MicroRNA signature for interpretable breast cancer classification with subtype clue
MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-transcriptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the their concentration in the blood has sparked the hope of using them as reliable,...
Saved in:
| Published in: | Journal of Computational Mathematics and Data Science Vol. 3; p. 100042 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.06.2022
|
| Subjects: | |
| ISSN: | 2772-4158, 2772-4158 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-transcriptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the their concentration in the blood has sparked the hope of using them as reliable, inexpensive and non-invasive biomarkers.
While differential expression analysis succeeded in identifying groups of disregulated miRNAs among tumor and healthy samples, its intrinsic dual nature makes it inadequate for cancer subtype detection. Using artificial intelligence or machine learning to uncover complex profiles of miRNA expression associated with different breast cancer subtypes has poorly been investigated and only few recent works have explored this possibility. However, the use of the same dataset both for training and testing leaves the issue of the robustness of these results still open.
In this paper, we propose a two-stage method that leverages on two ad-hoc classifiers for tumor/healthy classification and subtype identification. We assess our results using two completely independent datasets: TGCA for training and GSE68085 for testing. Experiments show that our strategy is extraordinarily effective especially for tumor/healthy classification, where we achieved an accuracy of 0.99. Yet, by means of a feature importance mechanism, our method is able to display which miRNAs lead to every single sample classification so as to enable a personalized medicine approach to therapy as well as the algorithm explainability required by the EU GDPR regulation and other similar legislations. |
|---|---|
| AbstractList | MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-transcriptional stage. Evidence of their involvement in breast cancer and the possibility of quantifying the their concentration in the blood has sparked the hope of using them as reliable, inexpensive and non-invasive biomarkers.
While differential expression analysis succeeded in identifying groups of disregulated miRNAs among tumor and healthy samples, its intrinsic dual nature makes it inadequate for cancer subtype detection. Using artificial intelligence or machine learning to uncover complex profiles of miRNA expression associated with different breast cancer subtypes has poorly been investigated and only few recent works have explored this possibility. However, the use of the same dataset both for training and testing leaves the issue of the robustness of these results still open.
In this paper, we propose a two-stage method that leverages on two ad-hoc classifiers for tumor/healthy classification and subtype identification. We assess our results using two completely independent datasets: TGCA for training and GSE68085 for testing. Experiments show that our strategy is extraordinarily effective especially for tumor/healthy classification, where we achieved an accuracy of 0.99. Yet, by means of a feature importance mechanism, our method is able to display which miRNAs lead to every single sample classification so as to enable a personalized medicine approach to therapy as well as the algorithm explainability required by the EU GDPR regulation and other similar legislations. |
| ArticleNumber | 100042 |
| Author | Bianchini, Monica Geraci, Filippo Bonechi, Simone Andreini, Paolo |
| Author_xml | – sequence: 1 givenname: Paolo surname: Andreini fullname: Andreini, Paolo organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy – sequence: 2 givenname: Simone surname: Bonechi fullname: Bonechi, Simone organization: Department of Social, Political and Cognitive Sciences, University of Siena, Siena, Italy – sequence: 3 givenname: Monica surname: Bianchini fullname: Bianchini, Monica organization: Department of Information Engineering and Mathematics, University of Siena, Siena, Italy – sequence: 4 givenname: Filippo orcidid: 0000-0001-6993-6761 surname: Geraci fullname: Geraci, Filippo email: filippo.geraci@iit.cnr.it organization: Institute for Informatics and Telematics, CNR, Pisa, Italy |
| BookMark | eNqFkEtPwzAMgCM0JMbYL-CSP9CRR5u2Bw7TxEsaIPE4R0nqQKqunZIMtH9PtnFAHOBky_Zn2d8pGvVDDwidUzKjhIqLdtaaVRNmjDCWKoTk7AiNWVmyLKdFNfqRn6BpCG0aYSXPRV2M0fO9M354epjj4N56FTcesB08dn0Ev_YQle4Aaw8qRGxUb8Bj06kQnHVGRTf0-NPFdxw2Om7XkHobOEPHVnUBpt9xgl6vr14Wt9ny8eZuMV9mhgnOMibyQpSKEGpEU1pqRS6saOpaV8SahipocqgUq4pCVBXnaa4uuaGV4JoorfkE1Ye96YMQPFhpXNzfFL1ynaRE7gTJVu4FyZ0geRCUWP6LXXu3Un77D3V5oCC99eHAy2AcJCmN82CibAb3J_8FT-mC0A |
| CitedBy_id | crossref_primary_10_3390_a15080274 crossref_primary_10_3390_app13148257 crossref_primary_10_3390_diagnostics13193072 crossref_primary_10_1016_j_asoc_2024_112270 |
| Cites_doi | 10.1016/j.bspc.2022.103545 10.1016/j.compbiomed.2021.104352 10.1093/bioinformatics/btp616 10.1016/j.lfs.2020.117865 10.1007/s10549-018-4899-3 10.1007/s12094-019-02103-0 10.1038/nature11412 10.1016/j.compbiolchem.2019.107191 10.1155/2015/281756 10.1093/nar/gkt1181 10.1002/hed.25866 10.1016/j.jmoldx.2013.07.005 10.1023/A:1010933404324 10.1371/journal.pone.0003148 10.1023/A:1022627411411 10.1200/JCO.2008.18.1370 10.1007/s12282-017-0814-8 10.1371/journal.pcbi.0030131 10.3390/cancers11030431 10.1634/theoncologist.2014-0108 10.1111/cpr.12913 10.1158/0008-5472.CAN-16-2574 10.1016/j.molmed.2011.01.006 10.3390/cancers12071785 10.1158/0008-5472.CAN-09-1201 10.1186/s12864-015-1899-0 10.1038/jhg.2016.89 10.1371/journal.pone.0260327 10.1016/j.gene.2018.07.057 10.1158/1055-9965.EPI-13-1023 10.1016/j.compbiomed.2021.104244 10.1016/j.humpath.2012.10.014 10.1038/nature03702 10.1001/jama.2015.13183 10.1038/nature10983 10.1371/journal.pone.0200353 10.1261/rna.1034808 10.1096/fj.15-271312 10.1371/journal.pone.0020769 10.1038/srep06566 10.7150/ijbs.16529 |
| ContentType | Journal Article |
| Copyright | 2022 The Author(s) |
| Copyright_xml | – notice: 2022 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.jcmds.2022.100042 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2772-4158 |
| ExternalDocumentID | 10_1016_j_jcmds_2022_100042 S2772415822000116 |
| GroupedDBID | 6I. AAFTH AAXUO ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AITUG AKBMS AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c2632-264567a001c6d7f1f646f6d99b80fcd1aed4e8a28556883301c973c1863b0abb3 |
| ISSN | 2772-4158 |
| IngestDate | Tue Nov 18 21:47:20 EST 2025 Sat Nov 29 07:35:29 EST 2025 Tue Jul 25 20:57:54 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Breast cancer subtype Feature importance MiRNA biomarkers Supervised classification |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2632-264567a001c6d7f1f646f6d99b80fcd1aed4e8a28556883301c973c1863b0abb3 |
| ORCID | 0000-0001-6993-6761 |
| OpenAccessLink | http://dx.doi.org/10.1016/j.jcmds.2022.100042 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_jcmds_2022_100042 crossref_primary_10_1016_j_jcmds_2022_100042 elsevier_sciencedirect_doi_10_1016_j_jcmds_2022_100042 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of Computational Mathematics and Data Science |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Saha, Bhowmick, Geraci, Pellegrini, Bhattacharjee, Maulik, Plewczynski (b22) 2015 Myers, Moorman, Gierisch, Havrilesky, Grimm, Ghate, Davidson, Mongtomery, Crowley, McCrory (b7) 2015; 314 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b40) 2011; 12 Farshid, Walters (b8) 2018; 172 Sætrom, Biesinger, Li, Smith, Thomas, Majzoub, Rivas, Alluin, Rossi, Krontiris (b42) 2009; 69 Curtis, Shah, Chin, Turashvili, Rueda, Dunning, Speed, Lynch, Samarajiwa, Yuan (b6) 2012; 486 Amirfallah, Knutsdottir, Arason, Hilmarsdottir, Johannsson, Agnarsson, Barkardottir, Reynisdottir (b44) 2021; 16 Breiman (b27) 2001; 45 Netanely, Avraham, Ben-Baruch, Evron, Shamir (b35) 2016; 18 Yan, Huang, Shao, Huang, Deng, Wu, Zeng, Shao (b45) 2008; 14 Sweeney, Bernard, Factor, Kwan, Habel, Quesenberry, Shakespear, Weltzien, Stijleman, Davis (b3) 2014; 23 Rehman, Zhuang, Muhamed Ali, Ibrahim, Li (b20) 2019; 11 Siegel, Miller, Jemal (b1) 2019 Shalgi, Lieber, Oren, Pilpel (b12) 2007; 3 Wang, Ye, Zhao, Li, Wang, Tao, Wang, He (b51) 2013; 44 Jakob, Mattes, Küffer, Unger, Hess, Bertlich, Haubner, Ihler, Canis, Weiss (b48) 2019; 41 Peng, Theng, Le (b41) 2021; 54 Zhang, Xu, Wang, Tang, He (b47) 2019; 42 Wang, Yan, Zhang, Li (b52) 2019; 7 Mopidevi, Maharjan, Jain, Pandey, Kumar (b54) 2012 Kurozumi, Yamaguchi, Kurosumi, Ohira, Matsumoto, Horiguchi (b16) 2017; 62 Sarkar, Saha, Sarkar, Maulik (b25) 2021; 131 Tamilmani, Devi, Sujithra, Shajin, Rajesh (b31) 2022; 75 Holm, Eriksson, Ploner, Eriksson, Rantalainen, Li, Hall, Czene (b4) 2017; 77 Robinson, McCarthy, Smyth (b33) 2010; 26 Huang, Cai, Pacheco, Narrandes, Wang, Xu (b28) 2018; 15 Krishnan, Ghosh, Wang, Li, Narasimhan, Berendt, Graham, Mackey, Kovalchuk, Damaraju (b36) 2015; 16 Qi (b29) 2012 Lopez-Rincon, Mendoza-Maldonado, Martinez-Archundia, Schönhuth, Kraneveld, Garssen, Tonda (b24) 2020; 12 Andorfer, Necela, Thompson, Perez (b17) 2011; 17 Kozomara, Griffiths-Jones (b38) 2013; 42 Yang, Xu, Zhang, Wu, Xing, Ru, Xu, Cao (b49) 2015; 5 Sherafatian (b23) 2018; 677 Geraci, Manzini (b37) 2021; 133 Cortes, Vapnik (b26) 1995; 20 Kok, Halliani, Moerland, Meijers, Creemers, Pinto-Sietsma (b10) 2015; 29 Koboldt, Fulton, McLellan, Schmidt, Kalicki-Veizer, McMichael, Fulton, Dooling, Ding, Mardis (b32) 2012; 490 Zhang, Xu, Ni, Li, Zhou, Xu (b50) 2016; 12 Krist, Florczyk, Pietraszek-Gremplewicz, Józkowicz, Dulak (b53) 2015; 2015 Dai, Chen, Bai (b15) 2014; 4 Adhami, Haghdoost, Sadeghi, Malekpour Afshar (b18) 2018; 25 Lundberg, Lee (b30) 2017 Sourvinou, Markou, Lianidou (b9) 2013; 15 Dieci, Orvieto, Dominici, Conte, Guarneri (b5) 2014; 19 Khalili, Nouri-Vaskeh, Segherlou, Baghbanzadeh, Halimi, Rezaee, Baradaran (b46) 2020; 256 Lu, Getz, Miska, Saavedra, Lamb, Peck, Cordero, Ebert, Mak, Ferrando, Downing, Jacks, Horvitz, Golub (b11) 2005; 435 Gilad, Meiri, Yogev, Benjamin, Lebanony, Yerushalmi, Benjamin, Kushnir, Cholakh, Melamed (b14) 2008; 3 Duttagupta, Jiang, Gollub, Getts, Jones (b13) 2011; 6 Parker, Mullins, Cheang, Leung, Voduc, Vickery, Davies, Fauron, He, Hu (b2) 2009; 27 Cava, Colaprico, Bertoli, Bontempi, Mauri, Castiglioni (b55) 2016; 17 Bhowmick, Saha, Bhattacharjee, Genovese, Geraci (b19) 2018; 13 Brodersen, Ong, Stephan, Buhmann (b39) 2010 Dai, Li, Bai, Yang, Liu, Zhan, Shi (b34) 2015; 5 Bozgeyik (b43) 2020; 84 Tomczak, Czerwińska, Wiznerowicz (b21) 2015; 19 Zhang (10.1016/j.jcmds.2022.100042_b50) 2016; 12 Parker (10.1016/j.jcmds.2022.100042_b2) 2009; 27 Curtis (10.1016/j.jcmds.2022.100042_b6) 2012; 486 Farshid (10.1016/j.jcmds.2022.100042_b8) 2018; 172 Kozomara (10.1016/j.jcmds.2022.100042_b38) 2013; 42 Bozgeyik (10.1016/j.jcmds.2022.100042_b43) 2020; 84 Rehman (10.1016/j.jcmds.2022.100042_b20) 2019; 11 Siegel (10.1016/j.jcmds.2022.100042_b1) 2019 Sætrom (10.1016/j.jcmds.2022.100042_b42) 2009; 69 Zhang (10.1016/j.jcmds.2022.100042_b47) 2019; 42 Duttagupta (10.1016/j.jcmds.2022.100042_b13) 2011; 6 Dai (10.1016/j.jcmds.2022.100042_b15) 2014; 4 Sweeney (10.1016/j.jcmds.2022.100042_b3) 2014; 23 Lopez-Rincon (10.1016/j.jcmds.2022.100042_b24) 2020; 12 Cortes (10.1016/j.jcmds.2022.100042_b26) 1995; 20 Wang (10.1016/j.jcmds.2022.100042_b51) 2013; 44 Breiman (10.1016/j.jcmds.2022.100042_b27) 2001; 45 Amirfallah (10.1016/j.jcmds.2022.100042_b44) 2021; 16 Jakob (10.1016/j.jcmds.2022.100042_b48) 2019; 41 Kurozumi (10.1016/j.jcmds.2022.100042_b16) 2017; 62 Lundberg (10.1016/j.jcmds.2022.100042_b30) 2017 Adhami (10.1016/j.jcmds.2022.100042_b18) 2018; 25 Tomczak (10.1016/j.jcmds.2022.100042_b21) 2015; 19 Qi (10.1016/j.jcmds.2022.100042_b29) 2012 Yan (10.1016/j.jcmds.2022.100042_b45) 2008; 14 Tamilmani (10.1016/j.jcmds.2022.100042_b31) 2022; 75 Lu (10.1016/j.jcmds.2022.100042_b11) 2005; 435 Andorfer (10.1016/j.jcmds.2022.100042_b17) 2011; 17 Brodersen (10.1016/j.jcmds.2022.100042_b39) 2010 Saha (10.1016/j.jcmds.2022.100042_b22) 2015 Cava (10.1016/j.jcmds.2022.100042_b55) 2016; 17 Sourvinou (10.1016/j.jcmds.2022.100042_b9) 2013; 15 Holm (10.1016/j.jcmds.2022.100042_b4) 2017; 77 Pedregosa (10.1016/j.jcmds.2022.100042_b40) 2011; 12 Dieci (10.1016/j.jcmds.2022.100042_b5) 2014; 19 Kok (10.1016/j.jcmds.2022.100042_b10) 2015; 29 Khalili (10.1016/j.jcmds.2022.100042_b46) 2020; 256 Wang (10.1016/j.jcmds.2022.100042_b52) 2019; 7 Peng (10.1016/j.jcmds.2022.100042_b41) 2021; 54 Mopidevi (10.1016/j.jcmds.2022.100042_b54) 2012 Sherafatian (10.1016/j.jcmds.2022.100042_b23) 2018; 677 Geraci (10.1016/j.jcmds.2022.100042_b37) 2021; 133 Dai (10.1016/j.jcmds.2022.100042_b34) 2015; 5 Krist (10.1016/j.jcmds.2022.100042_b53) 2015; 2015 Myers (10.1016/j.jcmds.2022.100042_b7) 2015; 314 Krishnan (10.1016/j.jcmds.2022.100042_b36) 2015; 16 Yang (10.1016/j.jcmds.2022.100042_b49) 2015; 5 Bhowmick (10.1016/j.jcmds.2022.100042_b19) 2018; 13 Netanely (10.1016/j.jcmds.2022.100042_b35) 2016; 18 Shalgi (10.1016/j.jcmds.2022.100042_b12) 2007; 3 Koboldt (10.1016/j.jcmds.2022.100042_b32) 2012; 490 Huang (10.1016/j.jcmds.2022.100042_b28) 2018; 15 Gilad (10.1016/j.jcmds.2022.100042_b14) 2008; 3 Robinson (10.1016/j.jcmds.2022.100042_b33) 2010; 26 Sarkar (10.1016/j.jcmds.2022.100042_b25) 2021; 131 |
| References_xml | – volume: 17 year: 2016 ident: b55 article-title: How interacting pathways are regulated by miRNAs in breast cancer subtypes publication-title: BMC Bioinformatics – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b40 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res – volume: 314 start-page: 1615 year: 2015 end-page: 1634 ident: b7 article-title: Benefits and harms of breast cancer screening: a systematic review publication-title: JAMA – volume: 25 start-page: 198 year: 2018 end-page: 205 ident: b18 article-title: Candidate mirnas in human breast cancer biomarkers: a systematic review publication-title: Breast Cancer – volume: 15 start-page: 41 year: 2018 end-page: 51 ident: b28 article-title: Applications of support vector machine (SVM) learning in cancer genomics publication-title: Cancer Genomics Proteomics – volume: 42 start-page: D68 year: 2013 end-page: D73 ident: b38 article-title: MiRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res – volume: 3 year: 2007 ident: b12 article-title: Global and local architecture of the mammalian microRNA-transcription factor regulatory network publication-title: PLoS Comput Biol – volume: 256 year: 2020 ident: b46 article-title: Diagnostic, prognostic, and therapeutic significance of miR-139-5p in cancers publication-title: Life Sciences – start-page: 3121 year: 2010 end-page: 3124 ident: b39 article-title: The balanced accuracy and its posterior distribution publication-title: 2010 20th International Conference on Pattern Recognition – volume: 75 year: 2022 ident: b31 article-title: Cancer MiRNA biomarker classification based on improved generative adversarial network optimized with mayfly optimization algorithm publication-title: Biomed Signal Process Control – volume: 14 start-page: 2348 year: 2008 end-page: 2360 ident: b45 article-title: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis publication-title: Rna – volume: 131 year: 2021 ident: b25 article-title: Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers publication-title: Comput Biol Med – volume: 84 year: 2020 ident: b43 article-title: Bioinformatic analysis and in vitro validation of let-7b and let-7c in breast cancer publication-title: Comput Biol Chem – volume: 19 start-page: 805 year: 2014 end-page: 813 ident: b5 article-title: Rare breast cancer subtypes: histological, molecular, and clinical peculiarities publication-title: Oncol – start-page: 116 year: 2015 end-page: 127 ident: b22 article-title: Analysis of next-generation sequencing data of mirna for the prediction of breast cancer publication-title: International Conference on Swarm, Evolutionary, and Memetic Computing – volume: 69 start-page: 7459 year: 2009 end-page: 7465 ident: b42 article-title: A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis publication-title: Cancer Res – start-page: 4765 year: 2017 end-page: 4774 ident: b30 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems 30 – volume: 435 start-page: 834 year: 2005 end-page: 838 ident: b11 article-title: MicroRNA expression profiles classify human cancers publication-title: Nature – volume: 62 start-page: 15 year: 2017 end-page: 24 ident: b16 article-title: Recent trends in microrna research into breast cancer with particular focus on the associations between micrornas and intrinsic subtypes publication-title: J Human Genetics – volume: 2015 year: 2015 ident: b53 article-title: The role of miR-378a in metabolism, angiogenesis, and muscle biology publication-title: Int J Endocrinol – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b27 article-title: Random forests publication-title: Mach Learn – volume: 12 start-page: 1437 year: 2016 ident: b50 article-title: MiR-99a and MiR-491 regulate cisplatin resistance in human gastric cancer cells by targeting CAPNS1 publication-title: Int J Biol Sci – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b26 article-title: Support-vector networks publication-title: Mach Learn – volume: 54 year: 2021 ident: b41 article-title: Essential functions of miR-125b in cancer publication-title: Cell Proliferation – volume: 44 start-page: 1278 year: 2013 end-page: 1285 ident: b51 article-title: Clinicopathologic significance of miR-10b expression in gastric carcinoma publication-title: Human Pathol – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: b32 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 6 year: 2011 ident: b13 article-title: Impact of cellular mirnas on circulating mirna biomarker signatures publication-title: PLoS One – year: 2019 ident: b1 article-title: Cancer statistics publication-title: CA: Cancer J Clin – volume: 7 year: 2019 ident: b52 article-title: Role of miR-10b-5p in the prognosis of breast cancer publication-title: PeerJ – volume: 27 start-page: 1160 year: 2009 ident: b2 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol – volume: 41 start-page: 3499 year: 2019 end-page: 3515 ident: b48 article-title: MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer publication-title: Head Neck – volume: 12 start-page: 1785 year: 2020 ident: b24 article-title: Machine learning-based ensemble recursive feature selection of circulating mirnas for cancer tumor classification publication-title: Cancers – volume: 19 start-page: A68 year: 2015 ident: b21 article-title: The cancer genome atlas (TCGA): an immeasurable source of knowledge publication-title: Contem Oncol – volume: 486 start-page: 346 year: 2012 ident: b6 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature – volume: 13 year: 2018 ident: b19 article-title: Genome-wide analysis of NGS data to compile cancer-specific panels of mirna biomarkers publication-title: PLoS One – volume: 133 year: 2021 ident: b37 article-title: EZcount: An all-in-one software for microRNA expression quantification from NGS sequencing data publication-title: Comput Biol Med – volume: 15 start-page: 827 year: 2013 end-page: 834 ident: b9 article-title: Quantification of circulating mirnas in plasma: effect of preanalytical and analytical parameters on their isolation and stability publication-title: J Mol Diagnost – volume: 17 start-page: 313 year: 2011 end-page: 319 ident: b17 article-title: Microrna signatures: clinical biomarkers for the diagnosis and treatment of breast cancer publication-title: Trends Mol Med – volume: 16 year: 2021 ident: b44 article-title: Hsa-mir-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways publication-title: PLoS One – volume: 5 start-page: 545 year: 2015 ident: b49 article-title: Role of miR-100 in the radioresistance of colorectal cancer cells publication-title: Amer J Cancer Res – volume: 172 start-page: 191 year: 2018 end-page: 199 ident: b8 article-title: Molecular subtypes of screen-detected breast cancer publication-title: Breast Cancer Res Treat – volume: 16 start-page: 1 year: 2015 end-page: 17 ident: b36 article-title: Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer publication-title: BMC Genomics – year: 2012 ident: b54 article-title: MicroRNAs hsa-miR-584 and hsa-mir-31 regulate expression of human angiotensnogen gene – volume: 677 start-page: 111 year: 2018 end-page: 118 ident: b23 article-title: Tree-based machine learning algorithms identified minimal set of mirna biomarkers for breast cancer diagnosis and molecular subtyping publication-title: Gene – start-page: 307 year: 2012 end-page: 323 ident: b29 article-title: Random forest for bioinformatics publication-title: Ensemble Machine Learning – volume: 42 start-page: 1699 year: 2019 end-page: 1708 ident: b47 article-title: MiR-139-3p suppresses the invasion and migration properties of breast cancer cells by targeting RAB1a publication-title: Oncol Rep – volume: 77 start-page: 3708 year: 2017 end-page: 3717 ident: b4 article-title: Assessment of breast cancer risk factors reveals subtype heterogeneity publication-title: Cancer Res – volume: 5 start-page: 2929 year: 2015 ident: b34 article-title: Breast cancer intrinsic subtype classification, clinical use and future trends publication-title: Amer J Cancer Res – volume: 29 start-page: 3853 year: 2015 end-page: 3862 ident: b10 article-title: Normalization panels for the reliable quantification of circulating microRNAs by RT-qPCR publication-title: FASEB J – volume: 11 start-page: 431 year: 2019 ident: b20 article-title: Validation of mirnas as breast cancer biomarkers with a machine learning approach publication-title: Cancers – volume: 4 start-page: 1 year: 2014 end-page: 10 ident: b15 article-title: Integrative investigation on breast cancer in ER, PR and HER2-defined subgroups using mRNA and mirna expression profiling publication-title: Sci Rep – volume: 18 start-page: 1 year: 2016 end-page: 16 ident: b35 article-title: Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups publication-title: Breast Cancer Res – volume: 23 start-page: 714 year: 2014 end-page: 724 ident: b3 article-title: Intrinsic subtypes from PAM50 gene expression assay in a population-based breast cancer cohort: differences by age, race, and tumor characteristics publication-title: Cancer Epidemiol Prevent Biomarkers – volume: 26 start-page: 139 year: 2010 end-page: 140 ident: b33 article-title: Edger: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 3 year: 2008 ident: b14 article-title: Serum microRNAs are promising novel biomarkers publication-title: PLoS One – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.jcmds.2022.100042_b40 article-title: Scikit-learn: Machine learning in python publication-title: J Mach Learn Res – volume: 75 year: 2022 ident: 10.1016/j.jcmds.2022.100042_b31 article-title: Cancer MiRNA biomarker classification based on improved generative adversarial network optimized with mayfly optimization algorithm publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103545 – volume: 133 year: 2021 ident: 10.1016/j.jcmds.2022.100042_b37 article-title: EZcount: An all-in-one software for microRNA expression quantification from NGS sequencing data publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104352 – volume: 26 start-page: 139 issue: 1 year: 2010 ident: 10.1016/j.jcmds.2022.100042_b33 article-title: Edger: a bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 256 year: 2020 ident: 10.1016/j.jcmds.2022.100042_b46 article-title: Diagnostic, prognostic, and therapeutic significance of miR-139-5p in cancers publication-title: Life Sciences doi: 10.1016/j.lfs.2020.117865 – volume: 172 start-page: 191 issue: 1 year: 2018 ident: 10.1016/j.jcmds.2022.100042_b8 article-title: Molecular subtypes of screen-detected breast cancer publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-018-4899-3 – volume: 42 start-page: 1699 issue: 5 year: 2019 ident: 10.1016/j.jcmds.2022.100042_b47 article-title: MiR-139-3p suppresses the invasion and migration properties of breast cancer cells by targeting RAB1a publication-title: Oncol Rep doi: 10.1007/s12094-019-02103-0 – volume: 5 start-page: 2929 issue: 10 year: 2015 ident: 10.1016/j.jcmds.2022.100042_b34 article-title: Breast cancer intrinsic subtype classification, clinical use and future trends publication-title: Amer J Cancer Res – start-page: 3121 year: 2010 ident: 10.1016/j.jcmds.2022.100042_b39 article-title: The balanced accuracy and its posterior distribution – volume: 490 start-page: 61 issue: 7418 year: 2012 ident: 10.1016/j.jcmds.2022.100042_b32 article-title: Comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 84 year: 2020 ident: 10.1016/j.jcmds.2022.100042_b43 article-title: Bioinformatic analysis and in vitro validation of let-7b and let-7c in breast cancer publication-title: Comput Biol Chem doi: 10.1016/j.compbiolchem.2019.107191 – start-page: 307 year: 2012 ident: 10.1016/j.jcmds.2022.100042_b29 article-title: Random forest for bioinformatics – volume: 2015 year: 2015 ident: 10.1016/j.jcmds.2022.100042_b53 article-title: The role of miR-378a in metabolism, angiogenesis, and muscle biology publication-title: Int J Endocrinol doi: 10.1155/2015/281756 – volume: 42 start-page: D68 issue: D1 year: 2013 ident: 10.1016/j.jcmds.2022.100042_b38 article-title: MiRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1181 – volume: 41 start-page: 3499 issue: 10 year: 2019 ident: 10.1016/j.jcmds.2022.100042_b48 article-title: MicroRNA expression patterns in oral squamous cell carcinoma: hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer publication-title: Head Neck doi: 10.1002/hed.25866 – volume: 15 start-page: 827 issue: 6 year: 2013 ident: 10.1016/j.jcmds.2022.100042_b9 article-title: Quantification of circulating mirnas in plasma: effect of preanalytical and analytical parameters on their isolation and stability publication-title: J Mol Diagnost doi: 10.1016/j.jmoldx.2013.07.005 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jcmds.2022.100042_b27 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 3 issue: 9 year: 2008 ident: 10.1016/j.jcmds.2022.100042_b14 article-title: Serum microRNAs are promising novel biomarkers publication-title: PLoS One doi: 10.1371/journal.pone.0003148 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.jcmds.2022.100042_b26 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1023/A:1022627411411 – volume: 18 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.jcmds.2022.100042_b35 article-title: Expression and methylation patterns partition luminal-A breast tumors into distinct prognostic subgroups publication-title: Breast Cancer Res – volume: 27 start-page: 1160 issue: 8 year: 2009 ident: 10.1016/j.jcmds.2022.100042_b2 article-title: Supervised risk predictor of breast cancer based on intrinsic subtypes publication-title: J Clin Oncol doi: 10.1200/JCO.2008.18.1370 – volume: 25 start-page: 198 issue: 2 year: 2018 ident: 10.1016/j.jcmds.2022.100042_b18 article-title: Candidate mirnas in human breast cancer biomarkers: a systematic review publication-title: Breast Cancer doi: 10.1007/s12282-017-0814-8 – volume: 3 issue: 7 year: 2007 ident: 10.1016/j.jcmds.2022.100042_b12 article-title: Global and local architecture of the mammalian microRNA-transcription factor regulatory network publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0030131 – volume: 11 start-page: 431 issue: 3 year: 2019 ident: 10.1016/j.jcmds.2022.100042_b20 article-title: Validation of mirnas as breast cancer biomarkers with a machine learning approach publication-title: Cancers doi: 10.3390/cancers11030431 – volume: 19 start-page: 805 issue: 8 year: 2014 ident: 10.1016/j.jcmds.2022.100042_b5 article-title: Rare breast cancer subtypes: histological, molecular, and clinical peculiarities publication-title: Oncol doi: 10.1634/theoncologist.2014-0108 – volume: 54 issue: 2 year: 2021 ident: 10.1016/j.jcmds.2022.100042_b41 article-title: Essential functions of miR-125b in cancer publication-title: Cell Proliferation doi: 10.1111/cpr.12913 – volume: 77 start-page: 3708 issue: 13 year: 2017 ident: 10.1016/j.jcmds.2022.100042_b4 article-title: Assessment of breast cancer risk factors reveals subtype heterogeneity publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-2574 – volume: 17 start-page: 313 issue: 6 year: 2011 ident: 10.1016/j.jcmds.2022.100042_b17 article-title: Microrna signatures: clinical biomarkers for the diagnosis and treatment of breast cancer publication-title: Trends Mol Med doi: 10.1016/j.molmed.2011.01.006 – volume: 12 start-page: 1785 issue: 7 year: 2020 ident: 10.1016/j.jcmds.2022.100042_b24 article-title: Machine learning-based ensemble recursive feature selection of circulating mirnas for cancer tumor classification publication-title: Cancers doi: 10.3390/cancers12071785 – volume: 69 start-page: 7459 issue: 18 year: 2009 ident: 10.1016/j.jcmds.2022.100042_b42 article-title: A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-1201 – volume: 16 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.jcmds.2022.100042_b36 article-title: Next generation sequencing profiling identifies miR-574-3p and miR-660-5p as potential novel prognostic markers for breast cancer publication-title: BMC Genomics doi: 10.1186/s12864-015-1899-0 – volume: 62 start-page: 15 issue: 1 year: 2017 ident: 10.1016/j.jcmds.2022.100042_b16 article-title: Recent trends in microrna research into breast cancer with particular focus on the associations between micrornas and intrinsic subtypes publication-title: J Human Genetics doi: 10.1038/jhg.2016.89 – volume: 16 issue: 11 year: 2021 ident: 10.1016/j.jcmds.2022.100042_b44 article-title: Hsa-mir-21-3p associates with breast cancer patient survival and targets genes in tumor suppressive pathways publication-title: PLoS One doi: 10.1371/journal.pone.0260327 – volume: 677 start-page: 111 year: 2018 ident: 10.1016/j.jcmds.2022.100042_b23 article-title: Tree-based machine learning algorithms identified minimal set of mirna biomarkers for breast cancer diagnosis and molecular subtyping publication-title: Gene doi: 10.1016/j.gene.2018.07.057 – volume: 23 start-page: 714 issue: 5 year: 2014 ident: 10.1016/j.jcmds.2022.100042_b3 article-title: Intrinsic subtypes from PAM50 gene expression assay in a population-based breast cancer cohort: differences by age, race, and tumor characteristics publication-title: Cancer Epidemiol Prevent Biomarkers doi: 10.1158/1055-9965.EPI-13-1023 – volume: 131 year: 2021 ident: 10.1016/j.jcmds.2022.100042_b25 article-title: Machine learning integrated ensemble of feature selection methods followed by survival analysis for predicting breast cancer subtype specific miRNA biomarkers publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104244 – volume: 7 year: 2019 ident: 10.1016/j.jcmds.2022.100042_b52 article-title: Role of miR-10b-5p in the prognosis of breast cancer publication-title: PeerJ – volume: 44 start-page: 1278 issue: 7 year: 2013 ident: 10.1016/j.jcmds.2022.100042_b51 article-title: Clinicopathologic significance of miR-10b expression in gastric carcinoma publication-title: Human Pathol doi: 10.1016/j.humpath.2012.10.014 – volume: 17 issue: 348 year: 2016 ident: 10.1016/j.jcmds.2022.100042_b55 article-title: How interacting pathways are regulated by miRNAs in breast cancer subtypes publication-title: BMC Bioinformatics – volume: 435 start-page: 834 issue: 7043 year: 2005 ident: 10.1016/j.jcmds.2022.100042_b11 article-title: MicroRNA expression profiles classify human cancers publication-title: Nature doi: 10.1038/nature03702 – volume: 314 start-page: 1615 issue: 15 year: 2015 ident: 10.1016/j.jcmds.2022.100042_b7 article-title: Benefits and harms of breast cancer screening: a systematic review publication-title: JAMA doi: 10.1001/jama.2015.13183 – start-page: 116 year: 2015 ident: 10.1016/j.jcmds.2022.100042_b22 article-title: Analysis of next-generation sequencing data of mirna for the prediction of breast cancer – year: 2012 ident: 10.1016/j.jcmds.2022.100042_b54 – volume: 486 start-page: 346 issue: 7403 year: 2012 ident: 10.1016/j.jcmds.2022.100042_b6 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature doi: 10.1038/nature10983 – volume: 13 issue: 7 year: 2018 ident: 10.1016/j.jcmds.2022.100042_b19 article-title: Genome-wide analysis of NGS data to compile cancer-specific panels of mirna biomarkers publication-title: PLoS One doi: 10.1371/journal.pone.0200353 – volume: 14 start-page: 2348 issue: 11 year: 2008 ident: 10.1016/j.jcmds.2022.100042_b45 article-title: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis publication-title: Rna doi: 10.1261/rna.1034808 – year: 2019 ident: 10.1016/j.jcmds.2022.100042_b1 article-title: Cancer statistics publication-title: CA: Cancer J Clin – volume: 29 start-page: 3853 issue: 9 year: 2015 ident: 10.1016/j.jcmds.2022.100042_b10 article-title: Normalization panels for the reliable quantification of circulating microRNAs by RT-qPCR publication-title: FASEB J doi: 10.1096/fj.15-271312 – volume: 19 start-page: A68 issue: 1A year: 2015 ident: 10.1016/j.jcmds.2022.100042_b21 article-title: The cancer genome atlas (TCGA): an immeasurable source of knowledge publication-title: Contem Oncol – volume: 6 issue: 6 year: 2011 ident: 10.1016/j.jcmds.2022.100042_b13 article-title: Impact of cellular mirnas on circulating mirna biomarker signatures publication-title: PLoS One doi: 10.1371/journal.pone.0020769 – start-page: 4765 year: 2017 ident: 10.1016/j.jcmds.2022.100042_b30 article-title: A unified approach to interpreting model predictions – volume: 15 start-page: 41 issue: 1 year: 2018 ident: 10.1016/j.jcmds.2022.100042_b28 article-title: Applications of support vector machine (SVM) learning in cancer genomics publication-title: Cancer Genomics Proteomics – volume: 5 start-page: 545 issue: 2 year: 2015 ident: 10.1016/j.jcmds.2022.100042_b49 article-title: Role of miR-100 in the radioresistance of colorectal cancer cells publication-title: Amer J Cancer Res – volume: 4 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.jcmds.2022.100042_b15 article-title: Integrative investigation on breast cancer in ER, PR and HER2-defined subgroups using mRNA and mirna expression profiling publication-title: Sci Rep doi: 10.1038/srep06566 – volume: 12 start-page: 1437 issue: 12 year: 2016 ident: 10.1016/j.jcmds.2022.100042_b50 article-title: MiR-99a and MiR-491 regulate cisplatin resistance in human gastric cancer cells by targeting CAPNS1 publication-title: Int J Biol Sci doi: 10.7150/ijbs.16529 |
| SSID | ssj0002734695 |
| Score | 2.2386475 |
| Snippet | MicroRNAs (miRNAs) are short non-coding RNAs engaged in cellular regulation by suppressing genes at their post-transcriptional stage. Evidence of their... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100042 |
| SubjectTerms | Breast cancer subtype Feature importance MiRNA biomarkers Supervised classification |
| Title | MicroRNA signature for interpretable breast cancer classification with subtype clue |
| URI | https://dx.doi.org/10.1016/j.jcmds.2022.100042 |
| Volume | 3 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2772-4158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734695 issn: 2772-4158 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2772-4158 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734695 issn: 2772-4158 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxELUC7YELagUVUIp84JZulXh3vd4jooVeElUEJG4r22uLRGGJtgFx4h_wn5mx9yOBCBWkXlaRFTuJ58kevzy_IeRQM5vaSPEgdtQNHCoCYeDUKnpKCrzsGFvpik0kw6G4vEz_dDqP9V2Yu2lSFOL-Pp3911BDGwQbr86-IdzNoNAAryHo8ISww_OfAj9Aid3Z8KiL0gxn2-mkhONGXYh3pRRq0eco-dKm7GpMoVEz5NFQydaVo2f19HZZLdRmsL4iRM0mDhoDWG_7_FPOZb10tGRDXpqxqyIFuSusuw0bcFMY7eoLd0eAnoX_-pF0uaq64ALUSotOTSm1az9BUmh2s8hgwOG3UVp5Wu3F1Rpc_Rik_QFkF35xNivaquU7XLkReE5i8mOir3N0ZWcM9SA97-T1zGF7hOPisIy5FJmvkQ8siVNUCA4eWsoOnYC4q-PTfJHax8opBl981upcZyF_Of9ENquw0SMPmM-kY4otMqrBQhuwUAALXQIL9WChHix0GSwUwUIrsFAEyza5OPl1fvw7qMpsBBrN-lHjGPNEwi_XPE9s3_KIW56nqRI9q_O-NHlkhGQCzepECDuCTpNQ9wUPVU8qFX4h6wUAY4fQXAgdm1jLSMURVzmyAcraxMC2AYlxf5ewekIyXXnQYymUaVaLDSeZm8UMZzHzs7hLvjedZt6C5fW383qmsyqL9NlhBth4rePeezt-JRstrPfJ-ry8Nd_IR303H_8tDxzLc-CQ9ASD25o5 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA+signature+for+interpretable+breast+cancer+classification+with+subtype+clue&rft.jtitle=Journal+of+Computational+Mathematics+and+Data+Science&rft.au=Andreini%2C+Paolo&rft.au=Bonechi%2C+Simone&rft.au=Bianchini%2C+Monica&rft.au=Geraci%2C+Filippo&rft.date=2022-06-01&rft.pub=Elsevier+B.V&rft.issn=2772-4158&rft.eissn=2772-4158&rft.volume=3&rft_id=info:doi/10.1016%2Fj.jcmds.2022.100042&rft.externalDocID=S2772415822000116 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2772-4158&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2772-4158&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2772-4158&client=summon |