Can single-atom precision rewire the electrochemical logic of Li–S chemistry? A comprehensive review of single-atom catalysts as agents of precise modulation

Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical science (Cambridge) Jg. 16; H. 46; S. 21677 - 2174
Hauptverfasser: Wang, Yue, Song, Haobin, Zhao, Nan, Cheng, Xi, Li, Dong-Sheng, Yang, Hui Ying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Royal Society of Chemistry 26.11.2025
Schlagworte:
ISSN:2041-6520, 2041-6539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li 2 S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies. Single-atom precision rewires Li–S electrochemical logic via spatial configuration, pathway programming, and functional coupling; the paradigm extends to Na/K/Mg–S and solid-state systems.
AbstractList Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li2S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies.
Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li 2 S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies. Single-atom precision rewires Li–S electrochemical logic via spatial configuration, pathway programming, and functional coupling; the paradigm extends to Na/K/Mg–S and solid-state systems.
Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li 2 S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies.
Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium-sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure-activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium-sulfur, potassium-sulfur, and solid-state lithium-sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies.
Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium-sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li2S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure-activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium-sulfur, potassium-sulfur, and solid-state lithium-sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies.Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium-sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li2S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure-activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium-sulfur, potassium-sulfur, and solid-state lithium-sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies.
Author Zhao, Nan
Wang, Yue
Cheng, Xi
Li, Dong-Sheng
Yang, Hui Ying
Song, Haobin
AuthorAffiliation National University of Singapore
The UWCSEA Dover Campus
College of Design and Engineering
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
College of Materials and Chemical Engineering
Pillar of Engineering Product Development
Department of Materials Science and Engineering
Singapore University of Technology and Design
China Three Gorges University
AuthorAffiliation_xml – name: Pillar of Engineering Product Development
– name: The UWCSEA Dover Campus
– name: College of Design and Engineering
– name: China Three Gorges University
– name: College of Materials and Chemical Engineering
– name: Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
– name: Singapore University of Technology and Design
– name: National University of Singapore
– name: Department of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Yue
  surname: Wang
  fullname: Wang, Yue
– sequence: 2
  givenname: Haobin
  surname: Song
  fullname: Song, Haobin
– sequence: 3
  givenname: Nan
  surname: Zhao
  fullname: Zhao, Nan
– sequence: 4
  givenname: Xi
  surname: Cheng
  fullname: Cheng, Xi
– sequence: 5
  givenname: Dong-Sheng
  surname: Li
  fullname: Li, Dong-Sheng
– sequence: 6
  givenname: Hui Ying
  surname: Yang
  fullname: Yang, Hui Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41210283$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1qGzEQx0VJaVI3l9wTBL2Uwjb62NXapxLc9AMMOaQ9L9rZWVtBKzmSNsG3vkMfoO_WJ6kcp06JGNCg-fGf0fxfkwPnHRJywtkHzuTsvKsisKoWDF-QI8FKXqhKzg72uWCH5DjGG5aPlLwS9StyWHLBmZjKI_J7rh2Nxi0tFjr5ga4DgonGOxrw3gSkaYUULUIKHlY4GNCWWr80QH1PF-bPz1_X9KEQU9h8pBcU_JBFVuiiucOscmfwfsv-3wV00nYTU6Q6xxJdzjKya4508N1odcpTvCEve20jHj_eE_Lj8-X3-ddicfXl2_xiUYBQIhVTmAoNfdvNZClUK9o-76TuVau1BqzzYylbNe0ElIrVsoWu7jvVc0SpVTXr5IS82-mug78dMaYmfwjQWu3Qj7GRomalUkLyjL59ht74Mbg83ZaqykqW2YIJOXukxnbArlkHM-iwaf6tPgPvdwAEH2PAfo9w1mytbT5V1_MHay8zfLqDQ4Q992S9_AuDqaLL
Cites_doi 10.1002/smll.202311799
10.1002/adma.201901125
10.1007/s40820-023-01120-7
10.1007/s40820-025-01729-w
10.1007/s40820-023-01223-1
10.1002/adfm.202422689
10.1039/D3ME00191A
10.1016/j.cej.2023.146977
10.1002/adfm.202406423
10.1021/acs.jpclett.1c00927
10.1021/acs.jpcc.1c06464
10.1038/ncomms4015
10.1002/adfm.202204458
10.1038/s41467-022-32139-w
10.1016/j.cej.2023.147207
10.1002/adfm.202204635
10.1039/D0CS01032D
10.1016/j.physb.2022.413934
10.1002/eem2.12703
10.1039/D4EE01885K
10.1126/sciadv.adi5108
10.1002/sstr.202200205
10.1002/ange.202215414
10.1002/adma.202102801
10.1021/jacs.3c13111
10.1002/adfm.202305991
10.1002/adma.202406403
10.1002/smll.202004720
10.1038/s41467-020-17014-w
10.1002/aenm.202100989
10.1002/smtd.202100571
10.1021/acsami.4c15270
10.1021/jacs.8b12973
10.1002/adma.202107638
10.1021/acs.nanolett.8b05208
10.1021/jacs.4c02603
10.1021/acsami.3c02153
10.1002/adma.202208999
10.1021/acs.jpcc.1c04491
10.1021/acs.nanolett.1c04445
10.1021/acsnano.1c04642
10.1016/j.ensm.2025.104502
10.1002/adfm.202426089
10.1021/jacs.4c17295
10.1002/adma.202200102
10.20517/energymater.2022.13
10.1038/s41467-020-18820-y
10.1002/anie.202503174
10.1038/s41467-024-47628-3
10.1002/adma.202301477
10.1002/adma.202408139
10.1039/C9CS00635D
10.1038/s44286-024-00115-4
10.1002/adma.202306239
10.1002/aenm.201903550
10.1021/acs.nanolett.1c00076
10.1007/s40820-022-00984-5
10.1002/cey2.286
10.1002/adfm.202306049
10.1021/acsomega.2c01772
10.1021/acs.nanolett.0c02167
10.1007/s40820-024-01385-6
10.1002/adma.202411197
10.1002/anie.201811080
10.1002/admi.201802046
10.1016/j.ensm.2021.12.040
10.1002/aenm.202204014
10.1002/aenm.202400249
10.1039/D4SC02420F
10.1039/D0TA07010F
10.1016/j.ensm.2024.103728
10.1039/C8EE02836B
10.1038/s41467-025-61198-y
10.1021/jacs.2c07655
10.1021/acs.nanolett.3c00787
10.1016/j.ensm.2020.05.022
10.1038/ncomms9850
10.1039/B916098A
10.1021/acsnano.2c06827
10.1002/aenm.202003018
10.1002/adma.202208470
10.1002/aenm.202103126
10.1002/adma.201703324
10.1002/eem2.12358
10.1038/s41929-022-00804-4
10.1039/C9TA06906B
10.1021/acs.nanolett.2c02183
10.1016/j.nanoen.2023.108353
10.1038/s41467-024-45405-w
10.1002/advs.202402497
10.1002/anie.202104053
10.1039/D3EE03059H
10.1016/j.matt.2020.07.032
10.1039/D3CP02857G
10.1016/j.jma.2020.12.001
10.1021/jacs.5c01588
10.1002/aenm.202405642
10.1021/acsnano.1c03876
10.1039/D3EE04028C
10.1002/cey2.422
10.1016/j.jcis.2025.01.074
10.1002/adma.202409369
10.1021/acsnano.9b04519
10.1021/acsomega.2c05477
10.1021/acs.chemrev.2c00739
10.1021/acsnano.0c08652
10.1021/acsenergylett.6b00145
10.1002/adma.201906722
10.1021/acsnano.0c07658
10.1002/inf2.12649
10.1002/anie.202317776
10.1021/acsami.8b02396
10.1021/acs.jpcc.3c06511
10.1002/adma.202407070
10.1039/D4CS01031K
10.1021/acsnano.9b07121
10.1016/j.ensm.2022.08.030
10.1002/smll.202204707
10.1002/anie.202306901
10.1016/j.fuel.2021.122580
10.1038/srep12146
10.1002/adma.202008654
10.1002/batt.202200494
10.1002/aenm.201401155
10.1016/j.ensm.2020.02.002
10.1002/adfm.202501496
10.1002/adfm.202207579
10.1002/advs.202102809
10.1021/acsnano.4c12536
10.1021/acs.nanolett.5c01516
10.1002/adma.202202256
10.1039/D5TA01627D
10.1038/s41467-018-06144-x
10.1007/s11705-024-2434-0
10.1002/aenm.202303893
10.1038/s41467-023-43689-y
10.1038/s41467-022-30766-x
10.1039/D5EB00060B
10.1039/C9TA11680J
10.1002/anie.202114671
10.1016/j.apsusc.2025.164414
10.1038/s41467-025-58114-9
10.1007/s42114-025-01289-y
10.1021/acsomega.3c04166
10.1016/j.ensm.2024.103819
10.1016/j.apsusc.2019.144446
10.1016/j.jechem.2025.05.006
10.1002/adma.202212116
10.1002/adfm.202315563
10.1002/adma.202309024
10.1021/jacs.4c13400
10.1038/s41467-024-46175-1
10.1021/jacs.3c02786
10.1002/anie.202003136
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1039/d5sc05720e
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 2174
ExternalDocumentID 41210283
10_1039_D5SC05720E
d5sc05720e
Genre Journal Article
Review
GroupedDBID 0-7
0R~
53G
705
7~J
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGMRB
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
AAEMU
AAFBY
AAWGC
AAYXX
ABASK
ACRPL
ADNMO
AETIL
AFRZK
AFVBQ
AGEGJ
AGQPQ
AHGXI
AKMSF
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
ECGLT
FEDTE
HVGLF
J3G
J3H
J3I
L-8
ROL
RPMJG
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c262t-8c82acfbd93426b2bf0577f6baaace734243b68d2c46073bcd7fd6f1ee3a659d3
IEDL.DBID RRC
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001608691900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-6520
IngestDate Mon Nov 10 17:31:09 EST 2025
Wed Nov 26 08:24:43 EST 2025
Sat Nov 29 01:44:53 EST 2025
Wed Nov 12 18:37:34 EST 2025
Thu Nov 27 00:07:43 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c262t-8c82acfbd93426b2bf0577f6baaace734243b68d2c46073bcd7fd6f1ee3a659d3
Notes Energy & Environmental Science
Yue Wang is a research fellow in Professor Hui Ying Yang's group at the National University of Singapore. He received his Ph.D. in Materials Science from Nanjing University and previously worked at the Singapore University of Technology and Design. His research lies in electrochemical energy storage, with particular focus on sodium- and potassium-ion batteries, sodium–sulfur chemistry, and solid-state sodium–sulfur batteries. He has published in journals including
and
H
index 100) and international recognition including the NRF Investigatorship and ACS Nano Impact Award.
contributing theoretical and experimental insights toward next-generation energy devices.
Angewandte Chemie International Edition
ACS Nano
Advanced Materials
,
Hui Ying Yang is a Professor in the Department of Materials Science and Engineering at the National University of Singapore. She received her Ph.D. from Nanyang Technological University and previously held faculty appointments at the Singapore University of Technology and Design and visiting assistant professor at the Massachusetts Institute of Technology. Her research focuses on advanced nanomaterials for energy storage and water treatment, leading to over 400 publications with more than 30 000 citations
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2244-8231
0000-0001-6819-1374
0000-0003-1283-6334
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc05720e
PMID 41210283
PQID 3275453465
PQPubID 2047492
PageCount 28
ParticipantIDs proquest_miscellaneous_3270466231
proquest_journals_3275453465
crossref_primary_10_1039_D5SC05720E
rsc_primary_d5sc05720e
pubmed_primary_41210283
PublicationCentury 2000
PublicationDate 2025-11-26
PublicationDateYYYYMMDD 2025-11-26
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-26
  day: 26
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Sun (D5SC05720E/cit133/1) 2016; 1
Gao (D5SC05720E/cit28/1) 2010; 3
Yang (D5SC05720E/cit58/1) 2023; 23
Li (D5SC05720E/cit3/1) 2024; 16
Zhao-Karger (D5SC05720E/cit137/1) 2015; 5
Yang (D5SC05720E/cit142/1) 2025; 35
Dong (D5SC05720E/cit56/1) 2024; 36
Zou (D5SC05720E/cit94/1) 2024; 17
Wu (D5SC05720E/cit35/1) 2019; 13
Li (D5SC05720E/cit107/1) 2020; 32
Lei (D5SC05720E/cit129/1) 2024; 15
Yang (D5SC05720E/cit16/1) 2020; 3
Cao (D5SC05720E/cit79/1) 2018; 10
Xu (D5SC05720E/cit76/1) 2022; 7
Sun (D5SC05720E/cit105/1) 2023; 15
Feng (D5SC05720E/cit71/1) 2022; 32
Dai (D5SC05720E/cit17/1) 2024; 34
Xu (D5SC05720E/cit22/1) 2023; 14
Lu (D5SC05720E/cit82/1) 2022; 638
Huang (D5SC05720E/cit93/1) 2025; 1
Liu (D5SC05720E/cit46/1) 2022; 22
Zhao (D5SC05720E/cit65/1) 2024; 72
Wang (D5SC05720E/cit57/1) 2022; 46
Yuan (D5SC05720E/cit97/1) 2023; 110
Wang (D5SC05720E/cit106/1) 2023; 33
Qian (D5SC05720E/cit87/1) 2024; 73
Ye (D5SC05720E/cit31/1) 2019; 13
Lyu (D5SC05720E/cit90/1) 2024; 146
Li (D5SC05720E/cit69/1) 2022; 61
Kou (D5SC05720E/cit132/1) 2024; 34
Chen (D5SC05720E/cit151/1) 2025
Zhao (D5SC05720E/cit18/1) 2021; 33
Shao (D5SC05720E/cit103/1) 2020; 8
Yang (D5SC05720E/cit141/1) 2020; 49
Zhou (D5SC05720E/cit70/1) 2021; 5
Yuan (D5SC05720E/cit29/1) 2019; 6
Shen (D5SC05720E/cit19/1) 2024; 17
Guan (D5SC05720E/cit139/1) 2024; 17
Liu (D5SC05720E/cit66/1) 2025; 7
Shang (D5SC05720E/cit14/1) 2021; 50
Liu (D5SC05720E/cit99/1) 2022; 18
Gong (D5SC05720E/cit38/1) 2023; 15
Zheng (D5SC05720E/cit127/1) 2019; 12
Seo (D5SC05720E/cit47/1) 2025; 17
Cao (D5SC05720E/cit55/1) 2024; 14
Ge (D5SC05720E/cit126/1) 2020; 14
Chung (D5SC05720E/cit4/1) 2019; 31
Guo (D5SC05720E/cit36/1) 2022; 32
Li (D5SC05720E/cit41/1) 2025; 64
Sun (D5SC05720E/cit60/1) 2023; 33
Helen (D5SC05720E/cit30/1) 2015; 5
Samawi (D5SC05720E/cit40/1) 2024; 9
Zhou (D5SC05720E/cit80/1) 2022; 32
Zou (D5SC05720E/cit138/1) 2023; 477
Xu (D5SC05720E/cit92/1) 2026; 715
Wang (D5SC05720E/cit25/1) 2024; 15
Han (D5SC05720E/cit89/1) 2024; 36
Ju (D5SC05720E/cit140/1) 2022; 52
Zhao (D5SC05720E/cit88/1) 2022; 22
Wang (D5SC05720E/cit72/1) 2020; 10
Jiao (D5SC05720E/cit48/1) 2024; 15
Song (D5SC05720E/cit108/1) 2021; 15
Zhao (D5SC05720E/cit134/1) 2021; 9
Wang (D5SC05720E/cit33/1) 2023; 25
Bi (D5SC05720E/cit111/1) 2024; 36
Wang (D5SC05720E/cit112/1) 2024; 18
Lu (D5SC05720E/cit11/1) 2020; 20
Ting (D5SC05720E/cit6/1) 2022; 7
Chen (D5SC05720E/cit146/1) 2025; 109
Wang (D5SC05720E/cit21/1) 2025; 147
Lao (D5SC05720E/cit53/1) 2024; 36
Liu (D5SC05720E/cit23/1) 2024; 36
Liang (D5SC05720E/cit62/1) 2022; 34
Zeng (D5SC05720E/cit84/1) 2020; 16
Lian (D5SC05720E/cit155/1) 2021; 12
Song (D5SC05720E/cit130/1) 2025; 16
Xia (D5SC05720E/cit91/1) 2022; 2
Lang (D5SC05720E/cit54/1) 2022; 13
Cao (D5SC05720E/cit63/1) 2025; 684
Ding (D5SC05720E/cit104/1) 2022; 34
Zhang (D5SC05720E/cit125/1) 2018; 9
Wang (D5SC05720E/cit32/1) 2021; 15
Chen (D5SC05720E/cit44/1) 2025; 13
Qin (D5SC05720E/cit27/1) 2021; 21
Xiao (D5SC05720E/cit135/1) 2021; 11
Li (D5SC05720E/cit64/1) 2023; 8
Wang (D5SC05720E/cit74/1) 2025; 35
Zhao (D5SC05720E/cit7/1) 2024; 16
Zhang (D5SC05720E/cit119/1) 2019; 58
Wang (D5SC05720E/cit52/1) 2023; 62
Song (D5SC05720E/cit78/1) 2022; 311
Xu (D5SC05720E/cit136/1) 2019; 19
Zhang (D5SC05720E/cit96/1) 2024; 63
Lin (D5SC05720E/cit102/1) 2023; 477
Xiong (D5SC05720E/cit121/1) 2020; 11
Luo (D5SC05720E/cit131/1) 2024; 36
Huang (D5SC05720E/cit5/1) 2014; 5
Yan (D5SC05720E/cit101/1) 2024; 20
Song (D5SC05720E/cit154/1) 2024; 1
Lim (D5SC05720E/cit59/1) 2023; 35
Yao (D5SC05720E/cit8/1) 2023; 35
Shen (D5SC05720E/cit100/1) 2023; 4
Wu (D5SC05720E/cit113/1) 2024; 6
Li (D5SC05720E/cit20/1) 2025; 16
Li (D5SC05720E/cit67/1) 2020; 30
He (D5SC05720E/cit148/1) 2025; 15
Chen (D5SC05720E/cit75/1) 2024; 36
Du (D5SC05720E/cit15/1) 2019; 141
Zeng (D5SC05720E/cit50/1) 2021; 8
Cao (D5SC05720E/cit13/1) 2025; 54
Peng (D5SC05720E/cit95/1) 2020; 10
Shen (D5SC05720E/cit51/1) 2022; 5
Gu (D5SC05720E/cit98/1) 2023; 13
Song (D5SC05720E/cit124/1) 2024; 15
Pan (D5SC05720E/cit26/1) 2022; 13
Yi (D5SC05720E/cit43/1) 2020; 503
Ji (D5SC05720E/cit85/1) 2020; 27
Wang (D5SC05720E/cit117/1) 2020; 8
Zhang (D5SC05720E/cit128/1) 2022; 144
Yang (D5SC05720E/cit147/1) 2024; 14
Li (D5SC05720E/cit2/1) 2015; 6
You (D5SC05720E/cit81/1) 2025; 25
Zhong (D5SC05720E/cit122/1) 2024; 146
Chen (D5SC05720E/cit145/1) 2023; 145
Gicha (D5SC05720E/cit153/1) 2024; 16
Song (D5SC05720E/cit118/1) 2023; 5
Sadd (D5SC05720E/cit9/1) 2022; 12
Burse (D5SC05720E/cit49/1) 2025; 8
Wang (D5SC05720E/cit120/1) 2021; 60
Li (D5SC05720E/cit110/1) 2022; 34
Xiao (D5SC05720E/cit73/1) 2017; 29
Andritsos (D5SC05720E/cit152/1) 2021; 125
Yan (D5SC05720E/cit45/1) 2023; 135
Tian (D5SC05720E/cit116/1) 2020; 11
Zhao (D5SC05720E/cit34/1) 2023; 6
Zhao (D5SC05720E/cit68/1) 2020; 59
Xu (D5SC05720E/cit144/1) 2024; 11
Li (D5SC05720E/cit149/1) 2024; 146
Lai (D5SC05720E/cit123/1) 2019; 7
Zhou (D5SC05720E/cit39/1) 2024; 7
Yang (D5SC05720E/cit24/1) 2024; 18
Xu (D5SC05720E/cit42/1) 2023; 9
Wu (D5SC05720E/cit83/1) 2021; 125
Li (D5SC05720E/cit150/1) 2025; 147
Ren (D5SC05720E/cit61/1) 2023; 127
Sang (D5SC05720E/cit1/1) 2023; 123
Ng (D5SC05720E/cit10/1) 2021; 33
Wang (D5SC05720E/cit37/1) 2024; 16
Wang (D5SC05720E/cit143/1) 2023; 6
Huang (D5SC05720E/cit109/1) 2021; 15
Zhang (D5SC05720E/cit115/1) 2023; 35
Song (D5SC05720E/cit12/1) 2024; 36
Lin (D5SC05720E/cit114/1) 2025
Zhao (D5SC05720E/cit86/1) 2023; 15
Zhang (D5SC05720E/cit77/1) 2022; 16
References_xml – volume: 20
  start-page: 2311799
  year: 2024
  ident: D5SC05720E/cit101/1
  publication-title: Small
  doi: 10.1002/smll.202311799
– volume: 31
  start-page: 1901125
  year: 2019
  ident: D5SC05720E/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901125
– volume: 15
  start-page: 150
  year: 2023
  ident: D5SC05720E/cit38/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01120-7
– volume: 17
  start-page: 224
  year: 2025
  ident: D5SC05720E/cit47/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-025-01729-w
– volume: 16
  start-page: 12
  year: 2024
  ident: D5SC05720E/cit3/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01223-1
– volume: 35
  start-page: 2422689
  year: 2025
  ident: D5SC05720E/cit74/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202422689
– volume: 9
  start-page: 464
  year: 2024
  ident: D5SC05720E/cit40/1
  publication-title: Mol. Syst. Des. Eng.
  doi: 10.1039/D3ME00191A
– volume: 477
  start-page: 146977
  year: 2023
  ident: D5SC05720E/cit102/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.146977
– volume: 34
  start-page: 2406423
  year: 2024
  ident: D5SC05720E/cit132/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202406423
– volume: 12
  start-page: 7053
  year: 2021
  ident: D5SC05720E/cit155/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00927
– volume: 125
  start-page: 23699
  year: 2021
  ident: D5SC05720E/cit83/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c06464
– volume: 5
  start-page: 3015
  year: 2014
  ident: D5SC05720E/cit5/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4015
– volume: 32
  start-page: 2204458
  year: 2022
  ident: D5SC05720E/cit36/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204458
– volume: 13
  start-page: 4811
  year: 2022
  ident: D5SC05720E/cit54/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32139-w
– volume: 477
  start-page: 147207
  year: 2023
  ident: D5SC05720E/cit138/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.147207
– volume: 32
  start-page: 2204635
  year: 2022
  ident: D5SC05720E/cit80/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204635
– volume: 50
  start-page: 5281
  year: 2021
  ident: D5SC05720E/cit14/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01032D
– volume: 638
  start-page: 413934
  year: 2022
  ident: D5SC05720E/cit82/1
  publication-title: Phys. B
  doi: 10.1016/j.physb.2022.413934
– volume: 7
  start-page: e12703
  year: 2024
  ident: D5SC05720E/cit39/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12703
– volume: 17
  start-page: 6034
  year: 2024
  ident: D5SC05720E/cit19/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D4EE01885K
– volume: 9
  start-page: eadi5108
  year: 2023
  ident: D5SC05720E/cit42/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.adi5108
– volume: 4
  start-page: 2200205
  year: 2023
  ident: D5SC05720E/cit100/1
  publication-title: Small Struct.
  doi: 10.1002/sstr.202200205
– volume: 135
  start-page: e202215414
  year: 2023
  ident: D5SC05720E/cit45/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202215414
– volume: 33
  start-page: 2102801
  year: 2021
  ident: D5SC05720E/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202102801
– volume: 16
  start-page: 55229
  year: 2024
  ident: D5SC05720E/cit37/1
  publication-title: ACS Appl. Mater. Interfaces
– volume: 146
  start-page: 4803
  year: 2024
  ident: D5SC05720E/cit90/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13111
– volume: 33
  start-page: 2305991
  year: 2023
  ident: D5SC05720E/cit106/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202305991
– volume: 36
  start-page: 2406403
  year: 2024
  ident: D5SC05720E/cit23/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202406403
– volume: 16
  start-page: 2004720
  year: 2020
  ident: D5SC05720E/cit84/1
  publication-title: Small
  doi: 10.1002/smll.202004720
– volume: 11
  start-page: 3297
  year: 2020
  ident: D5SC05720E/cit121/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17014-w
– volume: 11
  start-page: 2100989
  year: 2021
  ident: D5SC05720E/cit135/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100989
– volume: 5
  start-page: 2100571
  year: 2021
  ident: D5SC05720E/cit70/1
  publication-title: Small Methods
  doi: 10.1002/smtd.202100571
– volume: 16
  start-page: 63647
  year: 2024
  ident: D5SC05720E/cit7/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c15270
– volume: 141
  start-page: 3977
  year: 2019
  ident: D5SC05720E/cit15/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b12973
– volume: 34
  start-page: 2107638
  year: 2022
  ident: D5SC05720E/cit110/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107638
– volume: 19
  start-page: 2928
  year: 2019
  ident: D5SC05720E/cit136/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b05208
– volume: 146
  start-page: 14754
  year: 2024
  ident: D5SC05720E/cit149/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c02603
– volume: 15
  start-page: 19043
  year: 2023
  ident: D5SC05720E/cit105/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c02153
– volume: 35
  start-page: 2208999
  year: 2023
  ident: D5SC05720E/cit59/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208999
– volume: 125
  start-page: 18108
  year: 2021
  ident: D5SC05720E/cit152/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c04491
– volume: 22
  start-page: 501
  year: 2022
  ident: D5SC05720E/cit88/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04445
– volume: 15
  start-page: 14105
  year: 2021
  ident: D5SC05720E/cit109/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04642
– start-page: 104502
  year: 2025
  ident: D5SC05720E/cit151/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2025.104502
– volume: 35
  start-page: 2426089
  year: 2025
  ident: D5SC05720E/cit142/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202426089
– volume: 147
  start-page: 6095
  year: 2025
  ident: D5SC05720E/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c17295
– volume: 34
  start-page: 2200102
  year: 2022
  ident: D5SC05720E/cit62/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202200102
– volume: 2
  start-page: 200015
  year: 2022
  ident: D5SC05720E/cit91/1
  publication-title: Energy Mater.
  doi: 10.20517/energymater.2022.13
– volume: 11
  start-page: 5025
  year: 2020
  ident: D5SC05720E/cit116/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18820-y
– volume: 64
  start-page: e202503174
  year: 2025
  ident: D5SC05720E/cit41/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202503174
– volume: 15
  start-page: 3325
  year: 2024
  ident: D5SC05720E/cit129/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47628-3
– volume: 36
  start-page: 2301477
  year: 2024
  ident: D5SC05720E/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301477
– volume: 36
  start-page: 2408139
  year: 2024
  ident: D5SC05720E/cit89/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202408139
– volume: 49
  start-page: 2140
  year: 2020
  ident: D5SC05720E/cit141/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00635D
– volume: 1
  start-page: 588
  year: 2024
  ident: D5SC05720E/cit154/1
  publication-title: Nat. Chem. Eng.
  doi: 10.1038/s44286-024-00115-4
– volume: 36
  start-page: 2306239
  year: 2024
  ident: D5SC05720E/cit131/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202306239
– volume: 10
  start-page: 1903550
  year: 2020
  ident: D5SC05720E/cit72/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903550
– volume: 21
  start-page: 1879
  year: 2021
  ident: D5SC05720E/cit27/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00076
– volume: 15
  start-page: 19
  year: 2023
  ident: D5SC05720E/cit86/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-022-00984-5
– volume: 5
  start-page: e286
  year: 2023
  ident: D5SC05720E/cit118/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.286
– volume: 33
  start-page: 2306049
  year: 2023
  ident: D5SC05720E/cit60/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306049
– volume: 7
  start-page: 18826
  year: 2022
  ident: D5SC05720E/cit76/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c01772
– volume: 20
  start-page: 5522
  year: 2020
  ident: D5SC05720E/cit11/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c02167
– volume: 16
  start-page: 172
  year: 2024
  ident: D5SC05720E/cit153/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-024-01385-6
– volume: 36
  start-page: 2411197
  year: 2024
  ident: D5SC05720E/cit111/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202411197
– volume: 58
  start-page: 1484
  year: 2019
  ident: D5SC05720E/cit119/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201811080
– volume: 6
  start-page: 1802046
  year: 2019
  ident: D5SC05720E/cit29/1
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201802046
– volume: 46
  start-page: 269
  year: 2022
  ident: D5SC05720E/cit57/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.12.040
– volume: 13
  start-page: 2204014
  year: 2023
  ident: D5SC05720E/cit98/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204014
– volume: 14
  start-page: 2400249
  year: 2024
  ident: D5SC05720E/cit147/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202400249
– volume: 15
  start-page: 7949
  year: 2024
  ident: D5SC05720E/cit48/1
  publication-title: Chem. Sci.
  doi: 10.1039/D4SC02420F
– volume: 8
  start-page: 23772
  year: 2020
  ident: D5SC05720E/cit103/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA07010F
– volume: 72
  start-page: 103728
  year: 2024
  ident: D5SC05720E/cit65/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2024.103728
– volume: 12
  start-page: 615
  year: 2019
  ident: D5SC05720E/cit127/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02836B
– volume: 16
  start-page: 5790
  year: 2025
  ident: D5SC05720E/cit20/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-61198-y
– volume: 144
  start-page: 18995
  year: 2022
  ident: D5SC05720E/cit128/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07655
– volume: 23
  start-page: 4000
  year: 2023
  ident: D5SC05720E/cit58/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c00787
– volume: 30
  start-page: 250
  year: 2020
  ident: D5SC05720E/cit67/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.05.022
– volume: 6
  start-page: 8850
  year: 2015
  ident: D5SC05720E/cit2/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9850
– volume: 3
  start-page: 174
  year: 2010
  ident: D5SC05720E/cit28/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/B916098A
– volume: 16
  start-page: 17572
  year: 2022
  ident: D5SC05720E/cit77/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c06827
– volume: 10
  start-page: 2003018
  year: 2020
  ident: D5SC05720E/cit95/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003018
– volume: 35
  start-page: 2208470
  year: 2023
  ident: D5SC05720E/cit115/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202208470
– volume: 12
  start-page: 2103126
  year: 2022
  ident: D5SC05720E/cit9/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103126
– volume: 29
  start-page: 1703324
  year: 2017
  ident: D5SC05720E/cit73/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703324
– volume: 6
  start-page: e12358
  year: 2023
  ident: D5SC05720E/cit143/1
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12358
– volume: 5
  start-page: 555
  year: 2022
  ident: D5SC05720E/cit51/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00804-4
– volume: 7
  start-page: 20584
  year: 2019
  ident: D5SC05720E/cit123/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06906B
– volume: 22
  start-page: 6366
  year: 2022
  ident: D5SC05720E/cit46/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c02183
– volume: 110
  start-page: 108353
  year: 2023
  ident: D5SC05720E/cit97/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108353
– volume: 15
  start-page: 1005
  year: 2024
  ident: D5SC05720E/cit124/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45405-w
– volume: 11
  start-page: 2402497
  year: 2024
  ident: D5SC05720E/cit144/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202402497
– volume: 60
  start-page: 15563
  year: 2021
  ident: D5SC05720E/cit120/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202104053
– volume: 17
  start-page: 386
  year: 2024
  ident: D5SC05720E/cit94/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE03059H
– volume: 3
  start-page: 1442
  year: 2020
  ident: D5SC05720E/cit16/1
  publication-title: Matter
  doi: 10.1016/j.matt.2020.07.032
– volume: 25
  start-page: 25942
  year: 2023
  ident: D5SC05720E/cit33/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP02857G
– volume: 9
  start-page: 78
  year: 2021
  ident: D5SC05720E/cit134/1
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2020.12.001
– volume: 147
  start-page: 15435
  year: 2025
  ident: D5SC05720E/cit150/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5c01588
– volume: 15
  start-page: 2405642
  year: 2025
  ident: D5SC05720E/cit148/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202405642
– volume: 15
  start-page: 13436
  year: 2021
  ident: D5SC05720E/cit108/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c03876
– volume: 17
  start-page: 3765
  year: 2024
  ident: D5SC05720E/cit139/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D3EE04028C
– volume: 6
  start-page: e422
  year: 2024
  ident: D5SC05720E/cit113/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.422
– volume: 684
  start-page: 189
  year: 2025
  ident: D5SC05720E/cit63/1
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2025.01.074
– volume: 36
  start-page: 2409369
  year: 2024
  ident: D5SC05720E/cit75/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202409369
– volume: 13
  start-page: 9520
  year: 2019
  ident: D5SC05720E/cit35/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04519
– volume: 7
  start-page: 40682
  year: 2022
  ident: D5SC05720E/cit6/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05477
– volume: 123
  start-page: 1262
  year: 2023
  ident: D5SC05720E/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00739
– volume: 15
  start-page: 210
  year: 2021
  ident: D5SC05720E/cit32/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08652
– volume: 1
  start-page: 297
  year: 2016
  ident: D5SC05720E/cit133/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00145
– volume: 32
  start-page: 1906722
  year: 2020
  ident: D5SC05720E/cit107/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906722
– volume: 14
  start-page: 16022
  year: 2020
  ident: D5SC05720E/cit126/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c07658
– volume: 7
  start-page: e12649
  year: 2025
  ident: D5SC05720E/cit66/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12649
– volume: 63
  start-page: e202317776
  year: 2024
  ident: D5SC05720E/cit96/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202317776
– volume: 10
  start-page: 18270
  year: 2018
  ident: D5SC05720E/cit79/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02396
– volume: 127
  start-page: 23156
  year: 2023
  ident: D5SC05720E/cit61/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.3c06511
– volume: 36
  start-page: 2407070
  year: 2024
  ident: D5SC05720E/cit56/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202407070
– volume: 54
  start-page: 3848
  year: 2025
  ident: D5SC05720E/cit13/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D4CS01031K
– volume: 13
  start-page: 14208
  year: 2019
  ident: D5SC05720E/cit31/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07121
– volume: 52
  start-page: 524
  year: 2022
  ident: D5SC05720E/cit140/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.08.030
– volume: 18
  start-page: 2204707
  year: 2022
  ident: D5SC05720E/cit99/1
  publication-title: Small
  doi: 10.1002/smll.202204707
– volume: 62
  start-page: e202306901
  year: 2023
  ident: D5SC05720E/cit52/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202306901
– volume: 311
  start-page: 122580
  year: 2022
  ident: D5SC05720E/cit78/1
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122580
– volume: 5
  start-page: 12146
  year: 2015
  ident: D5SC05720E/cit30/1
  publication-title: Sci. Rep.
  doi: 10.1038/srep12146
– volume: 33
  start-page: 2008654
  year: 2021
  ident: D5SC05720E/cit10/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008654
– volume: 6
  start-page: e202200494
  year: 2023
  ident: D5SC05720E/cit34/1
  publication-title: Batteries Supercaps
  doi: 10.1002/batt.202200494
– volume: 5
  start-page: 1401155
  year: 2015
  ident: D5SC05720E/cit137/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401155
– volume: 27
  start-page: 226
  year: 2020
  ident: D5SC05720E/cit85/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.02.002
– start-page: 2501496
  year: 2025
  ident: D5SC05720E/cit114/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202501496
– volume: 32
  start-page: 2207579
  year: 2022
  ident: D5SC05720E/cit71/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207579
– volume: 8
  start-page: 2102809
  year: 2021
  ident: D5SC05720E/cit50/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202102809
– volume: 18
  start-page: 34858
  year: 2024
  ident: D5SC05720E/cit112/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.4c12536
– volume: 25
  start-page: 8704
  year: 2025
  ident: D5SC05720E/cit81/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5c01516
– volume: 34
  start-page: 2202256
  year: 2022
  ident: D5SC05720E/cit104/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202256
– volume: 13
  start-page: 16958
  year: 2025
  ident: D5SC05720E/cit44/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D5TA01627D
– volume: 9
  start-page: 4082
  year: 2018
  ident: D5SC05720E/cit125/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06144-x
– volume: 18
  start-page: 79
  year: 2024
  ident: D5SC05720E/cit24/1
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-024-2434-0
– volume: 14
  start-page: 2303893
  year: 2024
  ident: D5SC05720E/cit55/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202303893
– volume: 14
  start-page: 7849
  year: 2023
  ident: D5SC05720E/cit22/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43689-y
– volume: 13
  start-page: 3063
  year: 2022
  ident: D5SC05720E/cit26/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30766-x
– volume: 1
  start-page: 744
  year: 2025
  ident: D5SC05720E/cit93/1
  publication-title: EES Batteries
  doi: 10.1039/D5EB00060B
– volume: 8
  start-page: 3421
  year: 2020
  ident: D5SC05720E/cit117/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11680J
– volume: 61
  start-page: e202114671
  year: 2022
  ident: D5SC05720E/cit69/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202114671
– volume: 715
  start-page: 164414
  year: 2026
  ident: D5SC05720E/cit92/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2025.164414
– volume: 16
  start-page: 2795
  year: 2025
  ident: D5SC05720E/cit130/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-58114-9
– volume: 8
  start-page: 216
  year: 2025
  ident: D5SC05720E/cit49/1
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-025-01289-y
– volume: 8
  start-page: 45348
  year: 2023
  ident: D5SC05720E/cit64/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c04166
– volume: 73
  start-page: 103819
  year: 2024
  ident: D5SC05720E/cit87/1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2024.103819
– volume: 503
  start-page: 144446
  year: 2020
  ident: D5SC05720E/cit43/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144446
– volume: 109
  start-page: 129
  year: 2025
  ident: D5SC05720E/cit146/1
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2025.05.006
– volume: 35
  start-page: 2212116
  year: 2023
  ident: D5SC05720E/cit8/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202212116
– volume: 34
  start-page: 2315563
  year: 2024
  ident: D5SC05720E/cit17/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202315563
– volume: 36
  start-page: 2309024
  year: 2024
  ident: D5SC05720E/cit53/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202309024
– volume: 146
  start-page: 32124
  year: 2024
  ident: D5SC05720E/cit122/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.4c13400
– volume: 15
  start-page: 1719
  year: 2024
  ident: D5SC05720E/cit25/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46175-1
– volume: 145
  start-page: 16449
  year: 2023
  ident: D5SC05720E/cit145/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c02786
– volume: 59
  start-page: 9011
  year: 2020
  ident: D5SC05720E/cit68/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202003136
SSID ssj0000331527
Score 2.4657004
SecondaryResourceType review_article
Snippet Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and...
Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 21677
SubjectTerms Adsorption
Catalysis
Coordination
Functional integration
Lithium
Lithium sulfur batteries
Modulation
Polysulfides
Single atom catalysts
Sulfur
Title Can single-atom precision rewire the electrochemical logic of Li–S chemistry? A comprehensive review of single-atom catalysts as agents of precise modulation
URI https://www.ncbi.nlm.nih.gov/pubmed/41210283
https://www.proquest.com/docview/3275453465
https://www.proquest.com/docview/3270466231
Volume 16
WOSCitedRecordID wos001608691900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAUL
  databaseName: Royal Society of Chemistry
  customDbUrl:
  eissn: 2041-6539
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331527
  issn: 2041-6520
  databaseCode: RRC
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://pubs.rsc.org/
  providerName: Royal Society of Chemistry
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL2aokp0Q2kpJZSOXMHWIrETJ15VowDqAqEKWml2keOHilQyKBmQ2PUf-gH9t34J104yBSGkSlnZTpz4Ovcev84BOJBaciNk4LeraSqcpbLQjMbCCs1Ngm4zsOuf5mdnxXwuv07g4JkVfC4PTdZpBBUstt7R5sLrM5yfl6uJlJjzQZqVxWlCRcbikYb00d2PA88TNImxpR01P0JsOXn9f2-1CRsDdiSz3thvYGKbt7BejpJtW_CnVA3xg_-fluJg-opct4OEDmmtJyUmCPfIoHyjB6oAErwfWThyevn31-8LoscHfiYz4rect_ZHv82d9AddfNmHtYQpoLtu2RGFlz-r1fkifeWWXC3MoBH2Dr6fHH8rv9BBgYFqJtiSFrpgSrvaSI6RvGa1w2_OnaiVUtrmmJjyWhSG6VSgr6i1yZ0RLrGWK5FJw7dhrVk0dgdInlqJaB4RokYzKYRFzBU6YUJaGddOR7A_mqe67ok2qrBAzmV1lF2UobGPI9gbLVcNP1tXcZYjDuSpyCL4tMrGlvJrH6qxi5tQJk4FYr0kgve9xVfVpIFEreARbGMXWCX_M_Hucxkf4BXzesBJQpnYg7Vle2M_wkt9u7zs2im8yOfFNIzyp6HP3gNA1OZV
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+single-atom+precision+rewire+the+electrochemical+logic+of+Li%E2%80%93S+chemistry%3F+A+comprehensive+review+of+single-atom+catalysts+as+agents+of+precise+modulation&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Yue&rft.au=Song%2C+Haobin&rft.au=Zhao%2C+Nan&rft.au=Cheng%2C+Xi&rft.date=2025-11-26&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=16&rft.issue=46&rft.spage=21677&rft.epage=2174&rft_id=info:doi/10.1039%2Fd5sc05720e&rft.externalDocID=d5sc05720e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon