossref_primary_10_1007_s11042_020_10103_4
crossref_primary_10_1109_TIM_2024_3451581
crossref_primary_10_1109_ACCESS_2024_3402748
crossref_primary_10_1088_1361_6463_acd261
crossref_primary_10_3390_mi12121558
crossref_primary_10_1155_stc_5602604
crossref_primary_10_1016_j_engappai_2023_106484
crossref_primary_10_1016_j_procs_2024_04_204
crossref_primary_10_1051_e3sconf_202343001052
crossref_primary_10_1007_s00521_022_07224_2
crossref_primary_10_1016_j_inffus_2023_102217
crossref_primary_10_1016_j_procs_2024_04_241
crossref_primary_10_1007_s41870_024_02315_w
Cites_doi 10.1049/el:20080522
10.1007/s11263-007-0052-1
10.1109/ICCV.1999.790383
10.1186/s13640-018-0264-z
10.1007/978-3-319-46418-3_15
10.14257/ijmue.2017.12.11.01
10.1109/LSP.2005.859509
10.1109/I2C2.2017.8321819
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2020.04.164
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1541
ExternalDocumentID 10_1016_j_procs_2020_04_164
S1877050920311431
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c2634-8be28b3eb47e100cada997d2d57c854b431f50d15a7f3767183d23a672b390883
ISSN 1877-0509
IngestDate Sat Nov 29 06:54:28 EST 2025
Tue Nov 18 19:44:08 EST 2025
Tue May 16 22:33:24 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Convolutional Neural Network
Noise
Autoencoders
Denoising
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2634-8be28b3eb47e100cada997d2d57c854b431f50d15a7f3767183d23a672b390883
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2020.04.164
PageCount 7
ParticipantIDs crossref_primary_10_1016_j_procs_2020_04_164
crossref_citationtrail_10_1016_j_procs_2020_04_164
elsevier_sciencedirect_doi_10_1016_j_procs_2020_04_164
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dabov, Kostadin, et al. "BM3D image denoising with shape-adaptive principal component analysis." SPARS’09-Signal Processing with Adaptive Sparse Structured Representations. 2009.
Mao, Xiao-Jiao, Chunhua Shen, and Yu-Bin Yang. "Image restoration using convolutional auto-encoders with symmetric skip connections." arXiv preprint arXiv:1606.08921 (2016).
Ansari, Kurchaniya, Dixit (bib00018) 2017; 12
Huynh-Thu, Ghanbari (bib00015) 2008; 44
Hasan, M. and El-Sakka. "Improved BM3D image denoising using SSIM-optimized Wiener filter." M. J Image Video Proc. 2018: 25.
Koziarski, Michal, and Boguslaw Cyganek. "Deep neural image denoising." International Conference on Computer Vision and Graphics. Springer, Cham, 2016.
Mahmoudi, Sapiro (bib0007) 2005; 12
A. Efros and T. Leung. "Texture synthesis by non parametric sampling." In Proc. Int. Conf. Computer Vision (ICCV 99), Vol. 2, pp. 1033-1038, 1999.
Buades, Coll, Morel (bib0002) 2008; 76
Jain, Viren, and Sebastian Seung. "Natural image denoising with convolutional networks." Advances in neural information processing systems. 2009.
Dwivedi N., Singh D.K. "Review of Deep Learning Techniques for Gender Classification in Images." In: Advances in Intelligent Systems and Computing, vol 741. Springer, Singapore.
Liu, Po-Yu, and Edmund Y. Lam. "Image Reconstruction Using Deep Learning." arXiv preprint arXiv:1809.10410 (2018).
U. Ojha, U. Adhikari and D.K. Singh, "Image annotation using deep learning: A review." In: International Conference on Intelligent Computing and Control (I2C2), Coimbatore, 2017, pp. 1-5.
Buades, Coll, Michel Morel (bib0005) 2004; 5
Lehtinen et al. "Noise2noise: Learning image restoration without clean data." arXiv preprint arXiv:1803.04189 (2018)
Xie, Junyuan, Linli Xu, and Enhong Chen. "Image denoising and inpainting with deep neural networks." Advances in neural information processing systems. 2012.
Larrue, Tara, et al. "Denoising Videos with Convolutional Autoencoders." (2018).
Ansari M.A., Singh D.K. "Review of Deep Learning Techniques for Object Detection and Classification." In: Verma S., Tomar R., Chaurasia B., Singh V., Abawajy J. (eds) Communication, Networks and Computing. CNC 2018. Communications in Computer and Information Science., vol 839. Springer, Singapore
Ansari (10.1016/j.procs.2020.04.164_bib00018) 2017; 12
10.1016/j.procs.2020.04.164_bib00010
10.1016/j.procs.2020.04.164_bib00011
10.1016/j.procs.2020.04.164_bib00012
10.1016/j.procs.2020.04.164_bib0006
10.1016/j.procs.2020.04.164_bib0008
10.1016/j.procs.2020.04.164_bib0009
10.1016/j.procs.2020.04.164_bib0003
Mahmoudi (10.1016/j.procs.2020.04.164_bib0007) 2005; 12
10.1016/j.procs.2020.04.164_bib0004
10.1016/j.procs.2020.04.164_bib0001
Buades (10.1016/j.procs.2020.04.164_bib0005) 2004; 5
Buades (10.1016/j.procs.2020.04.164_bib0002) 2008; 76
10.1016/j.procs.2020.04.164_bib00017
10.1016/j.procs.2020.04.164_bib00013
10.1016/j.procs.2020.04.164_bib00014
Huynh-Thu (10.1016/j.procs.2020.04.164_bib00015) 2008; 44
10.1016/j.procs.2020.04.164_bib00016
References_xml – reference: A. Efros and T. Leung. "Texture synthesis by non parametric sampling." In Proc. Int. Conf. Computer Vision (ICCV 99), Vol. 2, pp. 1033-1038, 1999.
– reference: Larrue, Tara, et al. "Denoising Videos with Convolutional Autoencoders." (2018).
– volume: 12
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib00018
  article-title: A Comprehensive Analysis of Image Edge Detection Techniques.
  publication-title: International Journal of Multimedia and Ubiquitous Engineering
– reference: Dwivedi N., Singh D.K. "Review of Deep Learning Techniques for Gender Classification in Images." In: Advances in Intelligent Systems and Computing, vol 741. Springer, Singapore.
– reference: Koziarski, Michal, and Boguslaw Cyganek. "Deep neural image denoising." International Conference on Computer Vision and Graphics. Springer, Cham, 2016.
– volume: 44
  start-page: 800
  year: 2008
  end-page: 801
  ident: bib00015
  article-title: Scope of validity of PSNR in image/video quality assessment.
  publication-title: Electronics letters.
– reference: Lehtinen et al. "Noise2noise: Learning image restoration without clean data." arXiv preprint arXiv:1803.04189 (2018)
– reference: Dabov, Kostadin, et al. "BM3D image denoising with shape-adaptive principal component analysis." SPARS’09-Signal Processing with Adaptive Sparse Structured Representations. 2009.
– reference: Liu, Po-Yu, and Edmund Y. Lam. "Image Reconstruction Using Deep Learning." arXiv preprint arXiv:1809.10410 (2018).
– volume: 5
  year: 2004
  ident: bib0005
  article-title: On image denoising methods
  publication-title: CMLA Preprint
– volume: 76
  start-page: 123
  year: 2008
  end-page: 139
  ident: bib0002
  article-title: Nonlocal image and movie denoising
  publication-title: International journal of computer vision
– reference: U. Ojha, U. Adhikari and D.K. Singh, "Image annotation using deep learning: A review." In: International Conference on Intelligent Computing and Control (I2C2), Coimbatore, 2017, pp. 1-5.
– reference: Jain, Viren, and Sebastian Seung. "Natural image denoising with convolutional networks." Advances in neural information processing systems. 2009.
– reference: Mao, Xiao-Jiao, Chunhua Shen, and Yu-Bin Yang. "Image restoration using convolutional auto-encoders with symmetric skip connections." arXiv preprint arXiv:1606.08921 (2016).
– reference: Ansari M.A., Singh D.K. "Review of Deep Learning Techniques for Object Detection and Classification." In: Verma S., Tomar R., Chaurasia B., Singh V., Abawajy J. (eds) Communication, Networks and Computing. CNC 2018. Communications in Computer and Information Science., vol 839. Springer, Singapore
– reference: Hasan, M. and El-Sakka. "Improved BM3D image denoising using SSIM-optimized Wiener filter." M. J Image Video Proc. 2018: 25.
– reference: Xie, Junyuan, Linli Xu, and Enhong Chen. "Image denoising and inpainting with deep neural networks." Advances in neural information processing systems. 2012.
– volume: 12
  start-page: 839
  year: 2005
  end-page: 842
  ident: bib0007
  article-title: Fast image and video denoising via nonlocal means of similar neighborhoods.
  publication-title: IEEE signal processing letters
– ident: 10.1016/j.procs.2020.04.164_bib00012
– ident: 10.1016/j.procs.2020.04.164_bib0003
– volume: 5
  year: 2004
  ident: 10.1016/j.procs.2020.04.164_bib0005
  article-title: On image denoising methods
  publication-title: CMLA Preprint
– ident: 10.1016/j.procs.2020.04.164_bib00011
– volume: 44
  start-page: 800
  issue: 13
  year: 2008
  ident: 10.1016/j.procs.2020.04.164_bib00015
  article-title: Scope of validity of PSNR in image/video quality assessment.
  publication-title: Electronics letters.
  doi: 10.1049/el:20080522
– ident: 10.1016/j.procs.2020.04.164_bib0001
– ident: 10.1016/j.procs.2020.04.164_bib00013
– ident: 10.1016/j.procs.2020.04.164_bib00014
– volume: 76
  start-page: 123
  issue: 2
  year: 2008
  ident: 10.1016/j.procs.2020.04.164_bib0002
  article-title: Nonlocal image and movie denoising
  publication-title: International journal of computer vision
  doi: 10.1007/s11263-007-0052-1
– ident: 10.1016/j.procs.2020.04.164_bib0004
  doi: 10.1109/ICCV.1999.790383
– ident: 10.1016/j.procs.2020.04.164_bib00016
  doi: 10.1186/s13640-018-0264-z
– ident: 10.1016/j.procs.2020.04.164_bib0009
  doi: 10.1007/978-3-319-46418-3_15
– volume: 12
  start-page: 1
  year: 2017
  ident: 10.1016/j.procs.2020.04.164_bib00018
  article-title: A Comprehensive Analysis of Image Edge Detection Techniques.
  publication-title: International Journal of Multimedia and Ubiquitous Engineering
  doi: 10.14257/ijmue.2017.12.11.01
– ident: 10.1016/j.procs.2020.04.164_bib00010
– ident: 10.1016/j.procs.2020.04.164_bib0006
– volume: 12
  start-page: 839
  issue: 12
  year: 2005
  ident: 10.1016/j.procs.2020.04.164_bib0007
  article-title: Fast image and video denoising via nonlocal means of similar neighborhoods.
  publication-title: IEEE signal processing letters
  doi: 10.1109/LSP.2005.859509
– ident: 10.1016/j.procs.2020.04.164_bib0008
– ident: 10.1016/j.procs.2020.04.164_bib00017
  doi: 10.1109/I2C2.2017.8321819
SSID ssj0000388917
Score 2.3938603
Snippet Nowadays, digital images have a valuable role in our daily life, and can be used for various of applications like fingerprint recognition, video surveillance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1535
SubjectTerms Autoencoders
Convolutional Neural Network
Deep learning
Denoising
Noise
Title Autoencoders Based Deep Learner for Image Denoising
URI https://dx.doi.org/10.1016/j.procs.2020.04.164
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELVg4cCFb8TyJR-4laDEcWr7WFgQCFghsUh7ixzb1bbaTUrTrnYv_HZmbCcNUFXsgUvUWs20zTzNTCbPbwh5WRhRWGdEkjljE26lSjTU6YlyRnPDnSjCRuHP4vBQHh-rr_FBe-vHCYi6lhcXavFfXQ1r4GzcOnsFd_dGYQFeg9PhCG6H4z85frJeNahOiQzl0RtIUkg1dougpOqWnlf48QypOgeubmZtl7tihep3DgBoPNkc5z2MYpLc9Dzn2j_y-dSc6Z6f8Q3M-A7Nwbo9uQR3jTx5e9NlaHXY0_6lObGvR5Mf61k17DiwdBAepRAJKsaE7LFlrYupYa5KjIoQVYtBhoWqLdsavUMjYY65w6CUOktRhjYLMue_a2X_kcN6ZmFHWpuX3kiJRsqUl2DkOrnBBNw_Ib_z56YRh3I4yk9m7v9Jp07leYB__ZjtFcygKjm6S27H2wk6CTC4R665-j65043qoDFyPyD5EBXUo4IiKmhEBQVUUI8K2qPiIfn-_t3R2w9JnJeRGDbOeSIrx2SVu4oLl6Wp0VYrJSyzhTCy4BXUitMitVmhxRRFfCCaW5brsWBVjnS3_BHZq5vaPSa0MlZJKE4l9guKdKrUNLPZ2FjOOVZ5-4R116A0UUweZ5qcljscsE9e9SctgpbK7o-Pu4tbRqSHMq8EvOw68cnVvucpuYXvQl_tGdlbLdfuOblpzlezdvnCg-UXWrd-mQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoders+Based+Deep+Learner+for+Image+Denoising&rft.jtitle=Procedia+computer+science&rft.au=Bajaj%2C+Komal&rft.au=Singh%2C+Dushyant+Kumar&rft.au=Ansari%2C+Mohd.+Aquib&rft.date=2020&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=171&rft.spage=1535&rft.epage=1541&rft_id=info:doi/10.1016%2Fj.procs.2020.04.164&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2020_04_164
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon