Comparison of mini-models based on various clustering algorithms

The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on some part of the input space called the mini-model domain (MM domain). MM domain can be created as a multidimensional polytope in the input s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia computer science Jg. 176; S. 3563 - 3570
1. Verfasser: Pietrzykowski, Marcin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2020
Schlagworte:
ISSN:1877-0509, 1877-0509
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on some part of the input space called the mini-model domain (MM domain). MM domain can be created as a multidimensional polytope in the input space. Another possible solution is to divide the input space with clustering algorithms. As a result of this process, each data cluster is treated as a separate mini-model domain. The main aim of the article is to create an exhaustive comparison of mini-model methods based on the most well-known clustering algorithms. The work introduces new versions of the mini-model method based on clustering algorithms such as DBSCAN, OPTICS, Mean Shift, spectral clustering and several hierarchical methods. The paper also compares the results with other versions of the MM-method and instance-based learning algorithms.
AbstractList The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on some part of the input space called the mini-model domain (MM domain). MM domain can be created as a multidimensional polytope in the input space. Another possible solution is to divide the input space with clustering algorithms. As a result of this process, each data cluster is treated as a separate mini-model domain. The main aim of the article is to create an exhaustive comparison of mini-model methods based on the most well-known clustering algorithms. The work introduces new versions of the mini-model method based on clustering algorithms such as DBSCAN, OPTICS, Mean Shift, spectral clustering and several hierarchical methods. The paper also compares the results with other versions of the MM-method and instance-based learning algorithms.
Author Pietrzykowski, Marcin
Author_xml – sequence: 1
  givenname: Marcin
  surname: Pietrzykowski
  fullname: Pietrzykowski, Marcin
  email: mpietrzykowski@wi.zut.edu.pl
  organization: Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, Żołnierska 49, 71-210 Szczecin, Poland
BookMark eNqFkLFOwzAQhi1UJErpE7DkBRLOcRPHAxKogoJUiQVmy7HPxVViV3ZaibcnpQyIAW75T3f6_uG7JBMfPBJyTaGgQOubbbGLQaeihBIKEAUwOCNT2nCeQwVi8mO_IPOUtjAOaxpB-ZTcLUO_U9Gl4LNgs955l_fBYJeyViU02Xg_jP-wT5nu9mnA6PwmU90mRDe89-mKnFvVJZx_54y8PT68Lp_y9cvqeXm_znVZM8ht2yimlamsKDXnqHldU15ja6mgLTVVoxvRQouaMasrgxbQVvXCUMUXrBRsRsSpV8eQUkQrtRvU4IIfonKdpCCPNuRWftmQRxsShBxtjCz7xe6i61X8-Ie6PVGjDDw4jDJph16jcRH1IE1wf_Kfqgd95A
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3463712
crossref_primary_10_3390_su151713112
Cites_doi 10.1109/TNNLS.2017.2777489
10.3390/sym12040516
10.1214/12-AOS1049
10.3390/su11123314
10.1145/3068335
10.1016/j.patcog.2016.07.007
10.1016/j.neucom.2016.01.102
10.1007/978-3-319-39384-1_32
10.1016/j.jprocont.2016.07.009
10.1016/j.procs.2019.09.426
10.1109/TNNLS.2017.2673241
10.1109/TIP.2014.2365720
10.1016/j.patrec.2009.09.011
10.1109/TMECH.2014.2358674
10.1016/j.eswa.2008.01.039
10.1109/TIP.2016.2616302
10.1145/304181.304187
10.1016/j.procs.2017.08.210
10.1016/j.enconman.2016.05.061
10.1007/978-3-319-19369-4_41
10.3390/en13092155
10.1016/j.neucom.2016.01.093
10.1049/iet-cvi.2016.0022
10.1016/j.neucom.2012.10.043
10.1016/j.ins.2017.07.010
10.1109/TNNLS.2016.2608001
10.1016/j.knosys.2014.11.013
10.1016/j.measurement.2016.02.037
10.1109/TKDE.2017.2650229
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2020.09.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 3570
ExternalDocumentID 10_1016_j_procs_2020_09_030
S1877050920319256
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
9DU
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ID FETCH-LOGICAL-c2630-fb8a3cad5f92c77ec766176ebf191b1d58c89b0bec33fc5def0ef564d1a743293
ISSN 1877-0509
IngestDate Tue Nov 18 22:22:53 EST 2025
Sat Nov 29 06:57:40 EST 2025
Wed May 17 01:22:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords clustering methods
local self-learning
function approximation
instance-based learning
mini-model
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2630-fb8a3cad5f92c77ec766176ebf191b1d58c89b0bec33fc5def0ef564d1a743293
OpenAccessLink https://dx.doi.org/10.1016/j.procs.2020.09.030
PageCount 8
ParticipantIDs crossref_citationtrail_10_1016_j_procs_2020_09_030
crossref_primary_10_1016_j_procs_2020_09_030
elsevier_sciencedirect_doi_10_1016_j_procs_2020_09_030
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Schubert, Sander, Ester, Kriegel, Xu (bib21) 2017; 42
Bendu, Deepak, Murugan (bib3) 2016; 122
Zhang, Zhang, Wang, Yu (bib30) 2017; 11
Kang, L., Tang, W., Liu, Y., Daoutidis, P., “Control configuration synthesis using agglomerative hierarchical clustering: A graph-theoretic approach” JOURNAL OF PROCESS CONTROL 46: 43-54
Riaz, Sałabun, Farid, Ali, Watróbski (bib17) 2020; 13
Zhang, Li, Zong, Zhu, Wang (bib29) 2018; 29
Mehmood, Zhang, Bie, Dawood, Ahmad (bib11) 2016; 208
Samworth (bib20) 2012; 40
Park, Jun (bib12) 2009; 36
Ankerst, Markus Breunig, Kriegel, Sander (bib1) 1999; 28
Kaufman, Rousseeuw (bib7) 2009
Yang, Liao, Yuan, Llull, Brady, Sapiro, Carin (bib26) 2015; 24
Yang, Voon, Wang, Tan (bib27) 2016; 199
Zhu, Ting, Carman (bib32) 2016; 60
UCI MACHINE LEARNING REPOSITORY
Liu, Wu, Liu, Tao, Fu (bib8) 2017; 29
Pietrzykowski, Marcin, and Piegat, Andrzej. (2015) “Geometric Approach in Local Modeling: Learning of Mini-Models Based on n-Dimensional Simplex” Artificial intelligence and soft computing: 14th International Conference, ICAISC 2015. Part 2: 460-470
Faizi, Sałabun, Ullah, Rashid, Wieckowski (bib4) 2020; 12
Shen, Hao, Liang, Liu, Wang, Shao (bib22) 2016; 25
Ma, Jiang, Liu, Li (bib10) 2017; 417
Rooki (bib18) 2016; 85
Pietrzykowski, Marcin, and Piegat, Andrzej. (2016) “Local Modeling with Local Dimensionality Reduction: Learning Method of Mini-Models” Artificial intelligence and soft computing: 15th International Conference, ICAISC 2016. Part 2: 375-383
Wang, Wu, Lin, Gao (bib24) 2018; 29
Zhou, Xu, Liu (bib31) 2017; 28
Jain (bib5) 2010; 31
Sałabun, Palczewski, Watróbski (bib19) 2019; 11
Liu, Pan, Dezert, Mercier (bib9) 2015; 74
Pietrzykowski (bib16) 2019; 159
Pietrzykowski (bib15) 2017; 112
Yin, Huang (bib28) 2015; 20
Wu, Long, Liu (bib25) 2015; 148
David, Arthur, and Vassilvitskii, Sergei. (2007) “K-means++: The Advantages of Careful Seeding.” SODA ‘07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: 1027-1035.
Pietrzykowski (10.1016/j.procs.2020.09.030_bib15) 2017; 112
Riaz (10.1016/j.procs.2020.09.030_bib17) 2020; 13
Liu (10.1016/j.procs.2020.09.030_bib8) 2017; 29
10.1016/j.procs.2020.09.030_bib23
Yang (10.1016/j.procs.2020.09.030_bib27) 2016; 199
Rooki (10.1016/j.procs.2020.09.030_bib18) 2016; 85
Liu (10.1016/j.procs.2020.09.030_bib9) 2015; 74
Pietrzykowski (10.1016/j.procs.2020.09.030_bib16) 2019; 159
Schubert (10.1016/j.procs.2020.09.030_bib21) 2017; 42
Sałabun (10.1016/j.procs.2020.09.030_bib19) 2019; 11
Shen (10.1016/j.procs.2020.09.030_bib22) 2016; 25
Samworth (10.1016/j.procs.2020.09.030_bib20) 2012; 40
Ma (10.1016/j.procs.2020.09.030_bib10) 2017; 417
10.1016/j.procs.2020.09.030_bib2
10.1016/j.procs.2020.09.030_bib13
Zhu (10.1016/j.procs.2020.09.030_bib32) 2016; 60
Faizi (10.1016/j.procs.2020.09.030_bib4) 2020; 12
Jain (10.1016/j.procs.2020.09.030_bib5) 2010; 31
10.1016/j.procs.2020.09.030_bib14
Wu (10.1016/j.procs.2020.09.030_bib25) 2015; 148
Mehmood (10.1016/j.procs.2020.09.030_bib11) 2016; 208
Yang (10.1016/j.procs.2020.09.030_bib26) 2015; 24
Yin (10.1016/j.procs.2020.09.030_bib28) 2015; 20
Zhou (10.1016/j.procs.2020.09.030_bib31) 2017; 28
Bendu (10.1016/j.procs.2020.09.030_bib3) 2016; 122
Kaufman (10.1016/j.procs.2020.09.030_bib7) 2009
Ankerst (10.1016/j.procs.2020.09.030_bib1) 1999; 28
10.1016/j.procs.2020.09.030_bib6
Zhang (10.1016/j.procs.2020.09.030_bib30) 2017; 11
Park (10.1016/j.procs.2020.09.030_bib12) 2009; 36
Wang (10.1016/j.procs.2020.09.030_bib24) 2018; 29
Zhang (10.1016/j.procs.2020.09.030_bib29) 2018; 29
References_xml – volume: 12
  start-page: 516
  year: 2020
  ident: bib4
  article-title: "A New Method to Support Decision-Making in an Uncertain Environment Based on Normalized Interval-Valued Triangular Fuzzy Numbers and COMET Technique."
  publication-title: Symmetry
– volume: 85
  start-page: 184
  year: 2016
  end-page: 191
  ident: bib18
  article-title: "Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel-Bulkley drilling fluids in oil drilling."
  publication-title: Measurement
– volume: 36
  start-page: 3336
  year: 2009
  end-page: 3341
  ident: bib12
  article-title: "A simple and fast algorithm for K-medoids clustering."
  publication-title: Expert Systems with Applications
– reference: Pietrzykowski, Marcin, and Piegat, Andrzej. (2016) “Local Modeling with Local Dimensionality Reduction: Learning Method of Mini-Models” Artificial intelligence and soft computing: 15th International Conference, ICAISC 2016. Part 2: 375-383
– volume: 417
  start-page: 128
  year: 2017
  end-page: 142
  ident: bib10
  article-title: "Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration."
  publication-title: Information Sciences
– volume: 28
  start-page: 3007
  year: 2017
  end-page: 3017
  ident: bib31
  article-title: "Method for Determining the Optimal Number of Clusters Based on Agglomerative Hierarchical Clustering"
  publication-title: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
– reference: Kang, L., Tang, W., Liu, Y., Daoutidis, P., “Control configuration synthesis using agglomerative hierarchical clustering: A graph-theoretic approach” JOURNAL OF PROCESS CONTROL 46: 43-54
– reference: Pietrzykowski, Marcin, and Piegat, Andrzej. (2015) “Geometric Approach in Local Modeling: Learning of Mini-Models Based on n-Dimensional Simplex” Artificial intelligence and soft computing: 14th International Conference, ICAISC 2015. Part 2: 460-470
– volume: 20
  start-page: 2613
  year: 2015
  end-page: 2620
  ident: bib28
  article-title: "Performance Monitoring for Vehicle Suspension System via Fuzzy Positivistic C-Means Clustering Based on Accelerometer Measurements."
  publication-title: IEEE/ASME Transactions on Mechatronics
– volume: 11
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib30
  article-title: "Extended social force model-based mean shift for pedestrian tracking under obstacle avoidance"
  publication-title: IET COMPUTER VISION
– year: 2009
  ident: bib7
  publication-title: "Finding Groups in Data: An Introduction to Cluster Analysis."
– volume: 208
  start-page: 210
  year: 2016
  end-page: 217
  ident: bib11
  article-title: "Clustering by fast search and find of density peaks via heat diffusion"
  publication-title: NEUROCOMPUTING
– volume: 40
  start-page: 2733
  year: 2012
  end-page: 2763
  ident: bib20
  article-title: "Optimal Weighted Nearest Neighbour Classifiers."
  publication-title: Annals of Statistics
– volume: 74
  start-page: 119
  year: 2015
  end-page: 132
  ident: bib9
  article-title: "Credal c-means clustering method based on belief functions."
  publication-title: Knowledge-Based Systems
– volume: 24
  start-page: 106
  year: 2015
  end-page: 119
  ident: bib26
  article-title: "Compressive Sensing by Learning a Gaussian Mixture Model From Measurements."
  publication-title: IEEE Transactions on Image Processing
– volume: 29
  start-page: 1774
  year: 2018
  end-page: 1785
  ident: bib29
  article-title: "Efficient kNN Classification With Different Numbers of Nearest Neighbors."
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 159
  start-page: 2512
  year: 2019
  end-page: 2521
  ident: bib16
  article-title: "Mini-models based on soft clustering methods"
  publication-title: Procedia Computer Science
– reference: “UCI MACHINE LEARNING REPOSITORY”,
– volume: 29
  start-page: 1129
  year: 2017
  end-page: 1143
  ident: bib8
  article-title: "Spectral Ensemble Clustering via Weighted K-Means: Theoretical and Practical Evidence"
  publication-title: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
– volume: 122
  start-page: 165
  year: 2016
  end-page: 173
  ident: bib3
  article-title: "Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol."
  publication-title: Energy Conversion and Management
– volume: 42
  year: 2017
  ident: bib21
  article-title: "DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN"
  publication-title: ACM TRANSACTIONS ON DATABASE SYSTEMS
– volume: 60
  start-page: 983
  year: 2016
  end-page: 997
  ident: bib32
  article-title: "Density-ratio based clustering for discovering clusters with varying densities"
  publication-title: PATTERN RECOGNITION
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib5
  article-title: "Data clustering: 50 years beyond K-means."
  publication-title: IEEE Pattern Recognition Letters
– volume: 112
  start-page: 2363
  year: 2017
  end-page: 2371
  ident: bib15
  article-title: "Local regression algorithms based on centroid clustering methods"
  publication-title: Procedia Computer Science
– volume: 29
  start-page: 4833
  year: 2018
  end-page: 4843
  ident: bib24
  article-title: "Multiview Spectral Clustering via Structured Low-Rank Matrix Factorization"
  publication-title: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
– reference: David, Arthur, and Vassilvitskii, Sergei. (2007) “K-means++: The Advantages of Careful Seeding.” SODA ‘07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms: 1027-1035.
– volume: 148
  start-page: 136
  year: 2015
  end-page: 142
  ident: bib25
  article-title: "Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm."
  publication-title: Neurocomputing
– volume: 28
  start-page: 49
  year: 1999
  end-page: 60
  ident: bib1
  article-title: "OPTICS: ordering points to identify the clustering structure."
  publication-title: ACM SIGMOD Record
– volume: 11
  start-page: 3314
  year: 2019
  ident: bib19
  article-title: "Multicriteria approach to sustainable transport evaluation under incomplete knowledge: Electric Bikes Case Study."
  publication-title: Sustainability
– volume: 13
  start-page: 2155
  year: 2020
  ident: bib17
  article-title: "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management."
  publication-title: Energies
– volume: 25
  start-page: 5933
  year: 2016
  end-page: 5942
  ident: bib22
  article-title: "Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm"
  publication-title: IEEE TRANSACTIONS ON IMAGE PROCESSING
– volume: 199
  start-page: 31
  year: 2016
  end-page: 39
  ident: bib27
  article-title: "An RBF neural network approach towards precision motion system with selective sensor fusion."
  publication-title: Neurocomputing
– volume: 29
  start-page: 4833
  issue: 10
  year: 2018
  ident: 10.1016/j.procs.2020.09.030_bib24
  article-title: "Multiview Spectral Clustering via Structured Low-Rank Matrix Factorization"
  publication-title: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
  doi: 10.1109/TNNLS.2017.2777489
– volume: 12
  start-page: 516
  issue: 4
  year: 2020
  ident: 10.1016/j.procs.2020.09.030_bib4
  article-title: "A New Method to Support Decision-Making in an Uncertain Environment Based on Normalized Interval-Valued Triangular Fuzzy Numbers and COMET Technique."
  publication-title: Symmetry
  doi: 10.3390/sym12040516
– volume: 40
  start-page: 2733
  issue: 5
  year: 2012
  ident: 10.1016/j.procs.2020.09.030_bib20
  article-title: "Optimal Weighted Nearest Neighbour Classifiers."
  publication-title: Annals of Statistics
  doi: 10.1214/12-AOS1049
– volume: 11
  start-page: 3314
  issue: 12
  year: 2019
  ident: 10.1016/j.procs.2020.09.030_bib19
  article-title: "Multicriteria approach to sustainable transport evaluation under incomplete knowledge: Electric Bikes Case Study."
  publication-title: Sustainability
  doi: 10.3390/su11123314
– volume: 42
  issue: 3
  year: 2017
  ident: 10.1016/j.procs.2020.09.030_bib21
  article-title: "DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN"
  publication-title: ACM TRANSACTIONS ON DATABASE SYSTEMS
  doi: 10.1145/3068335
– volume: 60
  start-page: 983
  year: 2016
  ident: 10.1016/j.procs.2020.09.030_bib32
  article-title: "Density-ratio based clustering for discovering clusters with varying densities"
  publication-title: PATTERN RECOGNITION
  doi: 10.1016/j.patcog.2016.07.007
– volume: 208
  start-page: 210
  year: 2016
  ident: 10.1016/j.procs.2020.09.030_bib11
  article-title: "Clustering by fast search and find of density peaks via heat diffusion"
  publication-title: NEUROCOMPUTING
  doi: 10.1016/j.neucom.2016.01.102
– ident: 10.1016/j.procs.2020.09.030_bib14
  doi: 10.1007/978-3-319-39384-1_32
– ident: 10.1016/j.procs.2020.09.030_bib6
  doi: 10.1016/j.jprocont.2016.07.009
– volume: 159
  start-page: 2512
  year: 2019
  ident: 10.1016/j.procs.2020.09.030_bib16
  article-title: "Mini-models based on soft clustering methods"
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2019.09.426
– volume: 29
  start-page: 1774
  issue: 5
  year: 2018
  ident: 10.1016/j.procs.2020.09.030_bib29
  article-title: "Efficient kNN Classification With Different Numbers of Nearest Neighbors."
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2017.2673241
– volume: 24
  start-page: 106
  issue: 1
  year: 2015
  ident: 10.1016/j.procs.2020.09.030_bib26
  article-title: "Compressive Sensing by Learning a Gaussian Mixture Model From Measurements."
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2014.2365720
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.procs.2020.09.030_bib5
  article-title: "Data clustering: 50 years beyond K-means."
  publication-title: IEEE Pattern Recognition Letters
  doi: 10.1016/j.patrec.2009.09.011
– volume: 20
  start-page: 2613
  issue: 5
  year: 2015
  ident: 10.1016/j.procs.2020.09.030_bib28
  article-title: "Performance Monitoring for Vehicle Suspension System via Fuzzy Positivistic C-Means Clustering Based on Accelerometer Measurements."
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2014.2358674
– volume: 36
  start-page: 3336
  year: 2009
  ident: 10.1016/j.procs.2020.09.030_bib12
  article-title: "A simple and fast algorithm for K-medoids clustering."
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.01.039
– volume: 25
  start-page: 5933
  issue: 12
  year: 2016
  ident: 10.1016/j.procs.2020.09.030_bib22
  article-title: "Real-Time Superpixel Segmentation by DBSCAN Clustering Algorithm"
  publication-title: IEEE TRANSACTIONS ON IMAGE PROCESSING
  doi: 10.1109/TIP.2016.2616302
– volume: 28
  start-page: 49
  issue: 2
  year: 1999
  ident: 10.1016/j.procs.2020.09.030_bib1
  article-title: "OPTICS: ordering points to identify the clustering structure."
  publication-title: ACM SIGMOD Record
  doi: 10.1145/304181.304187
– volume: 112
  start-page: 2363
  year: 2017
  ident: 10.1016/j.procs.2020.09.030_bib15
  article-title: "Local regression algorithms based on centroid clustering methods"
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2017.08.210
– volume: 122
  start-page: 165
  year: 2016
  ident: 10.1016/j.procs.2020.09.030_bib3
  article-title: "Application of GRNN for the prediction of performance and exhaust emissions in HCCI engine using ethanol."
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2016.05.061
– ident: 10.1016/j.procs.2020.09.030_bib13
  doi: 10.1007/978-3-319-19369-4_41
– volume: 13
  start-page: 2155
  issue: 9
  year: 2020
  ident: 10.1016/j.procs.2020.09.030_bib17
  article-title: "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management."
  publication-title: Energies
  doi: 10.3390/en13092155
– volume: 199
  start-page: 31
  year: 2016
  ident: 10.1016/j.procs.2020.09.030_bib27
  article-title: "An RBF neural network approach towards precision motion system with selective sensor fusion."
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.093
– ident: 10.1016/j.procs.2020.09.030_bib2
– ident: 10.1016/j.procs.2020.09.030_bib23
– volume: 11
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.procs.2020.09.030_bib30
  article-title: "Extended social force model-based mean shift for pedestrian tracking under obstacle avoidance"
  publication-title: IET COMPUTER VISION
  doi: 10.1049/iet-cvi.2016.0022
– volume: 148
  start-page: 136
  year: 2015
  ident: 10.1016/j.procs.2020.09.030_bib25
  article-title: "Evolving RBF neural networks for rainfall prediction using hybrid particle swarm optimization and genetic algorithm."
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.043
– volume: 417
  start-page: 128
  year: 2017
  ident: 10.1016/j.procs.2020.09.030_bib10
  article-title: "Feature guided Gaussian mixture model with semi-supervised EM and local geometric constraint for retinal image registration."
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.07.010
– volume: 28
  start-page: 3007
  issue: 12
  year: 2017
  ident: 10.1016/j.procs.2020.09.030_bib31
  article-title: "Method for Determining the Optimal Number of Clusters Based on Agglomerative Hierarchical Clustering"
  publication-title: IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
  doi: 10.1109/TNNLS.2016.2608001
– year: 2009
  ident: 10.1016/j.procs.2020.09.030_bib7
– volume: 74
  start-page: 119
  year: 2015
  ident: 10.1016/j.procs.2020.09.030_bib9
  article-title: "Credal c-means clustering method based on belief functions."
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.11.013
– volume: 85
  start-page: 184
  year: 2016
  ident: 10.1016/j.procs.2020.09.030_bib18
  article-title: "Application of general regression neural network (GRNN) for indirect measuring pressure loss of Herschel-Bulkley drilling fluids in oil drilling."
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.02.037
– volume: 29
  start-page: 1129
  issue: 5
  year: 2017
  ident: 10.1016/j.procs.2020.09.030_bib8
  article-title: "Spectral Ensemble Clustering via Weighted K-Means: Theoretical and Practical Evidence"
  publication-title: IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
  doi: 10.1109/TKDE.2017.2650229
SSID ssj0000388917
Score 2.1773071
Snippet The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3563
SubjectTerms clustering methods
function approximation
instance-based learning
local self-learning
mini-model
Title Comparison of mini-models based on various clustering algorithms
URI https://dx.doi.org/10.1016/j.procs.2020.09.030
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELZayqGXvmgFfckHbqklx47X6xsVatULqFJB4rZae20IjTYoCRQ49Lcz4_U-pCDUVupllXXiOJrPOzOezMxHyG5AKz8RngUZAps4L5gRVclEZgRMkN6aKpJN6MPD_OTEfE_EhctIJ6DrOr--Nhf_FWoYA7CxdPYv4O6-FAbgNYAOV4Adrn8E_P6QWXCErUNYpLtZjtBiVfjvwBW8j6mvbnaJfRJineLsdL6Yrs5S8_LkrsYyAthBMfMcyR9GyWJ2GnXqV4vbm5_zX4n_-gC5iephLEHwPrS1Vt4StWGuNcMGMY2xuGesVaF6qASlSjrLp9uGGmRNWTdxg3M0FQ47pwvetJzlvW3qMgZ_4Lq4rMCyK_DTHpMnQiuDWXwHv_uwGja3MZFnufuhba-pmNW3ttb9_sjAxzh6QZ6lwwH93ID6kjzy9SvyvCXeoEkPb5G9HmM6D3SAMY0YUxhPGNMeY9pj_Jocf_1ytP-NJSoM5kQmOQs2L6UrKxXgEdLaOw1-lc68DXDetuNK5S43lsMDKWVwqvKB-6CySTUuwUUEl-4N2ajntd8mVCortZPcBGUmFk7b0llrxsHz3JZKqB0iWoEULvWJR7qSWdEmBJ4XUYoFSrHgpgAp7pBP3aSLpk3Kwx_PWkkXad82HlwBe-OhiW__deI78hTvmuDZe7KxWlz6D2TTXa2my8XHuIfuAJgoe0k
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+mini-models+based+on+various+clustering+algorithms&rft.jtitle=Procedia+computer+science&rft.au=Pietrzykowski%2C+Marcin&rft.date=2020&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=176&rft.spage=3563&rft.epage=3570&rft_id=info:doi/10.1016%2Fj.procs.2020.09.030&rft.externalDocID=S1877050920319256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon