Full Stability of Locally Optimal Solutions in Second-Order Cone Programs

The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to second-order cone programs (SOCPs) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 24; číslo 4; s. 1581 - 1613
Hlavní autoři: Mordukhovich, Boris S., Outrata, Jiří V., Sarabi, M. Ebrahim
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.01.2014
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to second-order cone programs (SOCPs) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-order sufficient conditions under the corresponding constraint qualifications. We also establish close relationships between full stability of local minimizers for SOCPs and strong regularity of the associated generalized equations at nondegenerate points. Our approach is mainly based on advanced tools of second-order variational analysis and generalized differentiation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/130928637