New derivative-free iterative family having optimal convergence order sixteen and its applications

PurposeThe purpose of the article is to construct a new class of higher-order iterative techniques for solving scalar nonlinear problems.Design/methodology/approachThe scheme is generalized by using the power-mean notion. By applying Neville's interpolating technique, the methods are formulated...

Full description

Saved in:
Bibliographic Details
Published in:Engineering computations Vol. 39; no. 3; pp. 965 - 992
Main Authors: Kaur, Manpreet, Kumar, Sanjeev, Kansal, Munish
Format: Journal Article
Language:English
Published: Bradford Emerald Publishing Limited 04.03.2022
Emerald Group Publishing Limited
Subjects:
ISSN:0264-4401, 1758-7077
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract PurposeThe purpose of the article is to construct a new class of higher-order iterative techniques for solving scalar nonlinear problems.Design/methodology/approachThe scheme is generalized by using the power-mean notion. By applying Neville's interpolating technique, the methods are formulated into the derivative-free approaches. Further, to enhance the computational efficiency, the developed iterative methods have been extended to the methods with memory, with the aid of the self-accelerating parameter.FindingsIt is found that the presented family is optimal in terms of Kung and Traub conjecture as it evaluates only five functions in each iteration and attains convergence order sixteen. The proposed family is examined on some practical problems by modeling into nonlinear equations, such as chemical equilibrium problems, beam positioning problems, eigenvalue problems and fractional conversion in a chemical reactor. The obtained results confirm that the developed scheme works more adequately as compared to the existing methods from the literature. Furthermore, the basins of attraction of the different methods have been included to check the convergence in the complex plane.Originality/valueThe presented experiments show that the developed schemes are of great benefit to implement on real-life problems.
AbstractList Purpose>The purpose of the article is to construct a new class of higher-order iterative techniques for solving scalar nonlinear problems.Design/methodology/approach>The scheme is generalized by using the power-mean notion. By applying Neville's interpolating technique, the methods are formulated into the derivative-free approaches. Further, to enhance the computational efficiency, the developed iterative methods have been extended to the methods with memory, with the aid of the self-accelerating parameter.Findings>It is found that the presented family is optimal in terms of Kung and Traub conjecture as it evaluates only five functions in each iteration and attains convergence order sixteen. The proposed family is examined on some practical problems by modeling into nonlinear equations, such as chemical equilibrium problems, beam positioning problems, eigenvalue problems and fractional conversion in a chemical reactor. The obtained results confirm that the developed scheme works more adequately as compared to the existing methods from the literature. Furthermore, the basins of attraction of the different methods have been included to check the convergence in the complex plane.Originality/value>The presented experiments show that the developed schemes are of great benefit to implement on real-life problems.
PurposeThe purpose of the article is to construct a new class of higher-order iterative techniques for solving scalar nonlinear problems.Design/methodology/approachThe scheme is generalized by using the power-mean notion. By applying Neville's interpolating technique, the methods are formulated into the derivative-free approaches. Further, to enhance the computational efficiency, the developed iterative methods have been extended to the methods with memory, with the aid of the self-accelerating parameter.FindingsIt is found that the presented family is optimal in terms of Kung and Traub conjecture as it evaluates only five functions in each iteration and attains convergence order sixteen. The proposed family is examined on some practical problems by modeling into nonlinear equations, such as chemical equilibrium problems, beam positioning problems, eigenvalue problems and fractional conversion in a chemical reactor. The obtained results confirm that the developed scheme works more adequately as compared to the existing methods from the literature. Furthermore, the basins of attraction of the different methods have been included to check the convergence in the complex plane.Originality/valueThe presented experiments show that the developed schemes are of great benefit to implement on real-life problems.
Author Kansal, Munish
Kumar, Sanjeev
Kaur, Manpreet
Author_xml – sequence: 1
  givenname: Manpreet
  surname: Kaur
  fullname: Kaur, Manpreet
  email: mkaur.math@gmail.com
– sequence: 2
  givenname: Sanjeev
  surname: Kumar
  fullname: Kumar, Sanjeev
  email: sanjeev.smca@thapar.edu
– sequence: 3
  givenname: Munish
  orcidid: 0000-0002-7502-6091
  surname: Kansal
  fullname: Kansal, Munish
  email: munish.kansal@thapar.edu
BookMark eNptkE1PwzAMhiM0JMbgzDUS52xO0jTtEVXjQ5rgAucobd3RqUtL0hX272kZFyROliU_r-3nksxc65CQGw5LziFZrTMGkgkQnAFX6ozMuVYJ06D1jMxBxBGLIuAX5DKEHQBoKWFO8mf8pCX6erB9PSCrPCKte_Q_La3svm6O9N0OtdvStuvrvW1o0boB_RZdgbT1I01D_dUjOmpdOdKB2q5r6mLMaF24IueVbQJe_9YFebtfv2aPbPPy8JTdbVghYtEzkaeVRZUUUqdWSJ2Mx5ZagFWplljlWqEFXnGocihLVClXFmSclCq2kRZaLsjtKbfz7ccBQ2927cG7caURsVQ8VRBNU6vTVOHbEDxWpvPjU_5oOJhJpFlnBqSZRJpJ5EgsTwTuRy1N-Q_wx7z8Bk-0dfI
Cites_doi 10.1016/j.amc.2011.07.076
10.3390/sym11060769
10.1016/S0377-0427(03)00420-5
10.5923/j.ajcam.20120203.08
10.1016/j.amc.2015.05.129
10.1007/s10957-013-0268-x
10.1016/j.amc.2007.01.062
10.1016/j.amc.2013.03.131
10.1016/j.cam.2011.01.003
10.1080/00207390902825336
10.1080/03461238.1933.10419209
10.1145/321850.321860
10.1016/j.amc.2012.04.017
10.1007/s10957-011-9929-9
10.1007/s00010-004-2733-y
10.1016/j.cam.2018.01.019
10.1007/BF01401018
10.1016/j.mcm.2009.02.004
10.3390/math8010108
10.1016/j.mcm.2012.01.012
10.1016/j.cam.2016.11.018
10.1137/0710072
10.1002/nme.1620230805
10.1016/j.cam.2018.02.011
10.3390/a14040101
10.1016/j.camwa.2011.04.006
10.3390/math7111052
10.1016/j.cam.2012.03.030
10.1137/100805340
ContentType Journal Article
Copyright Emerald Publishing Limited
Emerald Publishing Limited.
Copyright_xml – notice: Emerald Publishing Limited
– notice: Emerald Publishing Limited.
DBID AAYXX
CITATION
7SC
7TB
7WY
7WZ
7XB
8AO
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
F~G
GNUQQ
HCIFZ
JQ2
K6~
K7-
KR7
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1108/EC-03-2021-0155
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1758-7077
EndPage 992
ExternalDocumentID 10_1108_EC_03_2021_0155
10.1108/EC-03-2021-0155
GroupedDBID 02
0R
29G
4.4
5GY
5VS
70U
7WY
9E0
AADTA
AADXL
AAGBP
AAMCF
AATHL
AAUDR
ABFLS
ABIJV
ABKQV
ABPTK
ABSDC
ACGFS
ACGOD
ACIWK
ADOMW
AEBVX
AEBZA
AENEX
AEUCW
AFYHH
AFZLO
AJEBP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASMFL
AUCOK
AZQEC
BENPR
BPQFQ
CS3
DU5
EBS
ECCUG
FNNZZ
GEI
GEL
GQ.
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HZ
IPNFZ
J1Y
JI-
JL0
K6
K7-
KBGRL
M0C
M2P
O9-
P2P
RIG
RWL
TAE
TN5
U5U
UNMZH
V1G
0R~
8AO
8FE
8FG
8FW
8R4
8R5
AAYXX
ABJCF
ABJNI
ABYQI
ACBEA
ACZLT
ADFRT
AFFHD
AFKRA
AHMHQ
AODMV
BEZIV
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
H13
HZ~
IJT
K6V
K6~
L6V
M42
M7S
P62
PHGZM
PHGZT
PQBIZ
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
SBBZN
~02
7SC
7TB
7XB
8FD
FR3
JQ2
KR7
L.-
L.0
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c262t-2b9fae58c379a2378401d720a5973efb75ea01f10fb0dde5915a0368d56a47273
IEDL.DBID K7-
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000678081000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0264-4401
IngestDate Mon Nov 10 03:13:12 EST 2025
Sat Nov 29 07:42:53 EST 2025
Fri Mar 04 06:33:28 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Chemical equilibrium
With and without memory methods
65Y20
Iterative methods
Basins of attraction
65H05
Kung-Traub conjecture
Language English
License Licensed re-use rights only
https://www.emerald.com/insight/site-policies
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c262t-2b9fae58c379a2378401d720a5973efb75ea01f10fb0dde5915a0368d56a47273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7502-6091
PQID 2635195047
PQPubID 26043
PageCount 28
ParticipantIDs crossref_primary_10_1108_EC_03_2021_0155
proquest_journals_2635195047
emerald_primary_10_1108_EC-03-2021-0155
PublicationCentury 2000
PublicationDate 2022-03-04
PublicationDateYYYYMMDD 2022-03-04
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Engineering computations
PublicationYear 2022
Publisher Emerald Publishing Limited
Emerald Group Publishing Limited
Publisher_xml – name: Emerald Publishing Limited
– name: Emerald Group Publishing Limited
References (key2022030312121463700_ref031) 1986; 23
(key2022030312121463700_ref040) 2012
(key2022030312121463700_ref021) 2009; 50
(key2022030312121463700_ref028) 2011; 49
(key2022030312121463700_ref039) 2020; 8
(key2022030312121463700_ref020) 2009; 40
(key2022030312121463700_ref036) 2012; 2
(key2022030312121463700_ref001) 2020; 17
(key2022030312121463700_ref010) 2019; 354
(key2022030312121463700_ref030) 2011; 218
(key2022030312121463700_ref014) 2017; 2017
(key2022030312121463700_ref023) 1974; 21
(key2022030312121463700_ref003) 2005; 69
(key2022030312121463700_ref034) 1933; 1933
(key2022030312121463700_ref018) 2011; 61
(key2022030312121463700_ref011) 2007; 190
(key2022030312121463700_ref013) 2013; 252
(key2022030312121463700_ref017) 2011; 235
(key2022030312121463700_ref024) 2019; 7
(key2022030312121463700_ref032) 2015; 12
(key2022030312121463700_ref012) 2013; 57
(key2022030312121463700_ref005) 2019; 354
(key2022030312121463700_ref004) 2013; 219
(key2022030312121463700_ref002) 2003; 157
(key2022030312121463700_ref007) 2003
(key2022030312121463700_ref019) 2014; 160
(key2022030312121463700_ref015) 2019; 11
(key2022030312121463700_ref008) 2011
(key2022030312121463700_ref016) 2021; 14
(key2022030312121463700_ref027) 2015; 265
(key2022030312121463700_ref033) 2012; 153
(key2022030312121463700_ref035) 2001
(key2022030312121463700_ref025) 2017; 318
(key2022030312121463700_ref029) 2012
(key2022030312121463700_ref038) 1987; 52
(key2022030312121463700_ref006) 2006
(key2022030312121463700_ref022) 1973; 10
(key2022030312121463700_ref009) 2010
(key2022030312121463700_ref026) 2012; 218
(key2022030312121463700_ref037) 1964
References_xml – volume: 218
  start-page: 2584
  issue: 6
  year: 2011
  ident: key2022030312121463700_ref030
  article-title: Basin attractors for various methods
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2011.07.076
– volume: 11
  start-page: 769
  issue: 6
  year: 2019
  ident: key2022030312121463700_ref015
  article-title: Fixed point root-finding methods of fourth-order of convergence
  publication-title: Symmetry
  doi: 10.3390/sym11060769
– volume: 157
  start-page: 197
  issue: 1
  year: 2003
  ident: key2022030312121463700_ref002
  article-title: Geometric constructions of iterative functions to solve nonlinear equations
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/S0377-0427(03)00420-5
– volume: 2
  start-page: 112
  issue: 3
  year: 2012
  ident: key2022030312121463700_ref036
  article-title: New sixteenth-order derivative-free methods for solving nonlinear equations
  publication-title: The American Journal of Computational and Applied Mathematics
  doi: 10.5923/j.ajcam.20120203.08
– volume: 17
  issue: 7
  year: 2020
  ident: key2022030312121463700_ref001
  article-title: Some new iterative techniques for the problems involving nonlinear equations
  publication-title: International Journal of Computational Methods
– volume: 265
  start-page: 1115
  year: 2015
  ident: key2022030312121463700_ref027
  article-title: New iterative technique for solving nonlinear equations
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.05.129
– volume: 160
  start-page: 608
  issue: 2
  year: 2014
  ident: key2022030312121463700_ref019
  article-title: An optimal family of fast 16th-order derivative-free multipoint simple-root finders for nonlinear equations
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-013-0268-x
– volume: 190
  start-page: 686
  issue: 1
  year: 2007
  ident: key2022030312121463700_ref011
  article-title: Variants of Newton's method using fifth-order quadrature formulas
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2007.01.062
– volume-title: Multipoint Methods for Solving Nonlinear Equations
  year: 2012
  ident: key2022030312121463700_ref029
– volume-title: Introduction to Scientific Programming: Computational Problem Solving Using Maple and C
  year: 2012
  ident: key2022030312121463700_ref040
– volume: 219
  start-page: 9856
  issue: 18
  year: 2013
  ident: key2022030312121463700_ref004
  article-title: A new third-order Newton-type iterative method for solving nonlinear equations
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2013.03.131
– volume: 2017
  issue: 3204652
  year: 2017
  ident: key2022030312121463700_ref014
  article-title: Multistep high-order methods for nonlinear equations using Padé-like approximants
  publication-title: Discrete Dynamics in Nature and Society
– volume-title: Numerical Analysis
  year: 2011
  ident: key2022030312121463700_ref008
– volume: 235
  start-page: 3178
  issue: 10
  year: 2011
  ident: key2022030312121463700_ref017
  article-title: A biparametric family of optimally convergent sixteenth-order multipoint methods with their fourth-step weighting function as a sum of a rational and a generic two-variable function
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2011.01.003
– year: 1964
  ident: key2022030312121463700_ref037
  publication-title: Iterative Methods for the Solution of Equations
– volume: 40
  start-page: 571
  issue: 4
  year: 2009
  ident: key2022030312121463700_ref020
  article-title: A family of ellipse methods for solving non-linear equations
  publication-title: International Journal of Mathematical Education in Science and Technology
  doi: 10.1080/00207390902825336
– volume: 1933
  start-page: 64
  issue: 1
  year: 1933
  ident: key2022030312121463700_ref034
  article-title: Remarks on iteration
  publication-title: Scandinavian Actuarial Journal
  doi: 10.1080/03461238.1933.10419209
– volume: 21
  start-page: 643
  issue: 4
  year: 1974
  ident: key2022030312121463700_ref023
  article-title: Optimal order of one-point and multipoint iteration
  publication-title: Journal of the ACM
  doi: 10.1145/321850.321860
– volume: 218
  start-page: 10548
  issue: 21
  year: 2012
  ident: key2022030312121463700_ref026
  article-title: Basins of attraction for several methods to find simple roots of nonlinear equations
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2012.04.017
– volume: 153
  start-page: 225
  issue: 1
  year: 2012
  ident: key2022030312121463700_ref033
  article-title: An improvement of Ostrowski's and King's techniques with optimal convergence order eight
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-011-9929-9
– volume: 12
  issue: 1
  year: 2015
  ident: key2022030312121463700_ref032
  article-title: On some highly efficient derivative free methods with and without memory for solving nonlinear equations
  publication-title: International Journal of Computational Methods
– volume: 69
  start-page: 212
  issue: 3
  year: 2005
  ident: key2022030312121463700_ref003
  article-title: Dynamics of the King and Jarratt iterations
  publication-title: Aequationes Mathematicae
  doi: 10.1007/s00010-004-2733-y
– volume: 354
  start-page: 286
  year: 2019
  ident: key2022030312121463700_ref010
  article-title: Dynamics of iterative families with memory based on weight functions procedure
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2018.01.019
– volume-title: Attractor Basins of Various Root-Finding Methods
  year: 2001
  ident: key2022030312121463700_ref035
– volume: 52
  start-page: 1
  issue: 1
  year: 1987
  ident: key2022030312121463700_ref038
  article-title: Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and König rational iteration functions
  publication-title: Numerische Mathematik
  doi: 10.1007/BF01401018
– volume: 50
  start-page: 66
  issue: 1-2
  year: 2009
  ident: key2022030312121463700_ref021
  article-title: Fourth-order and fifth-order iterative methods for nonlinear algebraic equations
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2009.02.004
– volume: 8
  start-page: 108
  issue: 1
  year: 2020
  ident: key2022030312121463700_ref039
  article-title: A new Newton method with memory for solving nonlinear equations
  publication-title: Mathematics
  doi: 10.3390/math8010108
– volume: 57
  start-page: 1950
  issue: 7-8
  year: 2013
  ident: key2022030312121463700_ref012
  article-title: Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2012.01.012
– volume: 318
  start-page: 136
  year: 2017
  ident: key2022030312121463700_ref025
  article-title: Some novel and optimal families of King's method with eighth and sixteenth-order of convergence
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2016.11.018
– volume: 10
  start-page: 876
  issue: 5
  year: 1973
  ident: key2022030312121463700_ref022
  article-title: A family of fourth order methods for nonlinear equations
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0710072
– volume: 23
  start-page: 1455
  issue: 8
  year: 1986
  ident: key2022030312121463700_ref031
  article-title: Numerical solution of constrained non-linear algebraic equations
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.1620230805
– volume: 354
  start-page: 271
  year: 2019
  ident: key2022030312121463700_ref005
  article-title: An efficient optimal family of sixteenth order methods for nonlinear models
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2018.02.011
– volume: 14
  start-page: 101
  issue: 4
  year: 2021
  ident: key2022030312121463700_ref016
  article-title: Chaos and stability in a new iterative family for solving nonlinear equations
  publication-title: Algorithms
  doi: 10.3390/a14040101
– volume: 61
  start-page: 3278
  issue: 11
  year: 2011
  ident: key2022030312121463700_ref018
  article-title: A family of optimal sixteenth-order multipoint methods with a linear fraction plus a trivariate polynomial as the fourth-step weighting function
  publication-title: Computers and Mathematics with Applications
  doi: 10.1016/j.camwa.2011.04.006
– volume-title: A Friendly Introduction to Numerical Analysis
  year: 2006
  ident: key2022030312121463700_ref006
– volume: 7
  start-page: 1052
  issue: 11
  year: 2019
  ident: key2022030312121463700_ref024
  article-title: Higher-order derivative-free iterative methods for solving nonlinear equations and their basins of attraction
  publication-title: Mathematics
  doi: 10.3390/math7111052
– volume-title: Numerical Methods for Engineers
  year: 2010
  ident: key2022030312121463700_ref009
– volume-title: Handbook of Means and Their Inequalities
  year: 2003
  ident: key2022030312121463700_ref007
– volume: 252
  start-page: 95
  year: 2013
  ident: key2022030312121463700_ref013
  article-title: A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations
  publication-title: Journal of Computational and Applied Mathematics
  doi: 10.1016/j.cam.2012.03.030
– volume: 49
  start-page: 1317
  issue: 3
  year: 2011
  ident: key2022030312121463700_ref028
  article-title: Remarks on ‘On a general class of multipoint root-finding methods of high computational efficiency’
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/100805340
SSID ssj0007330
Score 2.2807004
Snippet PurposeThe purpose of the article is to construct a new class of higher-order iterative techniques for solving scalar nonlinear...
Purpose>The purpose of the article is to construct a new class of higher-order iterative techniques for solving scalar nonlinear...
SourceID proquest
crossref
emerald
SourceType Aggregation Database
Index Database
Publisher
StartPage 965
SubjectTerms Approximation
Chemical reactors
Convergence
Efficiency
Eigenvalues
Iterative methods
Methods
Nonlinear equations
Power
Workloads
Title New derivative-free iterative family having optimal convergence order sixteen and its applications
URI https://www.emerald.com/insight/content/doi/10.1108/EC-03-2021-0155/full/html
https://www.proquest.com/docview/2635195047
Volume 39
WOSCitedRecordID wos000678081000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: 7WY
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M0C
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: P5Z
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: K7-
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M7S
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: BENPR
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1758-7077
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0007330
  issn: 0264-4401
  databaseCode: M2P
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTgLo7LkIOgl2CSLmlPosOIIA6DCy6X0iWROdjR6ejv970244Z48fKgtKWFL_nekrcA7AW5LbzICh6HCh2ULJU8tsbwKAutDgxptWbYhO71oru7uO8CbpVLq5xwYk3UxTCnGPkhNU2hkaW-Pnp-4TQ1ik5X3QiNaZiVSkla5-eafzCx9jwXY_G5j46Ea-1Dk2-6HUokUpSgQFbDN630ozT3k55rnXO69N-_XYZFZ22y42Z5rMCUKVdhyVmezO3rahUWvrQlXIMMmY8VePFWdwXndmQMa9ov4yVrYiKMyvvLRzZEznnCb9Tp63Ulp2F1P09WDZD3TcnSssC3K_b1rHwdbk67150z7mYx8FyFasxVFtvUBFHu6ThVnka_UBZaiRQdEs_YDHFNhbRS2EwgYwaxDFJUjlERhKlPNtIGzJTD0mwCk5H2itCXVqP5JmKbFcI3ubYGTUNyd1pwMMEieW5abiS1qyKipNtJhJcQbAnB1oJ9h9UvT34DuAU7E6ASt0ur5BOlrb9vb8O8orIHyj3zd2BmPHo1uzCXv40H1agN0_r2vg2zJ91e_7JdL0GUF6JDUvVJ6iuU_eDhHaMP4oE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB5RilQ4kBaKCKStD63KxarX-_DuASGUJgqCRhyoxM3dh404sAnZEMSf4jcysw8IqOKWA0fL-_bnb2a8428AvvupzdzQCh4FEgOUJHZ4ZI3hYRJY5RuyalWxCTUchufn0ekS3Dd7YSitsuHEkqizUUpr5L9INIVKlnrqYHzNqWoU_V1tSmhUsDg2d7cYshX7R79xfH9I2e-ddQe8rirAUxnIKZdJZGPjh6mroli6CiMcJ1NSxOhau8Ym-ISxcKwjbCJw7vuR48dI82HmB7FH1h6v-w7eex5OB0oVFN1H5leuW6_peBz7nVpKiCrt9LqUuCQpIYK8lGdW8MVW4CdzUNq4fuutfZ2PsF570-ywgv8nWDL5BrRqz5rVvFVswNqc7OImJMjsLMPGrFQ953ZiDKvkpbHJqjUfRvIF-QUbIade4T3K9Pxyp6phpV4pKy7RrpmcxXmGZxdsPhfgM_xdyHtvwXI-ys02MCdUbhZ4jlXonorIJpnwTKqsQdeXwrk27DVjr8eVpIguQzER6l5XC1cTTDTBpA0_a2z858hngGpDpwGGrlmo0E-o2Hm9-xt8GJz9OdEnR8PjXViVtMWD8uy8DixPJzfmC6yks-llMflaAp7Bv0Vj6AG1zje0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+derivative-free+iterative+family+having+optimal+convergence+order+sixteen+and+its+applications&rft.jtitle=Engineering+computations&rft.au=Kaur%2C+Manpreet&rft.au=Kumar%2C+Sanjeev&rft.au=Kansal%2C+Munish&rft.date=2022-03-04&rft.issn=0264-4401&rft.volume=39&rft.issue=3&rft.spage=965&rft.epage=992&rft_id=info:doi/10.1108%2FEC-03-2021-0155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1108_EC_03_2021_0155
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-4401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-4401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-4401&client=summon