T‐VAE: Transformer‐Based Variational AutoEncoder for Perceiving Anomalies in Multivariate Time Series Data

ABSTRACT Anomaly perception in multivariate time series data has crucial applications in various domains such as industrial control and intrusion detection. In real‐world scenarios, the sequence information in multivariate time series data, which encompasses the temporal order and dependencies among...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems Vol. 42; no. 7
Main Authors: Li, Chang, Kiat, Yeo Chai, Jing, Jiwu, Long, Chun
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.07.2025
Subjects:
ISSN:0266-4720, 1468-0394
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Anomaly perception in multivariate time series data has crucial applications in various domains such as industrial control and intrusion detection. In real‐world scenarios, the sequence information in multivariate time series data, which encompasses the temporal order and dependencies among high‐dimensional samples and features, can be complex and nonlinear. Additionally, the time series data often exhibit high volatility and are interspersed with noise data. These factors make anomaly perception in multivariate time series challenging. Despite the recent development of deep learning methods, only a few are able to address all of these challenges. In this paper, we propose a Transformer‐based Variational AutoEncoder (T‐VAE) for anomaly perception in multivariate time series data. The T‐VAE consists of two sub‐networks, the Representation Network and the Memory Network, and achieves end‐to‐end jointly optimisation. The Representation Network leverages self‐attention mechanisms and residual network structures to capture sequence information and metaphorical patterns from multivariate time series data. The Memory Network employs a Variational AutoEncoder to learn the distribution of normal data. It employs Maximum Mean Discrepancy to approximate the distribution of high‐volatility and noisy data to the distribution of the normal data. We evaluate T‐VAE on five datasets, showing superior performance and validating its effectiveness and robustness through comprehensive ablation studies and sensitivity analyses.
AbstractList Anomaly perception in multivariate time series data has crucial applications in various domains such as industrial control and intrusion detection. In real‐world scenarios, the sequence information in multivariate time series data, which encompasses the temporal order and dependencies among high‐dimensional samples and features, can be complex and nonlinear. Additionally, the time series data often exhibit high volatility and are interspersed with noise data. These factors make anomaly perception in multivariate time series challenging. Despite the recent development of deep learning methods, only a few are able to address all of these challenges. In this paper, we propose a Transformer‐based Variational AutoEncoder (T‐VAE) for anomaly perception in multivariate time series data. The T‐VAE consists of two sub‐networks, the Representation Network and the Memory Network, and achieves end‐to‐end jointly optimisation. The Representation Network leverages self‐attention mechanisms and residual network structures to capture sequence information and metaphorical patterns from multivariate time series data. The Memory Network employs a Variational AutoEncoder to learn the distribution of normal data. It employs Maximum Mean Discrepancy to approximate the distribution of high‐volatility and noisy data to the distribution of the normal data. We evaluate T‐VAE on five datasets, showing superior performance and validating its effectiveness and robustness through comprehensive ablation studies and sensitivity analyses.
ABSTRACT Anomaly perception in multivariate time series data has crucial applications in various domains such as industrial control and intrusion detection. In real‐world scenarios, the sequence information in multivariate time series data, which encompasses the temporal order and dependencies among high‐dimensional samples and features, can be complex and nonlinear. Additionally, the time series data often exhibit high volatility and are interspersed with noise data. These factors make anomaly perception in multivariate time series challenging. Despite the recent development of deep learning methods, only a few are able to address all of these challenges. In this paper, we propose a Transformer‐based Variational AutoEncoder (T‐VAE) for anomaly perception in multivariate time series data. The T‐VAE consists of two sub‐networks, the Representation Network and the Memory Network, and achieves end‐to‐end jointly optimisation. The Representation Network leverages self‐attention mechanisms and residual network structures to capture sequence information and metaphorical patterns from multivariate time series data. The Memory Network employs a Variational AutoEncoder to learn the distribution of normal data. It employs Maximum Mean Discrepancy to approximate the distribution of high‐volatility and noisy data to the distribution of the normal data. We evaluate T‐VAE on five datasets, showing superior performance and validating its effectiveness and robustness through comprehensive ablation studies and sensitivity analyses.
Author Jing, Jiwu
Long, Chun
Li, Chang
Kiat, Yeo Chai
Author_xml – sequence: 1
  givenname: Chang
  orcidid: 0009-0009-7695-7814
  surname: Li
  fullname: Li, Chang
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Yeo Chai
  surname: Kiat
  fullname: Kiat, Yeo Chai
  organization: Nanyang Technological University
– sequence: 3
  givenname: Jiwu
  surname: Jing
  fullname: Jing, Jiwu
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Chun
  surname: Long
  fullname: Long, Chun
  email: anquanip@cnic.cn
  organization: Chinese Academy of Sciences
BookMark eNp9kE1OwzAQRi1UJNrChhNYYoeUYjup7bALJfxIRSC1VLCK3GSKXCV2sZNCdxyBM3IS0pY1sxlp5n0jzeuhjrEGEDqlZEDbuoBPvxkIQoQ8QF0acRmQMI46qEsY50EkGDlCPe-XhBAqBO8iM_35-p4l6SWeOmX8wroKXDu6Uh4KPFNOq1pbo0qcNLVNTW4LcLjF8BO4HPRamzecGFupUoPH2uCHpqz1ehcEPNUV4Am47e5a1eoYHS5U6eHkr_fR8006Hd0F48fb-1EyDnLGmQwiWrAhGyo653NCOAcgOZMyYkIuinkUg1CQw1CGICOpaEzjQhSUMxUKKuMiCvvobH935ex7A77OlrZx7Rs-CxmTsQhjNmyp8z2VO-u9g0W2crpSbpNRkm19Zluf2c5nC9M9_KFL2PxDZunL5HWf-QVqP3vw
Cites_doi 10.14778/3425879.3425885
10.14778/3467861.3467863
10.1016/j.knosys.2020.106622
10.3390/app11073194
10.14778/3514061.3514067
10.1016/j.cose.2023.103094
10.1109/ICDE60146.2024.00050
10.1016/j.ijforecast.2019.07.001
10.14778/3430915.3430918
10.1109/TC.2023.3257518
10.1109/TKDE.2023.3270293
10.5220/0006639801080116
10.1111/iere.12494
10.1145/3292500.3330680
10.18653/v1/2024.findings-acl.590
10.1016/j.ins.2023.119400
10.1016/j.compchemeng.2023.108560
10.3390/jcp2040039
10.1109/ICDM58522.2023.00150
10.14778/3415478.3415514
10.24963/ijcai.2024/818
10.1109/CySWater.2016.7469060
10.1145/3580305.3599295
10.1016/j.cie.2020.106435
10.1609/aaai.v35i5.16523
10.1016/j.inffus.2023.102165
10.1016/j.knosys.2020.105659
10.1016/j.cose.2021.102554
10.1016/j.inffus.2023.101921
10.1007/s00521-024-09962-x
10.1145/3292500.3330672
10.1145/3055366.3055375
10.3390/app13053183
10.18653/v1/P19-1378
10.1145/3219819.3219845
10.1109/JSTSP.2012.2237381
10.1109/ACCESS.2023.3349132
10.1109/JIOT.2019.2958185
10.1609/aaai.v33i01.33011409
10.1109/ICDM50108.2020.00093
10.1109/CCST.2019.8888419
10.1007/s10664-024-10533-w
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.70078
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_70078
EXSY70078
Genre researchArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2023YFC3304704
– fundername: Youth Innovation Promotion Association of the Chinese Academy of Sciences
  funderid: 2023181
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2628-41d2525a1b6b0066ee0c2884278fdb49e7aece583e848a1919d7d162a37189d43
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001509983800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Sun Nov 09 07:34:05 EST 2025
Sat Nov 29 07:41:52 EST 2025
Tue Jun 17 09:32:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2628-41d2525a1b6b0066ee0c2884278fdb49e7aece583e848a1919d7d162a37189d43
Notes Funding
This work is supported by the National Key Research and Development Program of China (Grant No: 2023YFC3304704), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No: 2023181).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-7695-7814
PQID 3228973925
PQPubID 32130
PageCount 12
ParticipantIDs proquest_journals_3228973925
crossref_primary_10_1111_exsy_70078
wiley_primary_10_1111_exsy_70078_EXSY70078
PublicationCentury 2000
PublicationDate July 2025
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 7
2023; 13
2023; 35
2019; 3
2023; 36
2024; 104
2019; 33
2020; 143
2023; 100
2023; 127
2020; 36
2020; 14
2020; 13
2011; 12
2024; 12
2024
2023; 646
2024; 36
2013; 7
2024; 182
2022; 113
2021; 14
2021; 35
2021; 11
2021; 212
2020; 195
2023
2022
2018; 1
2021
2020
2022; 35
2019
2018
2017
2016
2014
2022; 2
2021; 62
2023; 72
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Zong B. (e_1_2_8_54_1) 2018
Pedregosa F. (e_1_2_8_33_1) 2011
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Mao R. (e_1_2_8_29_1) 2024
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Li S. (e_1_2_8_22_1) 2019; 3
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Li L. (e_1_2_8_21_1) 2022; 35
Song J. (e_1_2_8_39_1) 2023; 36
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 143
  year: 2020
  article-title: An Optimized Model Using LSTM Network for Demand Forecasting
  publication-title: Computers & Industrial Engineering
– start-page: 1
  year: 2019
  end-page: 8
– volume: 36
  start-page: 57947
  year: 2023
  end-page: 57963
  article-title: Memto: Memory‐Guided Transformer for Multivariate Time Series Anomaly Detection
  publication-title: In Advances in Neural Information Processing Systems
– volume: 35
  start-page: 6058
  issue: 6
  year: 2022
  end-page: 6072
  article-title: Learning Robust Deep State Space for Unsupervised Anomaly Detection in Contaminated Time‐Series
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– start-page: 31
  year: 2016
  end-page: 36
– volume: 11
  start-page: 3194
  issue: 7
  year: 2021
  article-title: Online Forecasting and Anomaly Detection Based on the Arima Model
  publication-title: Applied Sciences
– volume: 14
  start-page: 141
  issue: 2
  year: 2020
  end-page: 153
  article-title: Real‐Time Distance‐Based Outlier Detection in Data Streams
  publication-title: Proceedings of the VLDB Endowment
– volume: 13
  start-page: 2941
  issue: 12
  year: 2020
  end-page: 2944
  article-title: Graphan: Graph‐Based Subsequence Anomaly Detection
  publication-title: Proceedings of the VLDB Endowment
– volume: 127
  year: 2023
  article-title: Gru‐Based Interpretable Multivariate Time Series Anomaly Detection in Industrial Control System
  publication-title: Computers & Security
– volume: 12
  start-page: 3768
  year: 2024
  end-page: 3789
  article-title: A Comprehensive Survey of Deep Transfer Learning for Anomaly Detection in Industrial Time Series: Methods, Applications, and Directions
  publication-title: IEEE Access
– year: 2021
– year: 2024
– volume: 1
  start-page: 108
  year: 2018
  end-page: 116
– volume: 2
  start-page: 764
  issue: 4
  year: 2022
  end-page: 777
  article-title: Detection of SQL Injection Attack Using Machine Learning Techniques: A Systematic Literature Review
  publication-title: Journal of Cybersecurity and Privacy
– volume: 7
  start-page: 38
  issue: 1
  year: 2013
  end-page: 49
  article-title: Space‐Time Signal Processing for Distributed Pattern Detection in Sensor Networks
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 12
  year: 2011
– volume: 100
  year: 2023
  article-title: KnowleNet: Knowledge Fusion Network for Multimodal Sarcasm Detection
  publication-title: Information Fusion
– year: 2018
– year: 2014
– volume: 33
  start-page: 1409
  year: 2019
  end-page: 1416
– volume: 7
  start-page: 6481
  issue: 7
  year: 2019
  end-page: 6494
  article-title: Anomaly Detection for Iot Time‐Series Data: A Survey
  publication-title: IEEE Internet of Things Journal
– start-page: 3888
  year: 2019
  end-page: 3898
– start-page: 841
  year: 2020
  end-page: 850
– volume: 113
  year: 2022
  article-title: Black‐Box Adversarial Attacks on Xss Attack Detection Model
  publication-title: Computers & Security
– start-page: 387
  year: 2018
  end-page: 395
– volume: 104
  year: 2024
  article-title: Quantitative Stock Portfolio Optimization by Multi‐Task Learning Risk and Return
  publication-title: Information Fusion
– volume: 35
  start-page: 12591
  issue: 12
  year: 2023
  end-page: 12604
  article-title: Deep Isolation Forest for Anomaly Detection
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 13
  start-page: 3183
  issue: 5
  year: 2023
  article-title: Machine Learning Techniques to Detect a DDOS Attack in SDN: A Systematic Review
  publication-title: Applied Sciences
– volume: 35
  start-page: 4027
  year: 2021
  end-page: 4035
– volume: 195
  year: 2020
  article-title: K‐Means‐Based Isolation Forest
  publication-title: Knowledge‐Based Systems
– volume: 646
  year: 2023
  article-title: Fuzzy Granular Anomaly Detection Using Markov Random Walk
  publication-title: Information Sciences
– volume: 62
  start-page: 469
  issue: 2
  year: 2021
  end-page: 520
  article-title: Business Cycles, Trend Elimination, and the Hp Filter
  publication-title: International Economic Review
– start-page: 3009
  year: 2019
  end-page: 3017
– volume: 182
  year: 2024
  article-title: Time Series Forecasting and Anomaly Detection Using Deep Learning
  publication-title: Computers & Chemical Engineering
– start-page: 2828
  year: 2019
  end-page: 2837
– year: 2022
– year: 2020
– volume: 14
  start-page: 1717
  issue: 10
  year: 2021
  end-page: 1729
  article-title: Sand: Streaming Subsequence Anomaly Detection
  publication-title: Proceedings of the VLDB Endowment
– year: 2023
– volume: 72
  start-page: 2656
  issue: 9
  year: 2023
  end-page: 2667
  article-title: Improving Log‐Based Anomaly Detection by Pre‐Training Hierarchical Transformers
  publication-title: IEEE Transactions on Computers
– volume: 3
  start-page: 32
  year: 2019
  article-title: Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1211
  year: 2023
  end-page: 1216
– volume: 36
  start-page: 1181
  issue: 3
  year: 2020
  end-page: 1191
  article-title: Deepar: Probabilistic Forecasting With Autoregressive Recurrent Networks
  publication-title: International Journal of Forecasting
– start-page: 25
  year: 2017
  end-page: 28
– volume: 212
  year: 2021
  article-title: Automl: A Survey of the State‐of‐the‐Art
  publication-title: Knowledge‐Based Systems
– year: 2019
– volume: 36
  start-page: 16213
  issue: 26
  year: 2024
  end-page: 16231
  article-title: Corrector LSTM: Built‐In Training Data Correction for Improved Time‐Series Forecasting
  publication-title: Neural Computing and Applications
– ident: e_1_2_8_45_1
– ident: e_1_2_8_42_1
  doi: 10.14778/3425879.3425885
– ident: e_1_2_8_8_1
  doi: 10.14778/3467861.3467863
– ident: e_1_2_8_12_1
  doi: 10.1016/j.knosys.2020.106622
– ident: e_1_2_8_20_1
  doi: 10.3390/app11073194
– ident: e_1_2_8_43_1
  doi: 10.14778/3514061.3514067
– ident: e_1_2_8_41_1
  doi: 10.1016/j.cose.2023.103094
– volume: 36
  start-page: 57947
  year: 2023
  ident: e_1_2_8_39_1
  article-title: Memto: Memory‐Guided Transformer for Multivariate Time Series Anomaly Detection
  publication-title: In Advances in Neural Information Processing Systems
– ident: e_1_2_8_11_1
  doi: 10.1109/ICDE60146.2024.00050
– volume-title: Proceedings of the Annual Meeting of the Cognitive Science Society (Cogsci)
  year: 2024
  ident: e_1_2_8_29_1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ijforecast.2019.07.001
– ident: e_1_2_8_19_1
  doi: 10.14778/3430915.3430918
– ident: e_1_2_8_32_1
– ident: e_1_2_8_13_1
  doi: 10.1109/TC.2023.3257518
– ident: e_1_2_8_47_1
  doi: 10.1109/TKDE.2023.3270293
– ident: e_1_2_8_37_1
  doi: 10.5220/0006639801080116
– volume-title: Scikit‐Learn: Machine Learning in Python
  year: 2011
  ident: e_1_2_8_33_1
– ident: e_1_2_8_34_1
  doi: 10.1111/iere.12494
– ident: e_1_2_8_35_1
  doi: 10.1145/3292500.3330680
– ident: e_1_2_8_18_1
– ident: e_1_2_8_26_1
  doi: 10.18653/v1/2024.findings-acl.590
– ident: e_1_2_8_23_1
  doi: 10.1016/j.ins.2023.119400
– ident: e_1_2_8_15_1
  doi: 10.1016/j.compchemeng.2023.108560
– ident: e_1_2_8_4_1
  doi: 10.3390/jcp2040039
– ident: e_1_2_8_25_1
  doi: 10.1109/ICDM58522.2023.00150
– ident: e_1_2_8_7_1
  doi: 10.14778/3415478.3415514
– ident: e_1_2_8_28_1
  doi: 10.24963/ijcai.2024/818
– ident: e_1_2_8_30_1
  doi: 10.1109/CySWater.2016.7469060
– ident: e_1_2_8_50_1
  doi: 10.1145/3580305.3599295
– ident: e_1_2_8_2_1
  doi: 10.1016/j.cie.2020.106435
– ident: e_1_2_8_10_1
  doi: 10.1609/aaai.v35i5.16523
– volume: 3
  start-page: 32
  year: 2019
  ident: e_1_2_8_22_1
  article-title: Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting
  publication-title: Advances in Neural Information Processing Systems
– volume-title: International Conference on Learning Representations
  year: 2018
  ident: e_1_2_8_54_1
– ident: e_1_2_8_24_1
  doi: 10.1016/j.inffus.2023.102165
– ident: e_1_2_8_16_1
  doi: 10.1016/j.knosys.2020.105659
– ident: e_1_2_8_44_1
  doi: 10.1016/j.cose.2021.102554
– ident: e_1_2_8_51_1
  doi: 10.1016/j.inffus.2023.101921
– ident: e_1_2_8_6_1
  doi: 10.1007/s00521-024-09962-x
– ident: e_1_2_8_40_1
  doi: 10.1145/3292500.3330672
– ident: e_1_2_8_3_1
  doi: 10.1145/3055366.3055375
– ident: e_1_2_8_46_1
– ident: e_1_2_8_5_1
  doi: 10.3390/app13053183
– ident: e_1_2_8_27_1
  doi: 10.18653/v1/P19-1378
– ident: e_1_2_8_14_1
  doi: 10.1145/3219819.3219845
– ident: e_1_2_8_31_1
  doi: 10.1109/JSTSP.2012.2237381
– ident: e_1_2_8_48_1
  doi: 10.1109/ACCESS.2023.3349132
– ident: e_1_2_8_9_1
  doi: 10.1109/JIOT.2019.2958185
– ident: e_1_2_8_52_1
  doi: 10.1609/aaai.v33i01.33011409
– ident: e_1_2_8_49_1
– ident: e_1_2_8_53_1
  doi: 10.1109/ICDM50108.2020.00093
– ident: e_1_2_8_38_1
  doi: 10.1109/CCST.2019.8888419
– ident: e_1_2_8_17_1
  doi: 10.1007/s10664-024-10533-w
– volume: 35
  start-page: 6058
  issue: 6
  year: 2022
  ident: e_1_2_8_21_1
  article-title: Learning Robust Deep State Space for Unsupervised Anomaly Detection in Contaminated Time‐Series
  publication-title: IEEE Transactions on Knowledge and Data Engineering
SSID ssj0001776
Score 2.3588037
Snippet ABSTRACT Anomaly perception in multivariate time series data has crucial applications in various domains such as industrial control and intrusion detection. In...
Anomaly perception in multivariate time series data has crucial applications in various domains such as industrial control and intrusion detection. In...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Ablation
anomaly perception
Multivariate analysis
Perception
Representations
Sensitivity analysis
Time series
time series data
transformer
variational auto‐encoder
Volatility
Title T‐VAE: Transformer‐Based Variational AutoEncoder for Perceiving Anomalies in Multivariate Time Series Data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.70078
https://www.proquest.com/docview/3228973925
Volume 42
WOSCitedRecordID wos001509983800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5q9eDF-sRqlYCehJVu9pFEvFTb4kGKaCv1tKTJFHpwK90qevMn-Bv9JSbpbqsXQbwt2WRZMu9hZj6AYyXjgVF70na3B14Yo_SkROGpQPiIihsbxR3YBOt0eL8vbkpwXvTCzOZDzBNuVjKcvrYCLgfZNyHH1-ztlFkTtwTL1DBuWIbl5m27dz3XxD5z4HImzIi9kNF6Pp7UVvIsTv80SAsv87uv6oxNu_K_31yHtdzJJI0ZV2xACdNNqBQADiSX5y1Iu5_vH_eN1hnpFv4rTszShTFtmtybMDpPFZLG83TcSm3_-4SYbeTG1sOMbDKCNNLxo3HmMSOjlLh-3hd3EIltLyE2_WbeNeVUbkOv3epeXnk5AIOnaGyzbr6mEY2kP4itdMaIdUU5t-gcQz0IBTKJCiMeIA-5NJGf0Ez7MZWBsXhCh8EOlNNxirtAmIyGQX1IA6FVqFkoNVLK6NBEREKxgFbhqKBC8jSbs5EU8Ym9wsRdYRVqBYGSXNayxKgkLpjx86IqnDhS_PKFpNW_e3BPe3_ZvA-r1AL_ujrdGpSnk2c8gBX1Mh1lk8Oc774ALwfesQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyNBEC40CnpZ3xjXR4OehJFMz6O7vWXXBMUYRKPE09DprkAOTiSJ4t72J-xv9JdsV2fGx0UQb0NP9zB0vYuq-gAOjE57Tu1p6m6PgjhFHWiNKjCRChGNdDZKerAJ0W7LblddFrU51AsznQ_xmnAjyfD6mgScEtLvpByfx3-OBNm4WZiLHR8lFZg7uWretF5VcSg8upyLM9IgFrxWzCelUp630x8t0pub-d5Z9damufTN_1yGH4WbyepTvliBGcxXYamEcGCFRK9B3nn5---23jhmndKDxZFb-uWMm2W3LpAukoWs_jgZNnLqgB8xt41dUkXMgNIRrJ4P7507j2M2yJnv6H3yB5FRgwmjBJx7d6Ineh1umo3O79OggGAIDE8p7xZanvBEh72U5DNFrBkuJeFz9G0vVig0GkxkhDKW2sV-ygobplxHzuYpG0cbUMmHOW4CEzrpR7U-j5Q1sRWxtsi54H0XEykjIl6F_ZIM2cN00kZWRih0hZm_wipslxTKCmkbZ04pSSWcp5dU4dDT4pMvZI3u9Z1_2vrK5j1YOO1ctLLWWfv8JyxyggH2VbvbUJmMHnEH5s3TZDAe7RZM-B-Bm-Kh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60injxLVarBvQkrHSzjyTeqm1RlFK0Sj0taTILPbgtbRW9-RP8jf4Sk3TXx0UQb0s2WZZMvplvhpkMwKGScc-oPWmr2wMvjFF6UqLwVCB8RMWNjeKu2QRrtXi3K9p5bo6thZneD_EZcLPIcPraAhyHOv2Gcnwevxwza-NmYS6MRGxwOVe_bt5efapin7nucsbPiL2Q0Wp-P6lN5fla_dMifdHM72TVWZvm8j__cwWWcppJatNzsQozmK3BctHCgeSIXoes8_76dldrnJBOwWBxZIZOjXHT5M440nmwkNQeJ4NGZivgR8RMI22bEdO34QhSywYPhs7jmPQz4ip6n9xCJLbAhNgAnHlXlxO5AbfNRufs3MtbMHiKxjbu5msa0Uj6vdjiM0asKsq57c-R6l4okElUGPEAecil8f2EZtqPqQyMzRM6DDahlA0y3ALCZJQG1ZQGQqtQs1BqpJTR1PhEQrGAluGgEEMynN60kRQeit3CxG1hGSqFhJIcbePEKCUumGF6URmOnCx--ULS6N7cu6ftv0zeh4V2vZlcXbQud2CR2i7ALmm3AqXJ6BF3YV49Tfrj0V5-Bj8AOXviHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T%E2%80%90+VAE+%3A+Transformer%E2%80%90Based+Variational+AutoEncoder+for+Perceiving+Anomalies+in+Multivariate+Time+Series+Data&rft.jtitle=Expert+systems&rft.au=Li%2C+Chang&rft.au=Kiat%2C+Yeo+Chai&rft.au=Jing%2C+Jiwu&rft.au=Long%2C+Chun&rft.date=2025-07-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=42&rft.issue=7&rft_id=info:doi/10.1111%2Fexsy.70078&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_exsy_70078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon