Review of Clustering Techniques in Control System
Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is available in abundance, but finding useful data has become a challenging task. For this, data clustering is an effective and common approach where...
Saved in:
| Published in: | Procedia computer science Vol. 173; pp. 272 - 280 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
2020
|
| Subjects: | |
| ISSN: | 1877-0509, 1877-0509 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is available in abundance, but finding useful data has become a challenging task. For this, data clustering is an effective and common approach where we can group data by seeing some pattern or inherent data similarity in one group. Clustering is an unsupervised learning method of linearly separable and nonlinearly separable clusters widely used for different nature of application [1]. Data clustering finds application in classification of patterns in different areas such as artificial intelligence, summarization, learning, segmentation, speech recognition, pattern recognition, image segmentation, biology, marketing, data mining, modelling and system identification etc [5][24][25]. No one clustering technique can be said as best or better than other, because different clustering algorithms co-exists and are application specific. This paper majorly emphasises on critical review of clustering algorithms used in control systems, but a brief overview is also given about all major algorithms. |
|---|---|
| AbstractList | Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is available in abundance, but finding useful data has become a challenging task. For this, data clustering is an effective and common approach where we can group data by seeing some pattern or inherent data similarity in one group. Clustering is an unsupervised learning method of linearly separable and nonlinearly separable clusters widely used for different nature of application [1]. Data clustering finds application in classification of patterns in different areas such as artificial intelligence, summarization, learning, segmentation, speech recognition, pattern recognition, image segmentation, biology, marketing, data mining, modelling and system identification etc [5][24][25]. No one clustering technique can be said as best or better than other, because different clustering algorithms co-exists and are application specific. This paper majorly emphasises on critical review of clustering algorithms used in control systems, but a brief overview is also given about all major algorithms. |
| Author | Singh, Saumya Srivastava, Smriti |
| Author_xml | – sequence: 1 givenname: Saumya surname: Singh fullname: Singh, Saumya email: singhsaumya10@gmail.com organization: Instrumentation and Control Engineering Division, Netaji Subhas University of Technology, Delhi-78, India – sequence: 2 givenname: Smriti surname: Srivastava fullname: Srivastava, Smriti organization: Instrumentation and Control Engineering Division, Netaji Subhas University of Technology, Delhi-78, India |
| BookMark | eNqFkE1LAzEQhoNUsNb-Ai_7B3adJNske_Agi19QELSeQzaZaso2W5Ot0n_v1noQDzqXeWF4XnjmlIxCF5CQcwoFBSouVsUmdjYVDBgUIArg7IiMqZIyhxlUox_5hExTWsEwXKmKyjGhj_ju8SPrllndblOP0YeXbIH2Nfi3LabMh6zuQh-7NnvaDff1GTlemjbh9HtPyPPN9aK-y-cPt_f11Ty3THCW80ZQqxBKUA2tDJONZLJkJZ0ZqyqBQklXInLHwFJjLXVMCDQzV9oKHZN8Qvih18YupYhLvYl-beJOU9B7cb3SX-J6L65B6EF8oKpflPW96f1ewfj2H_bywOKgNXwl6mQ9BovOR7S9dp3_k_8EmzF2vg |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_104743 crossref_primary_10_1080_15567036_2024_2334923 crossref_primary_10_1007_s12530_023_09542_9 crossref_primary_10_1177_16878132221131193 crossref_primary_10_1108_JFC_11_2024_0356 crossref_primary_10_1007_s42979_024_03638_y crossref_primary_10_3390_math11092018 crossref_primary_10_21834_e_bpj_v10iSI31_6938 crossref_primary_10_1007_s00354_023_00216_3 crossref_primary_10_1016_j_energy_2022_126432 crossref_primary_10_1016_j_est_2021_102407 crossref_primary_10_1016_j_eswa_2023_121449 crossref_primary_10_1016_j_buildenv_2023_110160 crossref_primary_10_3390_electronics13214215 crossref_primary_10_1007_s10115_024_02211_6 crossref_primary_10_14254_1795_6889_2021_17_3_3 crossref_primary_10_1007_s11280_023_01158_y crossref_primary_10_3390_app13063529 |
| Cites_doi | 10.1109/TNN.2005.845141 10.1016/j.neucom.2017.06.053 10.1109/IECON.2001.975574 10.5120/1326-1808 10.1155/2017/2427309 10.1016/j.patrec.2009.09.011 10.1016/j.patcog.2018.10.026 10.14419/ijet.v7i2.21.12172 10.1016/j.asoc.2015.12.001 10.5120/ijca2017912747 10.1016/j.apm.2010.09.023 10.14257/ijast.2018.113.14 10.1016/j.asoc.2011.05.016 10.1109/TENCON.2009.5395882 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.44 10.1371/journal.pone.0210236 10.1016/j.procs.2016.03.014 10.1109/ICMLA.2010.21 10.1109/ISCO.2013.6481187 10.1109/ICC.2012.6364088 10.3368/jhr.50.2.317 10.1007/3-540-28349-8_2 10.1016/j.jnca.2014.09.005 10.1016/j.comcom.2007.05.024 10.1016/j.bspc.2007.07.009 10.1109/IIKI.2015.62 10.1109/ICCSP.2016.7754534 10.1007/s40745-015-0040-1 10.1016/j.swevo.2013.11.003 10.1109/CTCEEC.2017.8454973 10.1109/HIS.2011.6122106 10.3390/a10040123 10.1016/j.dib.2019.104004 10.1016/j.procs.2019.01.022 10.1016/j.compeleceng.2013.11.024 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.procs.2020.06.032 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 280 |
| ExternalDocumentID | 10_1016_j_procs_2020_06_032 S1877050920315362 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ 9DU AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD |
| ID | FETCH-LOGICAL-c2632-3b61c8e0408b19a27b72742415ac896e687d4ee3d20c1acc1d266ea5d4c9ed273 |
| ISSN | 1877-0509 |
| IngestDate | Sat Nov 29 06:57:48 EST 2025 Tue Nov 18 21:24:59 EST 2025 Wed May 17 00:07:49 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dendrogram metaheuristic clustering hierarchical clustering |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2632-3b61c8e0408b19a27b72742415ac896e687d4ee3d20c1acc1d266ea5d4c9ed273 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.procs.2020.06.032 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_procs_2020_06_032 crossref_citationtrail_10_1016_j_procs_2020_06_032 elsevier_sciencedirect_doi_10_1016_j_procs_2020_06_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2020 2020-00-00 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – year: 2020 text: 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chandrashekar, Sahin (bib0008) 2014; 40 Chitra, Maheswari (bib00045) 2017; 6 Xu, Donald Wunsch (bib0004) 2005; 16 Chaouni Benabdellah, Benghabrit, Bouhaddou (bib00015) 2019; 148 Mario H. A. C. Adaniya, Moises F. Lima, Joel J. P. C. Rodrigues, Taufik Abrao, and Mario Lemes Proenca Jr., “Anomaly Detection Using DSNS and Firefly Harmonic Clustering Algorithm,” IEEE ICC 2012 - Communication QoS, Reliability and Modeling Symposium, pp. 1183-1187. A. Colin Cameron, and Douglas L. Miller, “A Practitioner’s Guide to Cluster- Robust Inference,” Journal of Human Resources, 50 (2), pp. 317-372. Habbi, Kidouche, Zelmat (bib00052) 2011; 35 Hongzi Mao, Mohammad Alizadeh, Ishai Menachey, and Srikanth Kandulay, “Resource Management with Deep Reinforcement Learning,” Proceedings of the 15th ACM Workshop on Hot Topics in Networks - HotNets ‘16. Ishida, Naohiko Kinoshita, and Yukihiro Hamasuna, “On Various Types of Controlled-sized Clustering Based on Optimization,” (2017) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Kameshwaran, Malarvizhi (bib00018) 2014; 5 Rashid Mehmood, Hussain Dawood, Rongfang Bie, and Haseeb Ahmad, “Fuzzy clustering by fast search and find of density peaks,” 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, pp. 258-261. Kamalpreet Bindra, and Anuranjan Mishra, “A Detailed Study of Clustering Algorithms,” International Conference on Current Trends in Computer, Electrical, Electronics and Communication (ICCTCEEC-2017), pp. 752-757. Ahmad O. Aseeri, Yu Zhuang, and Mohammed Saeed Alkatheiri, “A Memory Capacity-Aware Algorithm for Fast Clustering of Disk-Resident Big Datasets,” 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, pp.194-201. Anjana Gosain, and Sonika Dahiya, “Performance Analysis of Various Fuzzy Clustering Algorithms: A Review,” 7th International Conference on Communication, Computing and Virtualization 2016, Procedia Computer Science 79 (2016), pp. 100 – 111. KM Archana Patel, and Prateek Thakral, “The Best Clustering Algorithms in Data Mining,” International Conference on Communication and Signal Processing, April 6-8, 2016, pp. 2042-2046. Kaur Mann, Kaur (bib00030) 2013; 2 Roop Lal, and Chetna, “Performance Evaluation of K-means and EPBC (Enhanced Partitioning Based Clustering) on National Highway Authority,” Research Article, Volume 8 Issue No.7, pp. 18673-18675. Nikhil Bansal, Avrim Blum, and Shuchi Chawla, “Correlation Clustering,” Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02). Bhagyashree Pathak, and Niranjan Lal, “A Survey on Clustering Methods in Data Mining,” International Journal of Computer Applications (0975 – 8887), Volume 159 – No 2, February 2017. Yuvaraj, Manjula (bib00037) 2018; 7 Valarmathy, Krishnaveni (bib00013) 2019; 7 N. El Felly, J.-Y. Dieulot, P. Borne, and M. Benrejeb, “A multimodel approach of complex systems identification and control using neural and fuzzy clustering algorithms,” 2010 Ninth International Conference on Machine Learning and Applications, pp. 93-98. Rai, Singh (bib00040) 2010; 7 Xu, Tian (bib00043) 2015; 2 Kamdi (bib00039) 2015; 2 Bano, Khan (bib00017) 2018; 113 Akhtar Sabzi, et.al. “An Improved Fuzzy K-Medoids Clustering Algorithm with Optimized Number of Clusters”, 11th International Conference on Hybrid Intelligent Systems (HIS),2011. Jagannath Nanda, Panda (bib0002) 2014; 16 Sacco, Henderson (bib0007) 2011; 11 M. Mehdi Afsar, Mohammad H. Tayarani N, “Clustering in sensor networks: A literature survey,” Journal of Network and Computer Applications, 46, pp. 198–226. Pavel Berkhin, “Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71. Adam Chehouri, Rafic Younes, Jihan Khoder, Jean Perron, and Adrian Ilinca, “A Selection Process for Genetic Algorithm Using Clustering Analysis,” Algorithms, 10(4), 123. Meena Tushir, and Smriti Srivastava, “A Novel Clustering Method for fuzzy Model Identification,” TENCON 2009 - 2009 IEEE Region 10 Conference. Mohamed Bouzbida, Lassad Hassine, and Abdelkader Chaari, “Robust Kernel Clustering Algorithm for Nonlinear System Identification,” Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 2427309. Ahmed Abbasi, Younis (bib00024) 2007; 30 Katarzyna Wilamowska, and Milos Manic, “Unsupervised pattern clustering for data mining,” IECON’0I: The 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1862-1867. Cordeiro de Amorim (bib00011) 2016; 33 R. Indhu, and R. Porkodi, “Comparison of Clustering Algorithm,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology,” 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN: 2456-3307. Guliani, Vijay Rajoriya (bib00031) 2015; 4 Zhou, Ye, Du (bib00051) 2016; 1–1 Brownstein, Adolfsson, Ackerman (bib00016) 2019; 25 Mayra Z. Rodriguez, Cesar H. Comin, Dalcimar Casanova, Odemir M. Bruno, Diego R. Amancio, Luciano da F. Costa, and Francisco A. Rodrigues, “Clustering algorithms: A comparative approach,” PLOS ONE, 14(1). Shizhan Lu, “Clustering by the way of atomic fission,” IEEE Dataport, 2019. Asghari Oskoei, Hu (bib00025) 2007; 2 Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharil, Om Prakash Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin, “A Review of Clustering Techniques and Developments,” Neurocomputing (2017) special issue. Jain (bib00028) 2010; 31 Berkhin, P. (n.d.), “A Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71. Varchika Gupta, and Ashutosh Rastogi, “Survey on Classification of Clustering Technique,” International Journal of Advanced Research in Computer and Communication Engineering, ISSN (Online) 2278-1021, ISSN (Print) 2319 5940. P.K. Srimani, Shanthi Mahesh and Suhas A. Bhyratae, “Improvement of Traditional K-means Algorithm through the Regulation of Distance Metric Parameters,” (2013) 7th International Conference on Intelligent Systems and Control (ISCO). Ad´an Jos´e-Garc´ıa Wilfrido G´omez-Flores, “Automatic Clustering Using Nature-Inspired Metaheuristics: A Survey,” Applied Soft Computing (2015). Xiumei Wang, Tianzhen Zhang, and Xinbo Gao, “Multiview Clustering Based on Non-Negative Matrix Factorization and Pairwise Measurements.” IEEE Transactions On Cybernetics. Andreas Adolfsson, Margareta Ackerman, and Naomi C. Brownstein, “To Cluster, or Not to Cluster: An Analysis of Clusterability Methods,” Pattern Recognition (2018). Sourabh Bose, and Manfred Huber, “Semi-Unsupervised Clustering Using Reinforcement Learning,” Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference. 10.1016/j.procs.2020.06.032_bib00049 Ahmed Abbasi (10.1016/j.procs.2020.06.032_bib00024) 2007; 30 10.1016/j.procs.2020.06.032_bib00048 Habbi (10.1016/j.procs.2020.06.032_bib00052) 2011; 35 Xu (10.1016/j.procs.2020.06.032_bib0004) 2005; 16 Rai (10.1016/j.procs.2020.06.032_bib00040) 2010; 7 Chaouni Benabdellah (10.1016/j.procs.2020.06.032_bib00015) 2019; 148 10.1016/j.procs.2020.06.032_bib00044 Yuvaraj (10.1016/j.procs.2020.06.032_bib00037) 2018; 7 10.1016/j.procs.2020.06.032_bib00047 10.1016/j.procs.2020.06.032_bib00046 10.1016/j.procs.2020.06.032_bib00041 10.1016/j.procs.2020.06.032_bib00042 10.1016/j.procs.2020.06.032_bib0005 10.1016/j.procs.2020.06.032_bib00019 Kamdi (10.1016/j.procs.2020.06.032_bib00039) 2015; 2 10.1016/j.procs.2020.06.032_bib0006 10.1016/j.procs.2020.06.032_bib0009 Valarmathy (10.1016/j.procs.2020.06.032_bib00013) 2019; 7 10.1016/j.procs.2020.06.032_bib0001 Jain (10.1016/j.procs.2020.06.032_bib00028) 2010; 31 10.1016/j.procs.2020.06.032_bib0003 Sacco (10.1016/j.procs.2020.06.032_bib0007) 2011; 11 Chitra (10.1016/j.procs.2020.06.032_bib00045) 2017; 6 10.1016/j.procs.2020.06.032_bib00050 Asghari Oskoei (10.1016/j.procs.2020.06.032_bib00025) 2007; 2 10.1016/j.procs.2020.06.032_bib00012 10.1016/j.procs.2020.06.032_bib00014 10.1016/j.procs.2020.06.032_bib00010 10.1016/j.procs.2020.06.032_bib00053 10.1016/j.procs.2020.06.032_bib00027 10.1016/j.procs.2020.06.032_bib00026 10.1016/j.procs.2020.06.032_bib00029 Brownstein (10.1016/j.procs.2020.06.032_bib00016) 2019; 25 Cordeiro de Amorim (10.1016/j.procs.2020.06.032_bib00011) 2016; 33 Guliani (10.1016/j.procs.2020.06.032_bib00031) 2015; 4 Zhou (10.1016/j.procs.2020.06.032_bib00051) 2016; 1–1 10.1016/j.procs.2020.06.032_bib00023 10.1016/j.procs.2020.06.032_bib00022 Kaur Mann (10.1016/j.procs.2020.06.032_bib00030) 2013; 2 10.1016/j.procs.2020.06.032_bib00021 10.1016/j.procs.2020.06.032_bib00020 10.1016/j.procs.2020.06.032_bib00038 Bano (10.1016/j.procs.2020.06.032_bib00017) 2018; 113 Jagannath Nanda (10.1016/j.procs.2020.06.032_bib0002) 2014; 16 Chandrashekar (10.1016/j.procs.2020.06.032_bib0008) 2014; 40 Xu (10.1016/j.procs.2020.06.032_bib00043) 2015; 2 10.1016/j.procs.2020.06.032_bib00034 10.1016/j.procs.2020.06.032_bib00033 10.1016/j.procs.2020.06.032_bib00036 10.1016/j.procs.2020.06.032_bib00035 Kameshwaran (10.1016/j.procs.2020.06.032_bib00018) 2014; 5 10.1016/j.procs.2020.06.032_bib00032 |
| References_xml | – reference: Xiumei Wang, Tianzhen Zhang, and Xinbo Gao, “Multiview Clustering Based on Non-Negative Matrix Factorization and Pairwise Measurements.” IEEE Transactions On Cybernetics. – reference: Meena Tushir, and Smriti Srivastava, “A Novel Clustering Method for fuzzy Model Identification,” TENCON 2009 - 2009 IEEE Region 10 Conference. – reference: Rashid Mehmood, Hussain Dawood, Rongfang Bie, and Haseeb Ahmad, “Fuzzy clustering by fast search and find of density peaks,” 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, pp. 258-261. – reference: Nikhil Bansal, Avrim Blum, and Shuchi Chawla, “Correlation Clustering,” Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02). – volume: 33 year: 2016 ident: bib00011 article-title: A Survey on Feature Weighting Based K-means Algorithms publication-title: Journal of Classification – reference: Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharil, Om Prakash Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin, “A Review of Clustering Techniques and Developments,” Neurocomputing (2017) special issue. – volume: 6 start-page: 109 year: 2017 end-page: 115 ident: bib00045 article-title: A Comparative Study of Various Clustering Algorithms in Data Mining publication-title: IJCSMC – volume: 7 year: 2019 ident: bib00013 article-title: Performance Evaluation And Comparison of Clustering Algorithms used in Educational Data Mining publication-title: International Journal of Recent Technology and Engineering (IJRTE) – reference: Mayra Z. Rodriguez, Cesar H. Comin, Dalcimar Casanova, Odemir M. Bruno, Diego R. Amancio, Luciano da F. Costa, and Francisco A. Rodrigues, “Clustering algorithms: A comparative approach,” PLOS ONE, 14(1). – volume: 7 start-page: 201 year: 2018 end-page: 205 ident: bib00037 article-title: A performance analysis of clustering based algorithms for the microarray gene expression data publication-title: International Journal of Engineering & Technology – reference: KM Archana Patel, and Prateek Thakral, “The Best Clustering Algorithms in Data Mining,” International Conference on Communication and Signal Processing, April 6-8, 2016, pp. 2042-2046. – reference: Roop Lal, and Chetna, “Performance Evaluation of K-means and EPBC (Enhanced Partitioning Based Clustering) on National Highway Authority,” Research Article, Volume 8 Issue No.7, pp. 18673-18675. – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib00028 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognition Letters – reference: Sourabh Bose, and Manfred Huber, “Semi-Unsupervised Clustering Using Reinforcement Learning,” Proceedings of the Twenty-Ninth International Florida Artificial Intelligence Research Society Conference. – volume: 7 year: 2010 ident: bib00040 article-title: A Survey of Clustering Techniques publication-title: International Journal of Computer Applications – volume: 11 start-page: 5424 year: 2011 end-page: 5432 ident: bib0007 article-title: Finding all solutions of nonlinear systems using a hybrid metaheuristic with Fuzzy Clustering Means publication-title: Applied Soft Computing – reference: Akhtar Sabzi, et.al. “An Improved Fuzzy K-Medoids Clustering Algorithm with Optimized Number of Clusters”, 11th International Conference on Hybrid Intelligent Systems (HIS),2011. – reference: Hongzi Mao, Mohammad Alizadeh, Ishai Menachey, and Srikanth Kandulay, “Resource Management with Deep Reinforcement Learning,” Proceedings of the 15th ACM Workshop on Hot Topics in Networks - HotNets ‘16. – volume: 2 start-page: 336 year: 2015 end-page: 338 ident: bib00039 article-title: Review of a Method for Selection of Cluster Head by using K-means Algorithm for Energy Efficient Wireless Sensor Network publication-title: JETIR – volume: 4 year: 2015 ident: bib00031 article-title: An Enhanced Clustering Algorithm by Comparative Study on K-means Algorithm publication-title: International Journal of Engineering Research & Technology (IJERT) – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: bib00025 article-title: Myoelectric control systems—A survey publication-title: Biomedical Signal Processing and Control – reference: Adam Chehouri, Rafic Younes, Jihan Khoder, Jean Perron, and Adrian Ilinca, “A Selection Process for Genetic Algorithm Using Clustering Analysis,” Algorithms, 10(4), 123. – reference: Bhagyashree Pathak, and Niranjan Lal, “A Survey on Clustering Methods in Data Mining,” International Journal of Computer Applications (0975 – 8887), Volume 159 – No 2, February 2017. – volume: 113 start-page: 133 year: 2018 end-page: 142 ident: bib00017 article-title: A Survey of Data Clustering Methods publication-title: International Journal of Advanced Science and Technology – reference: Ishida, Naohiko Kinoshita, and Yukihiro Hamasuna, “On Various Types of Controlled-sized Clustering Based on Optimization,” (2017) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). – volume: 16 start-page: 645 year: 2005 end-page: 678 ident: bib0004 article-title: Survey of Clustering Algorithms publication-title: IEEE transactions on neural networks – reference: Mohamed Bouzbida, Lassad Hassine, and Abdelkader Chaari, “Robust Kernel Clustering Algorithm for Nonlinear System Identification,” Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 2427309. – reference: Mario H. A. C. Adaniya, Moises F. Lima, Joel J. P. C. Rodrigues, Taufik Abrao, and Mario Lemes Proenca Jr., “Anomaly Detection Using DSNS and Firefly Harmonic Clustering Algorithm,” IEEE ICC 2012 - Communication QoS, Reliability and Modeling Symposium, pp. 1183-1187. – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: bib0002 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm and Evolutionary Computation – reference: R. Indhu, and R. Porkodi, “Comparison of Clustering Algorithm,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology,” 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN: 2456-3307. – volume: 5 start-page: 2272 year: 2014 end-page: 2276 ident: bib00018 article-title: Survey on Clustering Techniques in Data Mining publication-title: (IJCSIT) International Journal of Computer Science and Information Technologies – reference: M. Mehdi Afsar, Mohammad H. Tayarani N, “Clustering in sensor networks: A literature survey,” Journal of Network and Computer Applications, 46, pp. 198–226. – volume: 25 start-page: 104004 year: 2019 ident: bib00016 article-title: Descriptive statistics and visualization of data from the R datasets package with implications for clusterability publication-title: Data in brief – reference: P.K. Srimani, Shanthi Mahesh and Suhas A. Bhyratae, “Improvement of Traditional K-means Algorithm through the Regulation of Distance Metric Parameters,” (2013) 7th International Conference on Intelligent Systems and Control (ISCO). – volume: 35 start-page: 1470 year: 2011 end-page: 1482 ident: bib00052 article-title: Data-driven fuzzy models for nonlinear identification of a complex heat exchanger publication-title: Applied Mathematical Modelling – volume: 30 start-page: 2826 year: 2007 end-page: 2841 ident: bib00024 article-title: A survey on clustering algorithms for wireless sensor networks publication-title: Computer Communications – reference: N. El Felly, J.-Y. Dieulot, P. Borne, and M. Benrejeb, “A multimodel approach of complex systems identification and control using neural and fuzzy clustering algorithms,” 2010 Ninth International Conference on Machine Learning and Applications, pp. 93-98. – reference: Ad´an Jos´e-Garc´ıa Wilfrido G´omez-Flores, “Automatic Clustering Using Nature-Inspired Metaheuristics: A Survey,” Applied Soft Computing (2015). – reference: A. Colin Cameron, and Douglas L. Miller, “A Practitioner’s Guide to Cluster- Robust Inference,” Journal of Human Resources, 50 (2), pp. 317-372. – volume: 2 year: 2013 ident: bib00030 article-title: Survey Paper on Clustering Techniques publication-title: International Journal of Science, Engineering and Technology Research (IJSETR) – reference: Pavel Berkhin, “Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71. – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: bib0008 article-title: A survey on feature selection methods publication-title: Computers and Electrical Engineering – reference: Andreas Adolfsson, Margareta Ackerman, and Naomi C. Brownstein, “To Cluster, or Not to Cluster: An Analysis of Clusterability Methods,” Pattern Recognition (2018). – reference: Kamalpreet Bindra, and Anuranjan Mishra, “A Detailed Study of Clustering Algorithms,” International Conference on Current Trends in Computer, Electrical, Electronics and Communication (ICCTCEEC-2017), pp. 752-757. – reference: Anjana Gosain, and Sonika Dahiya, “Performance Analysis of Various Fuzzy Clustering Algorithms: A Review,” 7th International Conference on Communication, Computing and Virtualization 2016, Procedia Computer Science 79 (2016), pp. 100 – 111. – reference: Berkhin, P. (n.d.), “A Survey of Clustering Data Mining Techniques,” Grouping Multidimensional Data, pp. 25–71. – reference: Varchika Gupta, and Ashutosh Rastogi, “Survey on Classification of Clustering Technique,” International Journal of Advanced Research in Computer and Communication Engineering, ISSN (Online) 2278-1021, ISSN (Print) 2319 5940. – volume: 148 start-page: 291 year: 2019 end-page: 302 ident: bib00015 article-title: A survey of clustering algorithms for an industrial context publication-title: Procedia Computer Science – reference: Shizhan Lu, “Clustering by the way of atomic fission,” IEEE Dataport, 2019. – volume: 2 start-page: 165 year: 2015 end-page: 193 ident: bib00043 article-title: A Comprehensive Survey of Clustering Algorithms publication-title: Ann. Data. Sci. – reference: Katarzyna Wilamowska, and Milos Manic, “Unsupervised pattern clustering for data mining,” IECON’0I: The 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 1862-1867. – reference: Ahmad O. Aseeri, Yu Zhuang, and Mohammed Saeed Alkatheiri, “A Memory Capacity-Aware Algorithm for Fast Clustering of Disk-Resident Big Datasets,” 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, pp.194-201. – volume: 1–1 year: 2016 ident: bib00051 article-title: Unsupervised Robust Multiple Kernel Learning via Extracting Local and Global Noises publication-title: IEEE Access – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.1016/j.procs.2020.06.032_bib0004 article-title: Survey of Clustering Algorithms publication-title: IEEE transactions on neural networks doi: 10.1109/TNN.2005.845141 – ident: 10.1016/j.procs.2020.06.032_bib0005 doi: 10.1016/j.neucom.2017.06.053 – ident: 10.1016/j.procs.2020.06.032_bib00041 doi: 10.1109/IECON.2001.975574 – volume: 7 issue: 12 year: 2010 ident: 10.1016/j.procs.2020.06.032_bib00040 article-title: A Survey of Clustering Techniques publication-title: International Journal of Computer Applications doi: 10.5120/1326-1808 – volume: 2 start-page: 336 issue: 2 year: 2015 ident: 10.1016/j.procs.2020.06.032_bib00039 article-title: Review of a Method for Selection of Cluster Head by using K-means Algorithm for Energy Efficient Wireless Sensor Network publication-title: JETIR – ident: 10.1016/j.procs.2020.06.032_bib00049 doi: 10.1155/2017/2427309 – ident: 10.1016/j.procs.2020.06.032_bib00032 – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.procs.2020.06.032_bib00028 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2009.09.011 – volume: 4 issue: 06 year: 2015 ident: 10.1016/j.procs.2020.06.032_bib00031 article-title: An Enhanced Clustering Algorithm by Comparative Study on K-means Algorithm publication-title: International Journal of Engineering Research & Technology (IJERT) – ident: 10.1016/j.procs.2020.06.032_bib00012 doi: 10.1016/j.patcog.2018.10.026 – volume: 7 start-page: 201 issue: 2.21 year: 2018 ident: 10.1016/j.procs.2020.06.032_bib00037 article-title: A performance analysis of clustering based algorithms for the microarray gene expression data publication-title: International Journal of Engineering & Technology doi: 10.14419/ijet.v7i2.21.12172 – ident: 10.1016/j.procs.2020.06.032_bib00010 doi: 10.1016/j.asoc.2015.12.001 – volume: 5 start-page: 2272 issue: 2 year: 2014 ident: 10.1016/j.procs.2020.06.032_bib00018 article-title: Survey on Clustering Techniques in Data Mining publication-title: (IJCSIT) International Journal of Computer Science and Information Technologies – ident: 10.1016/j.procs.2020.06.032_bib00027 doi: 10.5120/ijca2017912747 – volume: 35 start-page: 1470 year: 2011 ident: 10.1016/j.procs.2020.06.032_bib00052 article-title: Data-driven fuzzy models for nonlinear identification of a complex heat exchanger publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2010.09.023 – volume: 113 start-page: 133 year: 2018 ident: 10.1016/j.procs.2020.06.032_bib00017 article-title: A Survey of Data Clustering Methods publication-title: International Journal of Advanced Science and Technology doi: 10.14257/ijast.2018.113.14 – volume: 11 start-page: 5424 year: 2011 ident: 10.1016/j.procs.2020.06.032_bib0007 article-title: Finding all solutions of nonlinear systems using a hybrid metaheuristic with Fuzzy Clustering Means publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.05.016 – ident: 10.1016/j.procs.2020.06.032_bib00048 – ident: 10.1016/j.procs.2020.06.032_bib00023 – ident: 10.1016/j.procs.2020.06.032_bib0003 doi: 10.1109/TENCON.2009.5395882 – ident: 10.1016/j.procs.2020.06.032_bib00035 doi: 10.1109/DASC-PICom-DataCom-CyberSciTec.2017.44 – ident: 10.1016/j.procs.2020.06.032_bib0009 doi: 10.1371/journal.pone.0210236 – ident: 10.1016/j.procs.2020.06.032_bib0001 doi: 10.1016/j.procs.2016.03.014 – ident: 10.1016/j.procs.2020.06.032_bib00019 – ident: 10.1016/j.procs.2020.06.032_bib00036 – ident: 10.1016/j.procs.2020.06.032_bib0006 doi: 10.1109/ICMLA.2010.21 – volume: 7 issue: 6S5 year: 2019 ident: 10.1016/j.procs.2020.06.032_bib00013 article-title: Performance Evaluation And Comparison of Clustering Algorithms used in Educational Data Mining publication-title: International Journal of Recent Technology and Engineering (IJRTE) – volume: 6 start-page: 109 issue: 8 year: 2017 ident: 10.1016/j.procs.2020.06.032_bib00045 article-title: A Comparative Study of Various Clustering Algorithms in Data Mining publication-title: IJCSMC – volume: 33 year: 2016 ident: 10.1016/j.procs.2020.06.032_bib00011 article-title: A Survey on Feature Weighting Based K-means Algorithms publication-title: Journal of Classification – volume: 2 issue: 4 year: 2013 ident: 10.1016/j.procs.2020.06.032_bib00030 article-title: Survey Paper on Clustering Techniques publication-title: International Journal of Science, Engineering and Technology Research (IJSETR) – ident: 10.1016/j.procs.2020.06.032_bib00046 doi: 10.1109/ISCO.2013.6481187 – ident: 10.1016/j.procs.2020.06.032_bib00050 doi: 10.1109/ICC.2012.6364088 – ident: 10.1016/j.procs.2020.06.032_bib00026 doi: 10.3368/jhr.50.2.317 – ident: 10.1016/j.procs.2020.06.032_bib00014 – ident: 10.1016/j.procs.2020.06.032_bib00020 doi: 10.1007/3-540-28349-8_2 – volume: 1–1 issue: 4 year: 2016 ident: 10.1016/j.procs.2020.06.032_bib00051 article-title: Unsupervised Robust Multiple Kernel Learning via Extracting Local and Global Noises publication-title: IEEE Access – ident: 10.1016/j.procs.2020.06.032_bib00022 doi: 10.1016/j.jnca.2014.09.005 – volume: 30 start-page: 2826 year: 2007 ident: 10.1016/j.procs.2020.06.032_bib00024 article-title: A survey on clustering algorithms for wireless sensor networks publication-title: Computer Communications doi: 10.1016/j.comcom.2007.05.024 – volume: 2 start-page: 275 year: 2007 ident: 10.1016/j.procs.2020.06.032_bib00025 article-title: Myoelectric control systems—A survey publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.07.009 – ident: 10.1016/j.procs.2020.06.032_bib00042 doi: 10.1109/IIKI.2015.62 – ident: 10.1016/j.procs.2020.06.032_bib00047 doi: 10.1109/ICCSP.2016.7754534 – volume: 2 start-page: 165 issue: 2 year: 2015 ident: 10.1016/j.procs.2020.06.032_bib00043 article-title: A Comprehensive Survey of Clustering Algorithms publication-title: Ann. Data. Sci. doi: 10.1007/s40745-015-0040-1 – ident: 10.1016/j.procs.2020.06.032_bib00044 – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.procs.2020.06.032_bib0002 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.11.003 – ident: 10.1016/j.procs.2020.06.032_bib00021 – ident: 10.1016/j.procs.2020.06.032_bib00033 doi: 10.1109/CTCEEC.2017.8454973 – ident: 10.1016/j.procs.2020.06.032_bib00029 doi: 10.1007/3-540-28349-8_2 – ident: 10.1016/j.procs.2020.06.032_bib00053 doi: 10.1109/HIS.2011.6122106 – ident: 10.1016/j.procs.2020.06.032_bib00038 – ident: 10.1016/j.procs.2020.06.032_bib00034 doi: 10.3390/a10040123 – volume: 25 start-page: 104004 year: 2019 ident: 10.1016/j.procs.2020.06.032_bib00016 article-title: Descriptive statistics and visualization of data from the R datasets package with implications for clusterability publication-title: Data in brief doi: 10.1016/j.dib.2019.104004 – volume: 148 start-page: 291 year: 2019 ident: 10.1016/j.procs.2020.06.032_bib00015 article-title: A survey of clustering algorithms for an industrial context publication-title: Procedia Computer Science doi: 10.1016/j.procs.2019.01.022 – volume: 40 start-page: 16 year: 2014 ident: 10.1016/j.procs.2020.06.032_bib0008 article-title: A survey on feature selection methods publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2013.11.024 |
| SSID | ssj0000388917 |
| Score | 2.3295722 |
| Snippet | Data clustering is an important tool in data mining, that helps to retrieve useful data from large amount of available data. In this digital era data is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 272 |
| SubjectTerms | Dendrogram hierarchical clustering metaheuristic clustering |
| Title | Review of Clustering Techniques in Control System |
| URI | https://dx.doi.org/10.1016/j.procs.2020.06.032 |
| Volume | 173 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4Q9ODFtxFf2YM3bdIX3e3REI0HJUYw4da0u0uEQCE8Grz42519tFQxRA5eGtjQBfZbZr4dZr5B6JpSn8ZOt2txn8IBhdnciilhcFTxiSBxnTtCdS15Is0m7XTCl0qlqOLPBiRN6WIRjv8VahgDsGXp7AZwF5PCADwG0OEKsMP1T8C_FsUojcFcyiDIYEA7l2qdmjI_lZ-u5crL_FTVDcCWUanmstvDjXGRRSQGZnvXoeT58KOw6a1JL4uBaGaKi7aGUiqpHFBw7ZL1o4RYUhBGO4dfxnKTSbyy0dPNd4z_dHVnphXTrKMEfekYmNRJd20lnGqim9-EsH84qCJtMM9I60dqkkhOEsm8PA-c8JZL6qFM6nv-XEbZpNZNqNouF98jl55SSX4rH-Z3elKiHO19tGvOCvhOY3yAKiI9RHt5Hw5szPIRcjTkeNTFS8jxEnLcS7GBHGvIj9Hbw3278WiZVhgWk4L6lpcEDqMCLC5NnDB2SULkf-zAvmJGw0AElHBfCI-7NnNixhwOxEvAT81noeBAUU9QNR2l4hRhFsAZlTuBEIz6XpdRIuwYaB3zXJ74Hq8hN1-BiBmdeNmuZBCtWf4aui1uGmuZlPUvD_Kljcw21gwugt2y7sazzd7nHO3IZzpkdoGqs8lcXKJtls1608mV2ipf0l90oA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Clustering+Techniques+in+Control+System&rft.jtitle=Procedia+computer+science&rft.au=Singh%2C+Saumya&rft.au=Srivastava%2C+Smriti&rft.date=2020&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=173&rft.spage=272&rft.epage=280&rft_id=info:doi/10.1016%2Fj.procs.2020.06.032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2020_06_032 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |