Can single-atom precision rewire the electrochemical logic of Li–S chemistry? A comprehensive review of single-atom catalysts as agents of precise modulation
Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate s...
Gespeichert in:
| Veröffentlicht in: | Chemical science (Cambridge) Jg. 16; H. 46; S. 21677 - 2174 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Royal Society of Chemistry
26.11.2025
|
| Schlagworte: | |
| ISSN: | 2041-6520, 2041-6539 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li
2
S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies.
Single-atom precision rewires Li–S electrochemical logic
via
spatial configuration, pathway programming, and functional coupling; the paradigm extends to Na/K/Mg–S and solid-state systems. |
|---|---|
| AbstractList | Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li2S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies. Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li 2 S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies. Single-atom precision rewires Li–S electrochemical logic via spatial configuration, pathway programming, and functional coupling; the paradigm extends to Na/K/Mg–S and solid-state systems. Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium–sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li 2 S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure–activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium–sulfur, potassium–sulfur, and solid-state lithium–sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies. Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium-sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure-activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium-sulfur, potassium-sulfur, and solid-state lithium-sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies. Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium-sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li2S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure-activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium-sulfur, potassium-sulfur, and solid-state lithium-sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies.Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and sluggish redox kinetics. Their atomically dispersed nature and tunable coordination structures enable selective modulation of intermediate species and catalytic interfaces. Despite rapid progress, SAC design remains largely empirical, lacking a unified mechanistic framework. In this review, we outline a precision catalysis paradigm for SACs in lithium-sulfur systems. The discussion is organized along three core dimensions: spatial configuration, reaction pathway control, and functional integration. We summarize how coordination asymmetry, charge redistribution, and interfacial electronic coupling influence the adsorption and transformation of lithium polysulfides and Li2S. These insights are supported by spectroscopic characterization and theoretical calculations. Beyond conventional activity descriptors, we uncover structure-activity correlations involving d-band shifts, orbital hybridization, and electronic field effects. The concluded framework is further applied to sodium-sulfur, potassium-sulfur, and solid-state lithium-sulfur systems, demonstrating broad applicability. This review advances the understanding of SACs from passive adsorption sites toward programmable redox regulation. It provides conceptual and design guidance for future catalyst development based on adaptive coordination environments and data-driven optimization strategies. |
| Author | Zhao, Nan Wang, Yue Cheng, Xi Li, Dong-Sheng Yang, Hui Ying Song, Haobin |
| AuthorAffiliation | National University of Singapore The UWCSEA Dover Campus College of Design and Engineering Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials College of Materials and Chemical Engineering Pillar of Engineering Product Development Department of Materials Science and Engineering Singapore University of Technology and Design China Three Gorges University |
| AuthorAffiliation_xml | – name: Pillar of Engineering Product Development – name: The UWCSEA Dover Campus – name: College of Design and Engineering – name: China Three Gorges University – name: College of Materials and Chemical Engineering – name: Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials – name: Singapore University of Technology and Design – name: National University of Singapore – name: Department of Materials Science and Engineering |
| Author_xml | – sequence: 1 givenname: Yue surname: Wang fullname: Wang, Yue – sequence: 2 givenname: Haobin surname: Song fullname: Song, Haobin – sequence: 3 givenname: Nan surname: Zhao fullname: Zhao, Nan – sequence: 4 givenname: Xi surname: Cheng fullname: Cheng, Xi – sequence: 5 givenname: Dong-Sheng surname: Li fullname: Li, Dong-Sheng – sequence: 6 givenname: Hui Ying surname: Yang fullname: Yang, Hui Ying |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41210283$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkc1qGzEQx0VJaVI3l9wTBL2Uwjb62NXapxLc9AMMOaQ9L9rZWVtBKzmSNsG3vkMfoO_WJ6kcp06JGNCg-fGf0fxfkwPnHRJywtkHzuTsvKsisKoWDF-QI8FKXqhKzg72uWCH5DjGG5aPlLwS9StyWHLBmZjKI_J7rh2Nxi0tFjr5ga4DgonGOxrw3gSkaYUULUIKHlY4GNCWWr80QH1PF-bPz1_X9KEQU9h8pBcU_JBFVuiiucOscmfwfsv-3wV00nYTU6Q6xxJdzjKya4508N1odcpTvCEve20jHj_eE_Lj8-X3-ddicfXl2_xiUYBQIhVTmAoNfdvNZClUK9o-76TuVau1BqzzYylbNe0ElIrVsoWu7jvVc0SpVTXr5IS82-mug78dMaYmfwjQWu3Qj7GRomalUkLyjL59ht74Mbg83ZaqykqW2YIJOXukxnbArlkHM-iwaf6tPgPvdwAEH2PAfo9w1mytbT5V1_MHay8zfLqDQ4Q992S9_AuDqaLL |
| Cites_doi | 10.1002/smll.202311799 10.1002/adma.201901125 10.1007/s40820-023-01120-7 10.1007/s40820-025-01729-w 10.1007/s40820-023-01223-1 10.1002/adfm.202422689 10.1039/D3ME00191A 10.1016/j.cej.2023.146977 10.1002/adfm.202406423 10.1021/acs.jpclett.1c00927 10.1021/acs.jpcc.1c06464 10.1038/ncomms4015 10.1002/adfm.202204458 10.1038/s41467-022-32139-w 10.1016/j.cej.2023.147207 10.1002/adfm.202204635 10.1039/D0CS01032D 10.1016/j.physb.2022.413934 10.1002/eem2.12703 10.1039/D4EE01885K 10.1126/sciadv.adi5108 10.1002/sstr.202200205 10.1002/ange.202215414 10.1002/adma.202102801 10.1021/jacs.3c13111 10.1002/adfm.202305991 10.1002/adma.202406403 10.1002/smll.202004720 10.1038/s41467-020-17014-w 10.1002/aenm.202100989 10.1002/smtd.202100571 10.1021/acsami.4c15270 10.1021/jacs.8b12973 10.1002/adma.202107638 10.1021/acs.nanolett.8b05208 10.1021/jacs.4c02603 10.1021/acsami.3c02153 10.1002/adma.202208999 10.1021/acs.jpcc.1c04491 10.1021/acs.nanolett.1c04445 10.1021/acsnano.1c04642 10.1016/j.ensm.2025.104502 10.1002/adfm.202426089 10.1021/jacs.4c17295 10.1002/adma.202200102 10.20517/energymater.2022.13 10.1038/s41467-020-18820-y 10.1002/anie.202503174 10.1038/s41467-024-47628-3 10.1002/adma.202301477 10.1002/adma.202408139 10.1039/C9CS00635D 10.1038/s44286-024-00115-4 10.1002/adma.202306239 10.1002/aenm.201903550 10.1021/acs.nanolett.1c00076 10.1007/s40820-022-00984-5 10.1002/cey2.286 10.1002/adfm.202306049 10.1021/acsomega.2c01772 10.1021/acs.nanolett.0c02167 10.1007/s40820-024-01385-6 10.1002/adma.202411197 10.1002/anie.201811080 10.1002/admi.201802046 10.1016/j.ensm.2021.12.040 10.1002/aenm.202204014 10.1002/aenm.202400249 10.1039/D4SC02420F 10.1039/D0TA07010F 10.1016/j.ensm.2024.103728 10.1039/C8EE02836B 10.1038/s41467-025-61198-y 10.1021/jacs.2c07655 10.1021/acs.nanolett.3c00787 10.1016/j.ensm.2020.05.022 10.1038/ncomms9850 10.1039/B916098A 10.1021/acsnano.2c06827 10.1002/aenm.202003018 10.1002/adma.202208470 10.1002/aenm.202103126 10.1002/adma.201703324 10.1002/eem2.12358 10.1038/s41929-022-00804-4 10.1039/C9TA06906B 10.1021/acs.nanolett.2c02183 10.1016/j.nanoen.2023.108353 10.1038/s41467-024-45405-w 10.1002/advs.202402497 10.1002/anie.202104053 10.1039/D3EE03059H 10.1016/j.matt.2020.07.032 10.1039/D3CP02857G 10.1016/j.jma.2020.12.001 10.1021/jacs.5c01588 10.1002/aenm.202405642 10.1021/acsnano.1c03876 10.1039/D3EE04028C 10.1002/cey2.422 10.1016/j.jcis.2025.01.074 10.1002/adma.202409369 10.1021/acsnano.9b04519 10.1021/acsomega.2c05477 10.1021/acs.chemrev.2c00739 10.1021/acsnano.0c08652 10.1021/acsenergylett.6b00145 10.1002/adma.201906722 10.1021/acsnano.0c07658 10.1002/inf2.12649 10.1002/anie.202317776 10.1021/acsami.8b02396 10.1021/acs.jpcc.3c06511 10.1002/adma.202407070 10.1039/D4CS01031K 10.1021/acsnano.9b07121 10.1016/j.ensm.2022.08.030 10.1002/smll.202204707 10.1002/anie.202306901 10.1016/j.fuel.2021.122580 10.1038/srep12146 10.1002/adma.202008654 10.1002/batt.202200494 10.1002/aenm.201401155 10.1016/j.ensm.2020.02.002 10.1002/adfm.202501496 10.1002/adfm.202207579 10.1002/advs.202102809 10.1021/acsnano.4c12536 10.1021/acs.nanolett.5c01516 10.1002/adma.202202256 10.1039/D5TA01627D 10.1038/s41467-018-06144-x 10.1007/s11705-024-2434-0 10.1002/aenm.202303893 10.1038/s41467-023-43689-y 10.1038/s41467-022-30766-x 10.1039/D5EB00060B 10.1039/C9TA11680J 10.1002/anie.202114671 10.1016/j.apsusc.2025.164414 10.1038/s41467-025-58114-9 10.1007/s42114-025-01289-y 10.1021/acsomega.3c04166 10.1016/j.ensm.2024.103819 10.1016/j.apsusc.2019.144446 10.1016/j.jechem.2025.05.006 10.1002/adma.202212116 10.1002/adfm.202315563 10.1002/adma.202309024 10.1021/jacs.4c13400 10.1038/s41467-024-46175-1 10.1021/jacs.3c02786 10.1002/anie.202003136 |
| ContentType | Journal Article |
| Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2025 |
| Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2025 |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1039/d5sc05720e |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2041-6539 |
| EndPage | 2174 |
| ExternalDocumentID | 41210283 10_1039_D5SC05720E d5sc05720e |
| Genre | Journal Article Review |
| GroupedDBID | 0-7 0R~ 53G 705 7~J AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGMRB AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH AAEMU AAFBY AAWGC AAYXX ABASK ACRPL ADNMO AETIL AFRZK AFVBQ AGEGJ AGQPQ AHGXI AKMSF ALSGL ANBJS ANLMG ASPBG AVWKF CAG CITATION COF ECGLT FEDTE HVGLF J3G J3H J3I L-8 ROL RPMJG NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c262t-8c82acfbd93426b2bf0577f6baaace734243b68d2c46073bcd7fd6f1ee3a659d3 |
| IEDL.DBID | RRC |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001608691900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-6520 |
| IngestDate | Mon Nov 10 17:31:09 EST 2025 Wed Nov 26 08:24:43 EST 2025 Sat Nov 29 01:44:53 EST 2025 Wed Nov 12 18:37:34 EST 2025 Thu Nov 27 00:07:43 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 46 |
| Language | English |
| License | This journal is © The Royal Society of Chemistry. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c262t-8c82acfbd93426b2bf0577f6baaace734243b68d2c46073bcd7fd6f1ee3a659d3 |
| Notes | Energy & Environmental Science Yue Wang is a research fellow in Professor Hui Ying Yang's group at the National University of Singapore. He received his Ph.D. in Materials Science from Nanjing University and previously worked at the Singapore University of Technology and Design. His research lies in electrochemical energy storage, with particular focus on sodium- and potassium-ion batteries, sodium–sulfur chemistry, and solid-state sodium–sulfur batteries. He has published in journals including and H index 100) and international recognition including the NRF Investigatorship and ACS Nano Impact Award. contributing theoretical and experimental insights toward next-generation energy devices. Angewandte Chemie International Edition ACS Nano Advanced Materials , Hui Ying Yang is a Professor in the Department of Materials Science and Engineering at the National University of Singapore. She received her Ph.D. from Nanyang Technological University and previously held faculty appointments at the Singapore University of Technology and Design and visiting assistant professor at the Massachusetts Institute of Technology. Her research focuses on advanced nanomaterials for energy storage and water treatment, leading to over 400 publications with more than 30 000 citations ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-2244-8231 0000-0001-6819-1374 0000-0003-1283-6334 |
| OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc05720e |
| PMID | 41210283 |
| PQID | 3275453465 |
| PQPubID | 2047492 |
| PageCount | 28 |
| ParticipantIDs | proquest_miscellaneous_3270466231 proquest_journals_3275453465 crossref_primary_10_1039_D5SC05720E rsc_primary_d5sc05720e pubmed_primary_41210283 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-26 |
| PublicationDateYYYYMMDD | 2025-11-26 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-26 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | Chemical science (Cambridge) |
| PublicationTitleAlternate | Chem Sci |
| PublicationYear | 2025 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Sun (D5SC05720E/cit133/1) 2016; 1 Gao (D5SC05720E/cit28/1) 2010; 3 Yang (D5SC05720E/cit58/1) 2023; 23 Li (D5SC05720E/cit3/1) 2024; 16 Zhao-Karger (D5SC05720E/cit137/1) 2015; 5 Yang (D5SC05720E/cit142/1) 2025; 35 Dong (D5SC05720E/cit56/1) 2024; 36 Zou (D5SC05720E/cit94/1) 2024; 17 Wu (D5SC05720E/cit35/1) 2019; 13 Li (D5SC05720E/cit107/1) 2020; 32 Lei (D5SC05720E/cit129/1) 2024; 15 Yang (D5SC05720E/cit16/1) 2020; 3 Cao (D5SC05720E/cit79/1) 2018; 10 Xu (D5SC05720E/cit76/1) 2022; 7 Sun (D5SC05720E/cit105/1) 2023; 15 Feng (D5SC05720E/cit71/1) 2022; 32 Dai (D5SC05720E/cit17/1) 2024; 34 Xu (D5SC05720E/cit22/1) 2023; 14 Lu (D5SC05720E/cit82/1) 2022; 638 Huang (D5SC05720E/cit93/1) 2025; 1 Liu (D5SC05720E/cit46/1) 2022; 22 Zhao (D5SC05720E/cit65/1) 2024; 72 Wang (D5SC05720E/cit57/1) 2022; 46 Yuan (D5SC05720E/cit97/1) 2023; 110 Wang (D5SC05720E/cit106/1) 2023; 33 Qian (D5SC05720E/cit87/1) 2024; 73 Ye (D5SC05720E/cit31/1) 2019; 13 Lyu (D5SC05720E/cit90/1) 2024; 146 Li (D5SC05720E/cit69/1) 2022; 61 Kou (D5SC05720E/cit132/1) 2024; 34 Chen (D5SC05720E/cit151/1) 2025 Zhao (D5SC05720E/cit18/1) 2021; 33 Shao (D5SC05720E/cit103/1) 2020; 8 Yang (D5SC05720E/cit141/1) 2020; 49 Zhou (D5SC05720E/cit70/1) 2021; 5 Yuan (D5SC05720E/cit29/1) 2019; 6 Shen (D5SC05720E/cit19/1) 2024; 17 Guan (D5SC05720E/cit139/1) 2024; 17 Liu (D5SC05720E/cit66/1) 2025; 7 Shang (D5SC05720E/cit14/1) 2021; 50 Liu (D5SC05720E/cit99/1) 2022; 18 Gong (D5SC05720E/cit38/1) 2023; 15 Zheng (D5SC05720E/cit127/1) 2019; 12 Seo (D5SC05720E/cit47/1) 2025; 17 Cao (D5SC05720E/cit55/1) 2024; 14 Ge (D5SC05720E/cit126/1) 2020; 14 Chung (D5SC05720E/cit4/1) 2019; 31 Guo (D5SC05720E/cit36/1) 2022; 32 Li (D5SC05720E/cit41/1) 2025; 64 Sun (D5SC05720E/cit60/1) 2023; 33 Helen (D5SC05720E/cit30/1) 2015; 5 Samawi (D5SC05720E/cit40/1) 2024; 9 Zhou (D5SC05720E/cit80/1) 2022; 32 Zou (D5SC05720E/cit138/1) 2023; 477 Xu (D5SC05720E/cit92/1) 2026; 715 Wang (D5SC05720E/cit25/1) 2024; 15 Han (D5SC05720E/cit89/1) 2024; 36 Ju (D5SC05720E/cit140/1) 2022; 52 Zhao (D5SC05720E/cit88/1) 2022; 22 Wang (D5SC05720E/cit72/1) 2020; 10 Jiao (D5SC05720E/cit48/1) 2024; 15 Song (D5SC05720E/cit108/1) 2021; 15 Zhao (D5SC05720E/cit134/1) 2021; 9 Wang (D5SC05720E/cit33/1) 2023; 25 Bi (D5SC05720E/cit111/1) 2024; 36 Wang (D5SC05720E/cit112/1) 2024; 18 Lu (D5SC05720E/cit11/1) 2020; 20 Ting (D5SC05720E/cit6/1) 2022; 7 Chen (D5SC05720E/cit146/1) 2025; 109 Wang (D5SC05720E/cit21/1) 2025; 147 Lao (D5SC05720E/cit53/1) 2024; 36 Liu (D5SC05720E/cit23/1) 2024; 36 Liang (D5SC05720E/cit62/1) 2022; 34 Zeng (D5SC05720E/cit84/1) 2020; 16 Lian (D5SC05720E/cit155/1) 2021; 12 Song (D5SC05720E/cit130/1) 2025; 16 Xia (D5SC05720E/cit91/1) 2022; 2 Lang (D5SC05720E/cit54/1) 2022; 13 Cao (D5SC05720E/cit63/1) 2025; 684 Ding (D5SC05720E/cit104/1) 2022; 34 Zhang (D5SC05720E/cit125/1) 2018; 9 Wang (D5SC05720E/cit32/1) 2021; 15 Chen (D5SC05720E/cit44/1) 2025; 13 Qin (D5SC05720E/cit27/1) 2021; 21 Xiao (D5SC05720E/cit135/1) 2021; 11 Li (D5SC05720E/cit64/1) 2023; 8 Wang (D5SC05720E/cit74/1) 2025; 35 Zhao (D5SC05720E/cit7/1) 2024; 16 Zhang (D5SC05720E/cit119/1) 2019; 58 Wang (D5SC05720E/cit52/1) 2023; 62 Song (D5SC05720E/cit78/1) 2022; 311 Xu (D5SC05720E/cit136/1) 2019; 19 Zhang (D5SC05720E/cit96/1) 2024; 63 Lin (D5SC05720E/cit102/1) 2023; 477 Xiong (D5SC05720E/cit121/1) 2020; 11 Luo (D5SC05720E/cit131/1) 2024; 36 Huang (D5SC05720E/cit5/1) 2014; 5 Yan (D5SC05720E/cit101/1) 2024; 20 Song (D5SC05720E/cit154/1) 2024; 1 Lim (D5SC05720E/cit59/1) 2023; 35 Yao (D5SC05720E/cit8/1) 2023; 35 Shen (D5SC05720E/cit100/1) 2023; 4 Wu (D5SC05720E/cit113/1) 2024; 6 Li (D5SC05720E/cit20/1) 2025; 16 Li (D5SC05720E/cit67/1) 2020; 30 He (D5SC05720E/cit148/1) 2025; 15 Chen (D5SC05720E/cit75/1) 2024; 36 Du (D5SC05720E/cit15/1) 2019; 141 Zeng (D5SC05720E/cit50/1) 2021; 8 Cao (D5SC05720E/cit13/1) 2025; 54 Peng (D5SC05720E/cit95/1) 2020; 10 Shen (D5SC05720E/cit51/1) 2022; 5 Gu (D5SC05720E/cit98/1) 2023; 13 Song (D5SC05720E/cit124/1) 2024; 15 Pan (D5SC05720E/cit26/1) 2022; 13 Yi (D5SC05720E/cit43/1) 2020; 503 Ji (D5SC05720E/cit85/1) 2020; 27 Wang (D5SC05720E/cit117/1) 2020; 8 Zhang (D5SC05720E/cit128/1) 2022; 144 Yang (D5SC05720E/cit147/1) 2024; 14 Li (D5SC05720E/cit2/1) 2015; 6 You (D5SC05720E/cit81/1) 2025; 25 Zhong (D5SC05720E/cit122/1) 2024; 146 Chen (D5SC05720E/cit145/1) 2023; 145 Gicha (D5SC05720E/cit153/1) 2024; 16 Song (D5SC05720E/cit118/1) 2023; 5 Sadd (D5SC05720E/cit9/1) 2022; 12 Burse (D5SC05720E/cit49/1) 2025; 8 Wang (D5SC05720E/cit120/1) 2021; 60 Li (D5SC05720E/cit110/1) 2022; 34 Xiao (D5SC05720E/cit73/1) 2017; 29 Andritsos (D5SC05720E/cit152/1) 2021; 125 Yan (D5SC05720E/cit45/1) 2023; 135 Tian (D5SC05720E/cit116/1) 2020; 11 Zhao (D5SC05720E/cit34/1) 2023; 6 Zhao (D5SC05720E/cit68/1) 2020; 59 Xu (D5SC05720E/cit144/1) 2024; 11 Li (D5SC05720E/cit149/1) 2024; 146 Lai (D5SC05720E/cit123/1) 2019; 7 Zhou (D5SC05720E/cit39/1) 2024; 7 Yang (D5SC05720E/cit24/1) 2024; 18 Xu (D5SC05720E/cit42/1) 2023; 9 Wu (D5SC05720E/cit83/1) 2021; 125 Li (D5SC05720E/cit150/1) 2025; 147 Ren (D5SC05720E/cit61/1) 2023; 127 Sang (D5SC05720E/cit1/1) 2023; 123 Ng (D5SC05720E/cit10/1) 2021; 33 Wang (D5SC05720E/cit37/1) 2024; 16 Wang (D5SC05720E/cit143/1) 2023; 6 Huang (D5SC05720E/cit109/1) 2021; 15 Zhang (D5SC05720E/cit115/1) 2023; 35 Song (D5SC05720E/cit12/1) 2024; 36 Lin (D5SC05720E/cit114/1) 2025 Zhao (D5SC05720E/cit86/1) 2023; 15 Zhang (D5SC05720E/cit77/1) 2022; 16 |
| References_xml | – volume: 20 start-page: 2311799 year: 2024 ident: D5SC05720E/cit101/1 publication-title: Small doi: 10.1002/smll.202311799 – volume: 31 start-page: 1901125 year: 2019 ident: D5SC05720E/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.201901125 – volume: 15 start-page: 150 year: 2023 ident: D5SC05720E/cit38/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01120-7 – volume: 17 start-page: 224 year: 2025 ident: D5SC05720E/cit47/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-025-01729-w – volume: 16 start-page: 12 year: 2024 ident: D5SC05720E/cit3/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01223-1 – volume: 35 start-page: 2422689 year: 2025 ident: D5SC05720E/cit74/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202422689 – volume: 9 start-page: 464 year: 2024 ident: D5SC05720E/cit40/1 publication-title: Mol. Syst. Des. Eng. doi: 10.1039/D3ME00191A – volume: 477 start-page: 146977 year: 2023 ident: D5SC05720E/cit102/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146977 – volume: 34 start-page: 2406423 year: 2024 ident: D5SC05720E/cit132/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202406423 – volume: 12 start-page: 7053 year: 2021 ident: D5SC05720E/cit155/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c00927 – volume: 125 start-page: 23699 year: 2021 ident: D5SC05720E/cit83/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c06464 – volume: 5 start-page: 3015 year: 2014 ident: D5SC05720E/cit5/1 publication-title: Nat. Commun. doi: 10.1038/ncomms4015 – volume: 32 start-page: 2204458 year: 2022 ident: D5SC05720E/cit36/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204458 – volume: 13 start-page: 4811 year: 2022 ident: D5SC05720E/cit54/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32139-w – volume: 477 start-page: 147207 year: 2023 ident: D5SC05720E/cit138/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.147207 – volume: 32 start-page: 2204635 year: 2022 ident: D5SC05720E/cit80/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204635 – volume: 50 start-page: 5281 year: 2021 ident: D5SC05720E/cit14/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01032D – volume: 638 start-page: 413934 year: 2022 ident: D5SC05720E/cit82/1 publication-title: Phys. B doi: 10.1016/j.physb.2022.413934 – volume: 7 start-page: e12703 year: 2024 ident: D5SC05720E/cit39/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12703 – volume: 17 start-page: 6034 year: 2024 ident: D5SC05720E/cit19/1 publication-title: Energy Environ. Sci. doi: 10.1039/D4EE01885K – volume: 9 start-page: eadi5108 year: 2023 ident: D5SC05720E/cit42/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.adi5108 – volume: 4 start-page: 2200205 year: 2023 ident: D5SC05720E/cit100/1 publication-title: Small Struct. doi: 10.1002/sstr.202200205 – volume: 135 start-page: e202215414 year: 2023 ident: D5SC05720E/cit45/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202215414 – volume: 33 start-page: 2102801 year: 2021 ident: D5SC05720E/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.202102801 – volume: 16 start-page: 55229 year: 2024 ident: D5SC05720E/cit37/1 publication-title: ACS Appl. Mater. Interfaces – volume: 146 start-page: 4803 year: 2024 ident: D5SC05720E/cit90/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13111 – volume: 33 start-page: 2305991 year: 2023 ident: D5SC05720E/cit106/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202305991 – volume: 36 start-page: 2406403 year: 2024 ident: D5SC05720E/cit23/1 publication-title: Adv. Mater. doi: 10.1002/adma.202406403 – volume: 16 start-page: 2004720 year: 2020 ident: D5SC05720E/cit84/1 publication-title: Small doi: 10.1002/smll.202004720 – volume: 11 start-page: 3297 year: 2020 ident: D5SC05720E/cit121/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17014-w – volume: 11 start-page: 2100989 year: 2021 ident: D5SC05720E/cit135/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100989 – volume: 5 start-page: 2100571 year: 2021 ident: D5SC05720E/cit70/1 publication-title: Small Methods doi: 10.1002/smtd.202100571 – volume: 16 start-page: 63647 year: 2024 ident: D5SC05720E/cit7/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c15270 – volume: 141 start-page: 3977 year: 2019 ident: D5SC05720E/cit15/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12973 – volume: 34 start-page: 2107638 year: 2022 ident: D5SC05720E/cit110/1 publication-title: Adv. Mater. doi: 10.1002/adma.202107638 – volume: 19 start-page: 2928 year: 2019 ident: D5SC05720E/cit136/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b05208 – volume: 146 start-page: 14754 year: 2024 ident: D5SC05720E/cit149/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c02603 – volume: 15 start-page: 19043 year: 2023 ident: D5SC05720E/cit105/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c02153 – volume: 35 start-page: 2208999 year: 2023 ident: D5SC05720E/cit59/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208999 – volume: 125 start-page: 18108 year: 2021 ident: D5SC05720E/cit152/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c04491 – volume: 22 start-page: 501 year: 2022 ident: D5SC05720E/cit88/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04445 – volume: 15 start-page: 14105 year: 2021 ident: D5SC05720E/cit109/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c04642 – start-page: 104502 year: 2025 ident: D5SC05720E/cit151/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2025.104502 – volume: 35 start-page: 2426089 year: 2025 ident: D5SC05720E/cit142/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202426089 – volume: 147 start-page: 6095 year: 2025 ident: D5SC05720E/cit21/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c17295 – volume: 34 start-page: 2200102 year: 2022 ident: D5SC05720E/cit62/1 publication-title: Adv. Mater. doi: 10.1002/adma.202200102 – volume: 2 start-page: 200015 year: 2022 ident: D5SC05720E/cit91/1 publication-title: Energy Mater. doi: 10.20517/energymater.2022.13 – volume: 11 start-page: 5025 year: 2020 ident: D5SC05720E/cit116/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18820-y – volume: 64 start-page: e202503174 year: 2025 ident: D5SC05720E/cit41/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202503174 – volume: 15 start-page: 3325 year: 2024 ident: D5SC05720E/cit129/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-47628-3 – volume: 36 start-page: 2301477 year: 2024 ident: D5SC05720E/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.202301477 – volume: 36 start-page: 2408139 year: 2024 ident: D5SC05720E/cit89/1 publication-title: Adv. Mater. doi: 10.1002/adma.202408139 – volume: 49 start-page: 2140 year: 2020 ident: D5SC05720E/cit141/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00635D – volume: 1 start-page: 588 year: 2024 ident: D5SC05720E/cit154/1 publication-title: Nat. Chem. Eng. doi: 10.1038/s44286-024-00115-4 – volume: 36 start-page: 2306239 year: 2024 ident: D5SC05720E/cit131/1 publication-title: Adv. Mater. doi: 10.1002/adma.202306239 – volume: 10 start-page: 1903550 year: 2020 ident: D5SC05720E/cit72/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903550 – volume: 21 start-page: 1879 year: 2021 ident: D5SC05720E/cit27/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00076 – volume: 15 start-page: 19 year: 2023 ident: D5SC05720E/cit86/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00984-5 – volume: 5 start-page: e286 year: 2023 ident: D5SC05720E/cit118/1 publication-title: Carbon Energy doi: 10.1002/cey2.286 – volume: 33 start-page: 2306049 year: 2023 ident: D5SC05720E/cit60/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306049 – volume: 7 start-page: 18826 year: 2022 ident: D5SC05720E/cit76/1 publication-title: ACS Omega doi: 10.1021/acsomega.2c01772 – volume: 20 start-page: 5522 year: 2020 ident: D5SC05720E/cit11/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02167 – volume: 16 start-page: 172 year: 2024 ident: D5SC05720E/cit153/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-024-01385-6 – volume: 36 start-page: 2411197 year: 2024 ident: D5SC05720E/cit111/1 publication-title: Adv. Mater. doi: 10.1002/adma.202411197 – volume: 58 start-page: 1484 year: 2019 ident: D5SC05720E/cit119/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811080 – volume: 6 start-page: 1802046 year: 2019 ident: D5SC05720E/cit29/1 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201802046 – volume: 46 start-page: 269 year: 2022 ident: D5SC05720E/cit57/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.12.040 – volume: 13 start-page: 2204014 year: 2023 ident: D5SC05720E/cit98/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204014 – volume: 14 start-page: 2400249 year: 2024 ident: D5SC05720E/cit147/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202400249 – volume: 15 start-page: 7949 year: 2024 ident: D5SC05720E/cit48/1 publication-title: Chem. Sci. doi: 10.1039/D4SC02420F – volume: 8 start-page: 23772 year: 2020 ident: D5SC05720E/cit103/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA07010F – volume: 72 start-page: 103728 year: 2024 ident: D5SC05720E/cit65/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2024.103728 – volume: 12 start-page: 615 year: 2019 ident: D5SC05720E/cit127/1 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02836B – volume: 16 start-page: 5790 year: 2025 ident: D5SC05720E/cit20/1 publication-title: Nat. Commun. doi: 10.1038/s41467-025-61198-y – volume: 144 start-page: 18995 year: 2022 ident: D5SC05720E/cit128/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c07655 – volume: 23 start-page: 4000 year: 2023 ident: D5SC05720E/cit58/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c00787 – volume: 30 start-page: 250 year: 2020 ident: D5SC05720E/cit67/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.05.022 – volume: 6 start-page: 8850 year: 2015 ident: D5SC05720E/cit2/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9850 – volume: 3 start-page: 174 year: 2010 ident: D5SC05720E/cit28/1 publication-title: Energy Environ. Sci. doi: 10.1039/B916098A – volume: 16 start-page: 17572 year: 2022 ident: D5SC05720E/cit77/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c06827 – volume: 10 start-page: 2003018 year: 2020 ident: D5SC05720E/cit95/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003018 – volume: 35 start-page: 2208470 year: 2023 ident: D5SC05720E/cit115/1 publication-title: Adv. Mater. doi: 10.1002/adma.202208470 – volume: 12 start-page: 2103126 year: 2022 ident: D5SC05720E/cit9/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103126 – volume: 29 start-page: 1703324 year: 2017 ident: D5SC05720E/cit73/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703324 – volume: 6 start-page: e12358 year: 2023 ident: D5SC05720E/cit143/1 publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12358 – volume: 5 start-page: 555 year: 2022 ident: D5SC05720E/cit51/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00804-4 – volume: 7 start-page: 20584 year: 2019 ident: D5SC05720E/cit123/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06906B – volume: 22 start-page: 6366 year: 2022 ident: D5SC05720E/cit46/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02183 – volume: 110 start-page: 108353 year: 2023 ident: D5SC05720E/cit97/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108353 – volume: 15 start-page: 1005 year: 2024 ident: D5SC05720E/cit124/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45405-w – volume: 11 start-page: 2402497 year: 2024 ident: D5SC05720E/cit144/1 publication-title: Adv. Sci. doi: 10.1002/advs.202402497 – volume: 60 start-page: 15563 year: 2021 ident: D5SC05720E/cit120/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202104053 – volume: 17 start-page: 386 year: 2024 ident: D5SC05720E/cit94/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE03059H – volume: 3 start-page: 1442 year: 2020 ident: D5SC05720E/cit16/1 publication-title: Matter doi: 10.1016/j.matt.2020.07.032 – volume: 25 start-page: 25942 year: 2023 ident: D5SC05720E/cit33/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP02857G – volume: 9 start-page: 78 year: 2021 ident: D5SC05720E/cit134/1 publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2020.12.001 – volume: 147 start-page: 15435 year: 2025 ident: D5SC05720E/cit150/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5c01588 – volume: 15 start-page: 2405642 year: 2025 ident: D5SC05720E/cit148/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202405642 – volume: 15 start-page: 13436 year: 2021 ident: D5SC05720E/cit108/1 publication-title: ACS Nano doi: 10.1021/acsnano.1c03876 – volume: 17 start-page: 3765 year: 2024 ident: D5SC05720E/cit139/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE04028C – volume: 6 start-page: e422 year: 2024 ident: D5SC05720E/cit113/1 publication-title: Carbon Energy doi: 10.1002/cey2.422 – volume: 684 start-page: 189 year: 2025 ident: D5SC05720E/cit63/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2025.01.074 – volume: 36 start-page: 2409369 year: 2024 ident: D5SC05720E/cit75/1 publication-title: Adv. Mater. doi: 10.1002/adma.202409369 – volume: 13 start-page: 9520 year: 2019 ident: D5SC05720E/cit35/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b04519 – volume: 7 start-page: 40682 year: 2022 ident: D5SC05720E/cit6/1 publication-title: ACS Omega doi: 10.1021/acsomega.2c05477 – volume: 123 start-page: 1262 year: 2023 ident: D5SC05720E/cit1/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00739 – volume: 15 start-page: 210 year: 2021 ident: D5SC05720E/cit32/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c08652 – volume: 1 start-page: 297 year: 2016 ident: D5SC05720E/cit133/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00145 – volume: 32 start-page: 1906722 year: 2020 ident: D5SC05720E/cit107/1 publication-title: Adv. Mater. doi: 10.1002/adma.201906722 – volume: 14 start-page: 16022 year: 2020 ident: D5SC05720E/cit126/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c07658 – volume: 7 start-page: e12649 year: 2025 ident: D5SC05720E/cit66/1 publication-title: InfoMat doi: 10.1002/inf2.12649 – volume: 63 start-page: e202317776 year: 2024 ident: D5SC05720E/cit96/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202317776 – volume: 10 start-page: 18270 year: 2018 ident: D5SC05720E/cit79/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02396 – volume: 127 start-page: 23156 year: 2023 ident: D5SC05720E/cit61/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.3c06511 – volume: 36 start-page: 2407070 year: 2024 ident: D5SC05720E/cit56/1 publication-title: Adv. Mater. doi: 10.1002/adma.202407070 – volume: 54 start-page: 3848 year: 2025 ident: D5SC05720E/cit13/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D4CS01031K – volume: 13 start-page: 14208 year: 2019 ident: D5SC05720E/cit31/1 publication-title: ACS Nano doi: 10.1021/acsnano.9b07121 – volume: 52 start-page: 524 year: 2022 ident: D5SC05720E/cit140/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.08.030 – volume: 18 start-page: 2204707 year: 2022 ident: D5SC05720E/cit99/1 publication-title: Small doi: 10.1002/smll.202204707 – volume: 62 start-page: e202306901 year: 2023 ident: D5SC05720E/cit52/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202306901 – volume: 311 start-page: 122580 year: 2022 ident: D5SC05720E/cit78/1 publication-title: Fuel doi: 10.1016/j.fuel.2021.122580 – volume: 5 start-page: 12146 year: 2015 ident: D5SC05720E/cit30/1 publication-title: Sci. Rep. doi: 10.1038/srep12146 – volume: 33 start-page: 2008654 year: 2021 ident: D5SC05720E/cit10/1 publication-title: Adv. Mater. doi: 10.1002/adma.202008654 – volume: 6 start-page: e202200494 year: 2023 ident: D5SC05720E/cit34/1 publication-title: Batteries Supercaps doi: 10.1002/batt.202200494 – volume: 5 start-page: 1401155 year: 2015 ident: D5SC05720E/cit137/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401155 – volume: 27 start-page: 226 year: 2020 ident: D5SC05720E/cit85/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.02.002 – start-page: 2501496 year: 2025 ident: D5SC05720E/cit114/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202501496 – volume: 32 start-page: 2207579 year: 2022 ident: D5SC05720E/cit71/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207579 – volume: 8 start-page: 2102809 year: 2021 ident: D5SC05720E/cit50/1 publication-title: Adv. Sci. doi: 10.1002/advs.202102809 – volume: 18 start-page: 34858 year: 2024 ident: D5SC05720E/cit112/1 publication-title: ACS Nano doi: 10.1021/acsnano.4c12536 – volume: 25 start-page: 8704 year: 2025 ident: D5SC05720E/cit81/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5c01516 – volume: 34 start-page: 2202256 year: 2022 ident: D5SC05720E/cit104/1 publication-title: Adv. Mater. doi: 10.1002/adma.202202256 – volume: 13 start-page: 16958 year: 2025 ident: D5SC05720E/cit44/1 publication-title: J. Mater. Chem. A doi: 10.1039/D5TA01627D – volume: 9 start-page: 4082 year: 2018 ident: D5SC05720E/cit125/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06144-x – volume: 18 start-page: 79 year: 2024 ident: D5SC05720E/cit24/1 publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-024-2434-0 – volume: 14 start-page: 2303893 year: 2024 ident: D5SC05720E/cit55/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202303893 – volume: 14 start-page: 7849 year: 2023 ident: D5SC05720E/cit22/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43689-y – volume: 13 start-page: 3063 year: 2022 ident: D5SC05720E/cit26/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30766-x – volume: 1 start-page: 744 year: 2025 ident: D5SC05720E/cit93/1 publication-title: EES Batteries doi: 10.1039/D5EB00060B – volume: 8 start-page: 3421 year: 2020 ident: D5SC05720E/cit117/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11680J – volume: 61 start-page: e202114671 year: 2022 ident: D5SC05720E/cit69/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202114671 – volume: 715 start-page: 164414 year: 2026 ident: D5SC05720E/cit92/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2025.164414 – volume: 16 start-page: 2795 year: 2025 ident: D5SC05720E/cit130/1 publication-title: Nat. Commun. doi: 10.1038/s41467-025-58114-9 – volume: 8 start-page: 216 year: 2025 ident: D5SC05720E/cit49/1 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-025-01289-y – volume: 8 start-page: 45348 year: 2023 ident: D5SC05720E/cit64/1 publication-title: ACS Omega doi: 10.1021/acsomega.3c04166 – volume: 73 start-page: 103819 year: 2024 ident: D5SC05720E/cit87/1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2024.103819 – volume: 503 start-page: 144446 year: 2020 ident: D5SC05720E/cit43/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144446 – volume: 109 start-page: 129 year: 2025 ident: D5SC05720E/cit146/1 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2025.05.006 – volume: 35 start-page: 2212116 year: 2023 ident: D5SC05720E/cit8/1 publication-title: Adv. Mater. doi: 10.1002/adma.202212116 – volume: 34 start-page: 2315563 year: 2024 ident: D5SC05720E/cit17/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202315563 – volume: 36 start-page: 2309024 year: 2024 ident: D5SC05720E/cit53/1 publication-title: Adv. Mater. doi: 10.1002/adma.202309024 – volume: 146 start-page: 32124 year: 2024 ident: D5SC05720E/cit122/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.4c13400 – volume: 15 start-page: 1719 year: 2024 ident: D5SC05720E/cit25/1 publication-title: Nat. Commun. doi: 10.1038/s41467-024-46175-1 – volume: 145 start-page: 16449 year: 2023 ident: D5SC05720E/cit145/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c02786 – volume: 59 start-page: 9011 year: 2020 ident: D5SC05720E/cit68/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202003136 |
| SSID | ssj0000331527 |
| Score | 2.4657004 |
| SecondaryResourceType | review_article |
| Snippet | Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium–sulfur batteries, such as polysulfide shuttling and... Single-atom catalysts (SACs) present a compelling strategy to overcome the persistent challenges in lithium-sulfur batteries, such as polysulfide shuttling and... |
| SourceID | proquest pubmed crossref rsc |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 21677 |
| SubjectTerms | Adsorption Catalysis Coordination Functional integration Lithium Lithium sulfur batteries Modulation Polysulfides Single atom catalysts Sulfur |
| Title | Can single-atom precision rewire the electrochemical logic of Li–S chemistry? A comprehensive review of single-atom catalysts as agents of precise modulation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41210283 https://www.proquest.com/docview/3275453465 https://www.proquest.com/docview/3270466231 |
| Volume | 16 |
| WOSCitedRecordID | wos001608691900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAUL databaseName: Royal Society of Chemistry customDbUrl: eissn: 2041-6539 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331527 issn: 2041-6520 databaseCode: RRC dateStart: 20100101 isFulltext: true titleUrlDefault: https://pubs.rsc.org/ providerName: Royal Society of Chemistry |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTtwwFL2aokp0Q2kpJZSOXMHWIrETJ15VowDqAqEKWml2keOHilQyKBmQ2PUf-gH9t34J104yBSGkSlnZTpz4Ovcev84BOJBaciNk4LeraSqcpbLQjMbCCs1Ngm4zsOuf5mdnxXwuv07g4JkVfC4PTdZpBBUstt7R5sLrM5yfl6uJlJjzQZqVxWlCRcbikYb00d2PA88TNImxpR01P0JsOXn9f2-1CRsDdiSz3thvYGKbt7BejpJtW_CnVA3xg_-fluJg-opct4OEDmmtJyUmCPfIoHyjB6oAErwfWThyevn31-8LoscHfiYz4rect_ZHv82d9AddfNmHtYQpoLtu2RGFlz-r1fkifeWWXC3MoBH2Dr6fHH8rv9BBgYFqJtiSFrpgSrvaSI6RvGa1w2_OnaiVUtrmmJjyWhSG6VSgr6i1yZ0RLrGWK5FJw7dhrVk0dgdInlqJaB4RokYzKYRFzBU6YUJaGddOR7A_mqe67ok2qrBAzmV1lF2UobGPI9gbLVcNP1tXcZYjDuSpyCL4tMrGlvJrH6qxi5tQJk4FYr0kgve9xVfVpIFEreARbGMXWCX_M_Hucxkf4BXzesBJQpnYg7Vle2M_wkt9u7zs2im8yOfFNIzyp6HP3gNA1OZV |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+single-atom+precision+rewire+the+electrochemical+logic+of+Li%E2%80%93S+chemistry%3F+A+comprehensive+review+of+single-atom+catalysts+as+agents+of+precise+modulation&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Wang%2C+Yue&rft.au=Song%2C+Haobin&rft.au=Zhao%2C+Nan&rft.au=Cheng%2C+Xi&rft.date=2025-11-26&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=16&rft.issue=46&rft.spage=21677&rft.epage=2174&rft_id=info:doi/10.1039%2Fd5sc05720e&rft.externalDocID=d5sc05720e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |