Review of Clustering Techniques in Control System

Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is available in abundance, but finding useful data has become a challenging task. For this, data clustering is an effective and common approach where...

Full description

Saved in:
Bibliographic Details
Published in:Procedia computer science Vol. 173; pp. 272 - 280
Main Authors: Singh, Saumya, Srivastava, Smriti
Format: Journal Article
Language:English
Published: Elsevier B.V 2020
Subjects:
ISSN:1877-0509, 1877-0509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is available in abundance, but finding useful data has become a challenging task. For this, data clustering is an effective and common approach where we can group data by seeing some pattern or inherent data similarity in one group. Clustering is an unsupervised learning method of linearly separable and nonlinearly separable clusters widely used for different nature of application [1]. Data clustering finds application in classification of patterns in different areas such as artificial intelligence, summarization, learning, segmentation, speech recognition, pattern recognition, image segmentation, biology, marketing, data mining, modelling and system identification etc [5][24][25]. No one clustering technique can be said as best or better than other, because different clustering algorithms co-exists and are application specific. This paper majorly emphasises on critical review of clustering algorithms used in control systems, but a brief overview is also given about all major algorithms.
AbstractList Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is available in abundance, but finding useful data has become a challenging task. For this, data clustering is an effective and common approach where we can group data by seeing some pattern or inherent data similarity in one group. Clustering is an unsupervised learning method of linearly separable and nonlinearly separable clusters widely used for different nature of application [1]. Data clustering finds application in classification of patterns in different areas such as artificial intelligence, summarization, learning, segmentation, speech recognition, pattern recognition, image segmentation, biology, marketing, data mining, modelling and system identification etc [5][24][25]. No one clustering technique can be said as best or better than other, because different clustering algorithms co-exists and are application specific. This paper majorly emphasises on critical review of clustering algorithms used in control systems, but a brief overview is also given about all major algorithms.
Author Singh, Saumya
Srivastava, Smriti
Author_xml – sequence: 1
  givenname: Saumya
  surname: Singh
  fullname: Singh, Saumya
  email: singhsaumya10@gmail.com
  organization: Instrumentation and Control Engineering Division, Netaji Subhas University of Technology, Delhi-78, India
– sequence: 2
  givenname: Smriti
  surname: Srivastava
  fullname: Srivastava, Smriti
  organization: Instrumentation and Control Engineering Division, Netaji Subhas University of Technology, Delhi-78, India
BookMark eNqFkE1LAzEQhoNUsNb-Ai_7B3adJNske_Agi19QELSeQzaZaso2W5Ot0n_v1noQDzqXeWF4XnjmlIxCF5CQcwoFBSouVsUmdjYVDBgUIArg7IiMqZIyhxlUox_5hExTWsEwXKmKyjGhj_ju8SPrllndblOP0YeXbIH2Nfi3LabMh6zuQh-7NnvaDff1GTlemjbh9HtPyPPN9aK-y-cPt_f11Ty3THCW80ZQqxBKUA2tDJONZLJkJZ0ZqyqBQklXInLHwFJjLXVMCDQzV9oKHZN8Qvih18YupYhLvYl-beJOU9B7cb3SX-J6L65B6EF8oKpflPW96f1ewfj2H_bywOKgNXwl6mQ9BovOR7S9dp3_k_8EmzF2vg
CitedBy_id crossref_primary_10_1016_j_engappai_2022_104743
crossref_primary_10_1080_15567036_2024_2334923
crossref_primary_10_1007_s12530_023_09542_9
crossref_primary_10_1177_16878132221131193
crossref_primary_10_1108_JFC_11_2024_0356
crossref_primary_10_1007_s42979_024_03638_y
crossref_primary_10_3390_math11092018
crossref_primary_10_21834_e_bpj_v10iSI31_6938
crossref_primary_10_1007_s00354_023_00216_3
crossref_primary_10_1016_j_energy_2022_126432
crossref_primary_10_1016_j_est_2021_102407
crossref_primary_10_1016_j_eswa_2023_121449
crossref_primary_10_1016_j_buildenv_2023_110160
crossref_primary_10_3390_electronics13214215
crossref_primary_10_1007_s10115_024_02211_6
crossref_primary_10_14254_1795_6889_2021_17_3_3
crossref_primary_10_1007_s11280_023_01158_y
crossref_primary_10_3390_app13063529
Cites_doi 10.1109/TNN.2005.845141
10.1016/j.neucom.2017.06.053
10.1109/IECON.2001.975574
10.5120/1326-1808
10.1155/2017/2427309
10.1016/j.patrec.2009.09.011
10.1016/j.patcog.2018.10.026
10.14419/ijet.v7i2.21.12172
10.1016/j.asoc.2015.12.001
10.5120/ijca2017912747
10.1016/j.apm.2010.09.023
10.14257/ijast.2018.113.14
10.1016/j.asoc.2011.05.016
10.1109/TENCON.2009.5395882
10.1109/DASC-PICom-DataCom-CyberSciTec.2017.44
10.1371/journal.pone.0210236
10.1016/j.procs.2016.03.014
10.1109/ICMLA.2010.21
10.1109/ISCO.2013.6481187
10.1109/ICC.2012.6364088
10.3368/jhr.50.2.317
10.1007/3-540-28349-8_2
10.1016/j.jnca.2014.09.005
10.1016/j.comcom.2007.05.024
10.1016/j.bspc.2007.07.009
10.1109/IIKI.2015.62
10.1109/ICCSP.2016.7754534
10.1007/s40745-015-0040-1
10.1016/j.swevo.2013.11.003
10.1109/CTCEEC.2017.8454973
10.1109/HIS.2011.6122106
10.3390/a10040123
10.1016/j.dib.2019.104004
10.1016/j.procs.2019.01.022
10.1016/j.compeleceng.2013.11.024
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2020.06.032
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 280
ExternalDocumentID 10_1016_j_procs_2020_06_032
S1877050920315362
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c2632-3b61c8e0408b19a27b72742415ac896e687d4ee3d20c1acc1d266ea5d4c9ed273
ISSN 1877-0509
IngestDate Sat Nov 29 06:57:48 EST 2025
Tue Nov 18 21:24:59 EST 2025
Wed May 17 00:07:49 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Dendrogram
metaheuristic clustering
hierarchical clustering
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2632-3b61c8e0408b19a27b72742415ac896e687d4ee3d20c1acc1d266ea5d4c9ed273
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2020.06.032
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_procs_2020_06_032
crossref_citationtrail_10_1016_j_procs_2020_06_032
elsevier_sciencedirect_doi_10_1016_j_procs_2020_06_032
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chandrashekar, Sahin (bib0008) 2014; 40
Chitra, Maheswari (bib00045) 2017; 6
Xu, Donald Wunsch (bib0004) 2005; 16
Chaouni Benabdellah, Benghabrit, Bouhaddou (bib00015) 2019; 148
Mario H. A. C. Adaniya, Moises F. Lima, Joel J. P. C. Rodrigues, Taufik Abrao, and Mario Lemes Proenca Jr., “Anomaly Detection Using DSNS and Firefly Harmonic Clustering Algorithm,” IEEE ICC 2012 - Communication QoS, Reliability and Modeling Symposium, pp. 1183-1187.
A. Colin Cameron, and Douglas L. Miller, “A Practitioner’s Guide to Cluster- Robust Inference,” Journal of Human Resources, 50 (2), pp. 317-372.
Habbi, Kidouche, Zelmat (bib00052) 2011; 35
Hongzi Mao, Mohammad Alizadeh, Ishai Menachey, and Srikanth Kandulay, “Resource Management with Deep Reinforcement Learning,” Proceedings of the 15th ACM Workshop on Hot Topics in Networks - HotNets ‘16.
Ishida, Naohiko Kinoshita, and Yukihiro Hamasuna, “On Various Types of Controlled-sized Clustering Based on Optimization,” (2017) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
Kameshwaran, Malarvizhi (bib00018) 2014; 5
Rashid Mehmood, Hussain Dawood, Rongfang Bie, and Haseeb Ahmad, “Fuzzy clustering by fast search and find of density peaks,” 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, pp. 258-261.
Kamalpreet Bindra, and Anuranjan Mishra, “A Detailed Study of Clustering Algorithms,” International Conference on Current Trends in Computer, Electrical, Electronics and Communication (ICCTCEEC-2017), pp. 752-757.
Ahmad O. Aseeri, Yu Zhuang, and Mohammed Saeed Alkatheiri, “A Memory Capacity-Aware Algorithm for Fast Clustering of Disk-Resident Big Datasets,” 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, pp.194-201.
Anjana Gosain, and Sonika Dahiya, “Performance Analysis of Various Fuzzy Clustering Algorithms: A Review,” 7th International Conference on Communication, Computing and Virtualization 2016, Procedia Computer Science 79 (2016), pp. 100 – 111.
KM Archana Patel, and Prateek Thakral, “The Best Clustering Algorithms in Data Mining,” International Conference on Communication and Signal Processing, April 6-8, 2016, pp. 2042-2046.
Kaur Mann, Kaur (bib00030) 2013; 2
Roop Lal, and Chetna, “Performance Evaluation of K-means and EPBC (Enhanced Partitioning Based Clustering) on National Highway Authority,” Research Article, Volume 8 Issue No.7, pp. 18673-18675.
Nikhil Bansal, Avrim Blum, and Shuchi Chawla, “Correlation Clustering,” Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02).
Bhagyashree Pathak, and Niranjan Lal, “A Survey on Clustering Methods in Data Mining,” International Journal of Computer Applications (0975 – 8887), Volume 159 – No 2, February 2017.
Yuvaraj, Manjula (bib00037) 2018; 7
Valarmathy, Krishnaveni (bib00013) 2019; 7
N. El Felly, J.-Y. Dieulot, P. Borne, and M. Benrejeb, “A multimodel approach of complex systems identification and control using neural and fuzzy clustering algorithms,” 2010 Ninth International Conference on Machine Learning and Applications, pp. 93-98.
Rai, Singh (bib00040) 2010; 7
Xu, Tian (bib00043) 2015; 2
Kamdi (bib00039) 2015; 2
Bano, Khan (bib00017) 2018; 113
Akhtar Sabzi, et.al. “An Improved Fuzzy K-Medoids Clustering Algorithm with Optimized Number of Clusters”, 11th International Conference on Hybrid Intelligent Systems (HIS),2011.
Jagannath Nanda, Panda (bib0002) 2014; 16
Sacco, Henderson (bib0007) 2011; 11
M. Mehdi Afsar, Mohammad H. Tayarani N, “Clustering in sensor networks: A literature survey,” Journal of Network and Computer Applications, 46, pp. 198–226.
Pavel Berkhin, “Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71.
Adam Chehouri, Rafic Younes, Jihan Khoder, Jean Perron, and Adrian Ilinca, “A Selection Process for Genetic Algorithm Using Clustering Analysis,” Algorithms, 10(4), 123.
Meena Tushir, and Smriti Srivastava, “A Novel Clustering Method for fuzzy Model Identification,” TENCON 2009 - 2009 IEEE Region 10 Conference.
Mohamed Bouzbida, Lassad Hassine, and Abdelkader Chaari, “Robust Kernel Clustering Algorithm for Nonlinear System Identification,” Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 2427309.
Ahmed Abbasi, Younis (bib00024) 2007; 30
Katarzyna Wilamowska, and Milos Manic, “Unsupervised pattern clustering for data mining,” IECON’0I: The 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1862-1867.
Cordeiro de Amorim (bib00011) 2016; 33
R. Indhu, and R. Porkodi, “Comparison of Clustering Algorithm,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology,” 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN: 2456-3307.
Guliani, Vijay Rajoriya (bib00031) 2015; 4
Zhou, Ye, Du (bib00051) 2016; 1–1
Brownstein, Adolfsson, Ackerman (bib00016) 2019; 25
Mayra Z. Rodriguez, Cesar H. Comin, Dalcimar Casanova, Odemir M. Bruno, Diego R. Amancio, Luciano da F. Costa, and Francisco A. Rodrigues, “Clustering algorithms: A comparative approach,” PLOS ONE, 14(1).
Shizhan Lu, “Clustering by the way of atomic fission,” IEEE Dataport, 2019.
Asghari Oskoei, Hu (bib00025) 2007; 2
Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharil, Om Prakash Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin, “A Review of Clustering Techniques and Developments,” Neurocomputing (2017) special issue.
Jain (bib00028) 2010; 31
Berkhin, P. (n.d.), “A Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71.
Varchika Gupta, and Ashutosh Rastogi, “Survey on Classification of Clustering Technique,” International Journal of Advanced Research in Computer and Communication Engineering, ISSN (Online) 2278-1021, ISSN (Print) 2319 5940.
P.K. Srimani, Shanthi Mahesh and Suhas A. Bhyratae, “Improvement of Traditional K-means Algorithm through the Regulation of Distance Metric Parameters,” (2013) 7th International Conference on Intelligent Systems and Control (ISCO).
Ad´an Jos´e-Garc´ıa Wilfrido G´omez-Flores, “Automatic Clustering Using Nature-Inspired Metaheuristics: A Survey,” Applied Soft Computing (2015).
Xiumei Wang, Tianzhen Zhang, and Xinbo Gao, “Multiview Clustering Based on Non-Negative Matrix Factorization and Pairwise Measurements.” IEEE Transactions On Cybernetics.
Andreas Adolfsson, Margareta Ackerman, and Naomi C. Brownstein, “To Cluster, or Not to Cluster: An Analysis of Clusterability Methods,” Pattern Recognition (2018).
Sourabh Bose, and Manfred Huber, “Semi-Unsupervised Clustering Using Reinforcement Learning,” Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference.
10.1016/j.procs.2020.06.032_bib00049
Ahmed Abbasi (10.1016/j.procs.2020.06.032_bib00024) 2007; 30
10.1016/j.procs.2020.06.032_bib00048
Habbi (10.1016/j.procs.2020.06.032_bib00052) 2011; 35
Xu (10.1016/j.procs.2020.06.032_bib0004) 2005; 16
Rai (10.1016/j.procs.2020.06.032_bib00040) 2010; 7
Chaouni Benabdellah (10.1016/j.procs.2020.06.032_bib00015) 2019; 148
10.1016/j.procs.2020.06.032_bib00044
Yuvaraj (10.1016/j.procs.2020.06.032_bib00037) 2018; 7
10.1016/j.procs.2020.06.032_bib00047
10.1016/j.procs.2020.06.032_bib00046
10.1016/j.procs.2020.06.032_bib00041
10.1016/j.procs.2020.06.032_bib00042
10.1016/j.procs.2020.06.032_bib0005
10.1016/j.procs.2020.06.032_bib00019
Kamdi (10.1016/j.procs.2020.06.032_bib00039) 2015; 2
10.1016/j.procs.2020.06.032_bib0006
10.1016/j.procs.2020.06.032_bib0009
Valarmathy (10.1016/j.procs.2020.06.032_bib00013) 2019; 7
10.1016/j.procs.2020.06.032_bib0001
Jain (10.1016/j.procs.2020.06.032_bib00028) 2010; 31
10.1016/j.procs.2020.06.032_bib0003
Sacco (10.1016/j.procs.2020.06.032_bib0007) 2011; 11
Chitra (10.1016/j.procs.2020.06.032_bib00045) 2017; 6
10.1016/j.procs.2020.06.032_bib00050
Asghari Oskoei (10.1016/j.procs.2020.06.032_bib00025) 2007; 2
10.1016/j.procs.2020.06.032_bib00012
10.1016/j.procs.2020.06.032_bib00014
10.1016/j.procs.2020.06.032_bib00010
10.1016/j.procs.2020.06.032_bib00053
10.1016/j.procs.2020.06.032_bib00027
10.1016/j.procs.2020.06.032_bib00026
10.1016/j.procs.2020.06.032_bib00029
Brownstein (10.1016/j.procs.2020.06.032_bib00016) 2019; 25
Cordeiro de Amorim (10.1016/j.procs.2020.06.032_bib00011) 2016; 33
Guliani (10.1016/j.procs.2020.06.032_bib00031) 2015; 4
Zhou (10.1016/j.procs.2020.06.032_bib00051) 2016; 1–1
10.1016/j.procs.2020.06.032_bib00023
10.1016/j.procs.2020.06.032_bib00022
Kaur Mann (10.1016/j.procs.2020.06.032_bib00030) 2013; 2
10.1016/j.procs.2020.06.032_bib00021
10.1016/j.procs.2020.06.032_bib00020
10.1016/j.procs.2020.06.032_bib00038
Bano (10.1016/j.procs.2020.06.032_bib00017) 2018; 113
Jagannath Nanda (10.1016/j.procs.2020.06.032_bib0002) 2014; 16
Chandrashekar (10.1016/j.procs.2020.06.032_bib0008) 2014; 40
Xu (10.1016/j.procs.2020.06.032_bib00043) 2015; 2
10.1016/j.procs.2020.06.032_bib00034
10.1016/j.procs.2020.06.032_bib00033
10.1016/j.procs.2020.06.032_bib00036
10.1016/j.procs.2020.06.032_bib00035
Kameshwaran (10.1016/j.procs.2020.06.032_bib00018) 2014; 5
10.1016/j.procs.2020.06.032_bib00032
References_xml – reference: Xiumei Wang, Tianzhen Zhang, and Xinbo Gao, “Multiview Clustering Based on Non-Negative Matrix Factorization and Pairwise Measurements.” IEEE Transactions On Cybernetics.
– reference: Meena Tushir, and Smriti Srivastava, “A Novel Clustering Method for fuzzy Model Identification,” TENCON 2009 - 2009 IEEE Region 10 Conference.
– reference: Rashid Mehmood, Hussain Dawood, Rongfang Bie, and Haseeb Ahmad, “Fuzzy clustering by fast search and find of density peaks,” 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, pp. 258-261.
– reference: Nikhil Bansal, Avrim Blum, and Shuchi Chawla, “Correlation Clustering,” Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02).
– volume: 33
  year: 2016
  ident: bib00011
  article-title: A Survey on Feature Weighting Based K-means Algorithms
  publication-title: Journal of Classification
– reference: Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharil, Om Prakash Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin, “A Review of Clustering Techniques and Developments,” Neurocomputing (2017) special issue.
– volume: 6
  start-page: 109
  year: 2017
  end-page: 115
  ident: bib00045
  article-title: A Comparative Study of Various Clustering Algorithms in Data Mining
  publication-title: IJCSMC
– volume: 7
  year: 2019
  ident: bib00013
  article-title: Performance Evaluation And Comparison of Clustering Algorithms used in Educational Data Mining
  publication-title: International Journal of Recent Technology and Engineering (IJRTE)
– reference: Mayra Z. Rodriguez, Cesar H. Comin, Dalcimar Casanova, Odemir M. Bruno, Diego R. Amancio, Luciano da F. Costa, and Francisco A. Rodrigues, “Clustering algorithms: A comparative approach,” PLOS ONE, 14(1).
– volume: 7
  start-page: 201
  year: 2018
  end-page: 205
  ident: bib00037
  article-title: A performance analysis of clustering based algorithms for the microarray gene expression data
  publication-title: International Journal of Engineering & Technology
– reference: KM Archana Patel, and Prateek Thakral, “The Best Clustering Algorithms in Data Mining,” International Conference on Communication and Signal Processing, April 6-8, 2016, pp. 2042-2046.
– reference: Roop Lal, and Chetna, “Performance Evaluation of K-means and EPBC (Enhanced Partitioning Based Clustering) on National Highway Authority,” Research Article, Volume 8 Issue No.7, pp. 18673-18675.
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib00028
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
– reference: Sourabh Bose, and Manfred Huber, “Semi-Unsupervised Clustering Using Reinforcement Learning,” Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference.
– volume: 7
  year: 2010
  ident: bib00040
  article-title: A Survey of Clustering Techniques
  publication-title: International Journal of Computer Applications
– volume: 11
  start-page: 5424
  year: 2011
  end-page: 5432
  ident: bib0007
  article-title: Finding all solutions of nonlinear systems using a hybrid metaheuristic with Fuzzy Clustering Means
  publication-title: Applied Soft Computing
– reference: Akhtar Sabzi, et.al. “An Improved Fuzzy K-Medoids Clustering Algorithm with Optimized Number of Clusters”, 11th International Conference on Hybrid Intelligent Systems (HIS),2011.
– reference: Hongzi Mao, Mohammad Alizadeh, Ishai Menachey, and Srikanth Kandulay, “Resource Management with Deep Reinforcement Learning,” Proceedings of the 15th ACM Workshop on Hot Topics in Networks - HotNets ‘16.
– volume: 2
  start-page: 336
  year: 2015
  end-page: 338
  ident: bib00039
  article-title: Review of a Method for Selection of Cluster Head by using K-means Algorithm for Energy Efficient Wireless Sensor Network
  publication-title: JETIR
– volume: 4
  year: 2015
  ident: bib00031
  article-title: An Enhanced Clustering Algorithm by Comparative Study on K-means Algorithm
  publication-title: International Journal of Engineering Research & Technology (IJERT)
– volume: 2
  start-page: 275
  year: 2007
  end-page: 294
  ident: bib00025
  article-title: Myoelectric control systems—A survey
  publication-title: Biomedical Signal Processing and Control
– reference: Adam Chehouri, Rafic Younes, Jihan Khoder, Jean Perron, and Adrian Ilinca, “A Selection Process for Genetic Algorithm Using Clustering Analysis,” Algorithms, 10(4), 123.
– reference: Bhagyashree Pathak, and Niranjan Lal, “A Survey on Clustering Methods in Data Mining,” International Journal of Computer Applications (0975 – 8887), Volume 159 – No 2, February 2017.
– volume: 113
  start-page: 133
  year: 2018
  end-page: 142
  ident: bib00017
  article-title: A Survey of Data Clustering Methods
  publication-title: International Journal of Advanced Science and Technology
– reference: Ishida, Naohiko Kinoshita, and Yukihiro Hamasuna, “On Various Types of Controlled-sized Clustering Based on Optimization,” (2017) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).
– volume: 16
  start-page: 645
  year: 2005
  end-page: 678
  ident: bib0004
  article-title: Survey of Clustering Algorithms
  publication-title: IEEE transactions on neural networks
– reference: Mohamed Bouzbida, Lassad Hassine, and Abdelkader Chaari, “Robust Kernel Clustering Algorithm for Nonlinear System Identification,” Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 2427309.
– reference: Mario H. A. C. Adaniya, Moises F. Lima, Joel J. P. C. Rodrigues, Taufik Abrao, and Mario Lemes Proenca Jr., “Anomaly Detection Using DSNS and Firefly Harmonic Clustering Algorithm,” IEEE ICC 2012 - Communication QoS, Reliability and Modeling Symposium, pp. 1183-1187.
– volume: 16
  start-page: 1
  year: 2014
  end-page: 18
  ident: bib0002
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm and Evolutionary Computation
– reference: R. Indhu, and R. Porkodi, “Comparison of Clustering Algorithm,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology,” 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN: 2456-3307.
– volume: 5
  start-page: 2272
  year: 2014
  end-page: 2276
  ident: bib00018
  article-title: Survey on Clustering Techniques in Data Mining
  publication-title: (IJCSIT) International Journal of Computer Science and Information Technologies
– reference: M. Mehdi Afsar, Mohammad H. Tayarani N, “Clustering in sensor networks: A literature survey,” Journal of Network and Computer Applications, 46, pp. 198–226.
– volume: 25
  start-page: 104004
  year: 2019
  ident: bib00016
  article-title: Descriptive statistics and visualization of data from the R datasets package with implications for clusterability
  publication-title: Data in brief
– reference: P.K. Srimani, Shanthi Mahesh and Suhas A. Bhyratae, “Improvement of Traditional K-means Algorithm through the Regulation of Distance Metric Parameters,” (2013) 7th International Conference on Intelligent Systems and Control (ISCO).
– volume: 35
  start-page: 1470
  year: 2011
  end-page: 1482
  ident: bib00052
  article-title: Data-driven fuzzy models for nonlinear identification of a complex heat exchanger
  publication-title: Applied Mathematical Modelling
– volume: 30
  start-page: 2826
  year: 2007
  end-page: 2841
  ident: bib00024
  article-title: A survey on clustering algorithms for wireless sensor networks
  publication-title: Computer Communications
– reference: N. El Felly, J.-Y. Dieulot, P. Borne, and M. Benrejeb, “A multimodel approach of complex systems identification and control using neural and fuzzy clustering algorithms,” 2010 Ninth International Conference on Machine Learning and Applications, pp. 93-98.
– reference: Ad´an Jos´e-Garc´ıa Wilfrido G´omez-Flores, “Automatic Clustering Using Nature-Inspired Metaheuristics: A Survey,” Applied Soft Computing (2015).
– reference: A. Colin Cameron, and Douglas L. Miller, “A Practitioner’s Guide to Cluster- Robust Inference,” Journal of Human Resources, 50 (2), pp. 317-372.
– volume: 2
  year: 2013
  ident: bib00030
  article-title: Survey Paper on Clustering Techniques
  publication-title: International Journal of Science, Engineering and Technology Research (IJSETR)
– reference: Pavel Berkhin, “Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71.
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: bib0008
  article-title: A survey on feature selection methods
  publication-title: Computers and Electrical Engineering
– reference: Andreas Adolfsson, Margareta Ackerman, and Naomi C. Brownstein, “To Cluster, or Not to Cluster: An Analysis of Clusterability Methods,” Pattern Recognition (2018).
– reference: Kamalpreet Bindra, and Anuranjan Mishra, “A Detailed Study of Clustering Algorithms,” International Conference on Current Trends in Computer, Electrical, Electronics and Communication (ICCTCEEC-2017), pp. 752-757.
– reference: Anjana Gosain, and Sonika Dahiya, “Performance Analysis of Various Fuzzy Clustering Algorithms: A Review,” 7th International Conference on Communication, Computing and Virtualization 2016, Procedia Computer Science 79 (2016), pp. 100 – 111.
– reference: Berkhin, P. (n.d.), “A Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71.
– reference: Varchika Gupta, and Ashutosh Rastogi, “Survey on Classification of Clustering Technique,” International Journal of Advanced Research in Computer and Communication Engineering, ISSN (Online) 2278-1021, ISSN (Print) 2319 5940.
– volume: 148
  start-page: 291
  year: 2019
  end-page: 302
  ident: bib00015
  article-title: A survey of clustering algorithms for an industrial context
  publication-title: Procedia Computer Science
– reference: Shizhan Lu, “Clustering by the way of atomic fission,” IEEE Dataport, 2019.
– volume: 2
  start-page: 165
  year: 2015
  end-page: 193
  ident: bib00043
  article-title: A Comprehensive Survey of Clustering Algorithms
  publication-title: Ann. Data. Sci.
– reference: Katarzyna Wilamowska, and Milos Manic, “Unsupervised pattern clustering for data mining,” IECON’0I: The 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1862-1867.
– reference: Ahmad O. Aseeri, Yu Zhuang, and Mohammed Saeed Alkatheiri, “A Memory Capacity-Aware Algorithm for Fast Clustering of Disk-Resident Big Datasets,” 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, pp.194-201.
– volume: 1–1
  year: 2016
  ident: bib00051
  article-title: Unsupervised Robust Multiple Kernel Learning via Extracting Local and Global Noises
  publication-title: IEEE Access
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.procs.2020.06.032_bib0004
  article-title: Survey of Clustering Algorithms
  publication-title: IEEE transactions on neural networks
  doi: 10.1109/TNN.2005.845141
– ident: 10.1016/j.procs.2020.06.032_bib0005
  doi: 10.1016/j.neucom.2017.06.053
– ident: 10.1016/j.procs.2020.06.032_bib00041
  doi: 10.1109/IECON.2001.975574
– volume: 7
  issue: 12
  year: 2010
  ident: 10.1016/j.procs.2020.06.032_bib00040
  article-title: A Survey of Clustering Techniques
  publication-title: International Journal of Computer Applications
  doi: 10.5120/1326-1808
– volume: 2
  start-page: 336
  issue: 2
  year: 2015
  ident: 10.1016/j.procs.2020.06.032_bib00039
  article-title: Review of a Method for Selection of Cluster Head by using K-means Algorithm for Energy Efficient Wireless Sensor Network
  publication-title: JETIR
– ident: 10.1016/j.procs.2020.06.032_bib00049
  doi: 10.1155/2017/2427309
– ident: 10.1016/j.procs.2020.06.032_bib00032
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.procs.2020.06.032_bib00028
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– volume: 4
  issue: 06
  year: 2015
  ident: 10.1016/j.procs.2020.06.032_bib00031
  article-title: An Enhanced Clustering Algorithm by Comparative Study on K-means Algorithm
  publication-title: International Journal of Engineering Research & Technology (IJERT)
– ident: 10.1016/j.procs.2020.06.032_bib00012
  doi: 10.1016/j.patcog.2018.10.026
– volume: 7
  start-page: 201
  issue: 2.21
  year: 2018
  ident: 10.1016/j.procs.2020.06.032_bib00037
  article-title: A performance analysis of clustering based algorithms for the microarray gene expression data
  publication-title: International Journal of Engineering & Technology
  doi: 10.14419/ijet.v7i2.21.12172
– ident: 10.1016/j.procs.2020.06.032_bib00010
  doi: 10.1016/j.asoc.2015.12.001
– volume: 5
  start-page: 2272
  issue: 2
  year: 2014
  ident: 10.1016/j.procs.2020.06.032_bib00018
  article-title: Survey on Clustering Techniques in Data Mining
  publication-title: (IJCSIT) International Journal of Computer Science and Information Technologies
– ident: 10.1016/j.procs.2020.06.032_bib00027
  doi: 10.5120/ijca2017912747
– volume: 35
  start-page: 1470
  year: 2011
  ident: 10.1016/j.procs.2020.06.032_bib00052
  article-title: Data-driven fuzzy models for nonlinear identification of a complex heat exchanger
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2010.09.023
– volume: 113
  start-page: 133
  year: 2018
  ident: 10.1016/j.procs.2020.06.032_bib00017
  article-title: A Survey of Data Clustering Methods
  publication-title: International Journal of Advanced Science and Technology
  doi: 10.14257/ijast.2018.113.14
– volume: 11
  start-page: 5424
  year: 2011
  ident: 10.1016/j.procs.2020.06.032_bib0007
  article-title: Finding all solutions of nonlinear systems using a hybrid metaheuristic with Fuzzy Clustering Means
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.05.016
– ident: 10.1016/j.procs.2020.06.032_bib00048
– ident: 10.1016/j.procs.2020.06.032_bib00023
– ident: 10.1016/j.procs.2020.06.032_bib0003
  doi: 10.1109/TENCON.2009.5395882
– ident: 10.1016/j.procs.2020.06.032_bib00035
  doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.44
– ident: 10.1016/j.procs.2020.06.032_bib0009
  doi: 10.1371/journal.pone.0210236
– ident: 10.1016/j.procs.2020.06.032_bib0001
  doi: 10.1016/j.procs.2016.03.014
– ident: 10.1016/j.procs.2020.06.032_bib00019
– ident: 10.1016/j.procs.2020.06.032_bib00036
– ident: 10.1016/j.procs.2020.06.032_bib0006
  doi: 10.1109/ICMLA.2010.21
– volume: 7
  issue: 6S5
  year: 2019
  ident: 10.1016/j.procs.2020.06.032_bib00013
  article-title: Performance Evaluation And Comparison of Clustering Algorithms used in Educational Data Mining
  publication-title: International Journal of Recent Technology and Engineering (IJRTE)
– volume: 6
  start-page: 109
  issue: 8
  year: 2017
  ident: 10.1016/j.procs.2020.06.032_bib00045
  article-title: A Comparative Study of Various Clustering Algorithms in Data Mining
  publication-title: IJCSMC
– volume: 33
  year: 2016
  ident: 10.1016/j.procs.2020.06.032_bib00011
  article-title: A Survey on Feature Weighting Based K-means Algorithms
  publication-title: Journal of Classification
– volume: 2
  issue: 4
  year: 2013
  ident: 10.1016/j.procs.2020.06.032_bib00030
  article-title: Survey Paper on Clustering Techniques
  publication-title: International Journal of Science, Engineering and Technology Research (IJSETR)
– ident: 10.1016/j.procs.2020.06.032_bib00046
  doi: 10.1109/ISCO.2013.6481187
– ident: 10.1016/j.procs.2020.06.032_bib00050
  doi: 10.1109/ICC.2012.6364088
– ident: 10.1016/j.procs.2020.06.032_bib00026
  doi: 10.3368/jhr.50.2.317
– ident: 10.1016/j.procs.2020.06.032_bib00014
– ident: 10.1016/j.procs.2020.06.032_bib00020
  doi: 10.1007/3-540-28349-8_2
– volume: 1–1
  issue: 4
  year: 2016
  ident: 10.1016/j.procs.2020.06.032_bib00051
  article-title: Unsupervised Robust Multiple Kernel Learning via Extracting Local and Global Noises
  publication-title: IEEE Access
– ident: 10.1016/j.procs.2020.06.032_bib00022
  doi: 10.1016/j.jnca.2014.09.005
– volume: 30
  start-page: 2826
  year: 2007
  ident: 10.1016/j.procs.2020.06.032_bib00024
  article-title: A survey on clustering algorithms for wireless sensor networks
  publication-title: Computer Communications
  doi: 10.1016/j.comcom.2007.05.024
– volume: 2
  start-page: 275
  year: 2007
  ident: 10.1016/j.procs.2020.06.032_bib00025
  article-title: Myoelectric control systems—A survey
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.07.009
– ident: 10.1016/j.procs.2020.06.032_bib00042
  doi: 10.1109/IIKI.2015.62
– ident: 10.1016/j.procs.2020.06.032_bib00047
  doi: 10.1109/ICCSP.2016.7754534
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 10.1016/j.procs.2020.06.032_bib00043
  article-title: A Comprehensive Survey of Clustering Algorithms
  publication-title: Ann. Data. Sci.
  doi: 10.1007/s40745-015-0040-1
– ident: 10.1016/j.procs.2020.06.032_bib00044
– volume: 16
  start-page: 1
  year: 2014
  ident: 10.1016/j.procs.2020.06.032_bib0002
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.11.003
– ident: 10.1016/j.procs.2020.06.032_bib00021
– ident: 10.1016/j.procs.2020.06.032_bib00033
  doi: 10.1109/CTCEEC.2017.8454973
– ident: 10.1016/j.procs.2020.06.032_bib00029
  doi: 10.1007/3-540-28349-8_2
– ident: 10.1016/j.procs.2020.06.032_bib00053
  doi: 10.1109/HIS.2011.6122106
– ident: 10.1016/j.procs.2020.06.032_bib00038
– ident: 10.1016/j.procs.2020.06.032_bib00034
  doi: 10.3390/a10040123
– volume: 25
  start-page: 104004
  year: 2019
  ident: 10.1016/j.procs.2020.06.032_bib00016
  article-title: Descriptive statistics and visualization of data from the R datasets package with implications for clusterability
  publication-title: Data in brief
  doi: 10.1016/j.dib.2019.104004
– volume: 148
  start-page: 291
  year: 2019
  ident: 10.1016/j.procs.2020.06.032_bib00015
  article-title: A survey of clustering algorithms for an industrial context
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.01.022
– volume: 40
  start-page: 16
  year: 2014
  ident: 10.1016/j.procs.2020.06.032_bib0008
  article-title: A survey on feature selection methods
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2013.11.024
SSID ssj0000388917
Score 2.3295722
Snippet Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 272
SubjectTerms Dendrogram
hierarchical clustering
metaheuristic clustering
Title Review of Clustering Techniques in Control System
URI https://dx.doi.org/10.1016/j.procs.2020.06.032
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4Q9ODFtxFf2YM3bdIX3e3REI0HJUYw4da0u0uEQCE8Grz42519tFQxRA5eGtjQBfZbZr4dZr5B6JpSn8ZOt2txn8IBhdnciilhcFTxiSBxnTtCdS15Is0m7XTCl0qlqOLPBiRN6WIRjv8VahgDsGXp7AZwF5PCADwG0OEKsMP1T8C_FsUojcFcyiDIYEA7l2qdmjI_lZ-u5crL_FTVDcCWUanmstvDjXGRRSQGZnvXoeT58KOw6a1JL4uBaGaKi7aGUiqpHFBw7ZL1o4RYUhBGO4dfxnKTSbyy0dPNd4z_dHVnphXTrKMEfekYmNRJd20lnGqim9-EsH84qCJtMM9I60dqkkhOEsm8PA-c8JZL6qFM6nv-XEbZpNZNqNouF98jl55SSX4rH-Z3elKiHO19tGvOCvhOY3yAKiI9RHt5Hw5szPIRcjTkeNTFS8jxEnLcS7GBHGvIj9Hbw3278WiZVhgWk4L6lpcEDqMCLC5NnDB2SULkf-zAvmJGw0AElHBfCI-7NnNixhwOxEvAT81noeBAUU9QNR2l4hRhFsAZlTuBEIz6XpdRIuwYaB3zXJ74Hq8hN1-BiBmdeNmuZBCtWf4aui1uGmuZlPUvD_Kljcw21gwugt2y7sazzd7nHO3IZzpkdoGqs8lcXKJtls1608mV2ipf0l90oA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Clustering+Techniques+in+Control+System&rft.jtitle=Procedia+computer+science&rft.au=Singh%2C+Saumya&rft.au=Srivastava%2C+Smriti&rft.date=2020&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=173&rft.spage=272&rft.epage=280&rft_id=info:doi/10.1016%2Fj.procs.2020.06.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2020_06_032
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon