Large‐Scale Multi‐Objective Optimization Algorithms: A Decade Survey

ABSTRACT Large‐scale multi‐objective optimization problems (LSMOPs) are characterised by concurrent optimization of multiple conflicting objectives and no fewer than 100 decision variables. They widely exist in the fields of practical engineering and scientific research. Over the past decade, many l...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems Vol. 42; no. 12
Main Authors: Wang, Pengtao, Wu, Xiangjuan, Deng, Hanqing
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.12.2025
Subjects:
ISSN:0266-4720, 1468-0394
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Large‐scale multi‐objective optimization problems (LSMOPs) are characterised by concurrent optimization of multiple conflicting objectives and no fewer than 100 decision variables. They widely exist in the fields of practical engineering and scientific research. Over the past decade, many large‐scale multi‐objective evolutionary algorithms (LSMOEAs) have emerged to address LSMOPs. This paper systematically reviews and comprehensively analyzes the ideas, advantages, disadvantages, and latest developments of these LSMOEAs. Firstly, it introduces the relevant concepts of LSMOEAs. Then classify them into four categories: decision variable grouping‐based LSMOEAs, non‐grouping dimensionality reduction‐based LSMOEAs, effective offspring generation‐based LSMOEAs, and learning models‐based LSMOEAs. It analyzes representative algorithms in each category, elaborating on their core strategies, advantages, and disadvantages. Finally, it explores the applications of LSMOEAs in computer vision, like tackling pixel‐level correlation, high‐resolution feature redundancy, dynamic target tracking, and complex visual modelling. This paper provides readers with a comprehensive and systematic overview of LSMOEAs, serving as a valuable reference for both researchers entering this field and practitioners seeking to select appropriate algorithms for practical problems.
AbstractList ABSTRACT Large‐scale multi‐objective optimization problems (LSMOPs) are characterised by concurrent optimization of multiple conflicting objectives and no fewer than 100 decision variables. They widely exist in the fields of practical engineering and scientific research. Over the past decade, many large‐scale multi‐objective evolutionary algorithms (LSMOEAs) have emerged to address LSMOPs. This paper systematically reviews and comprehensively analyzes the ideas, advantages, disadvantages, and latest developments of these LSMOEAs. Firstly, it introduces the relevant concepts of LSMOEAs. Then classify them into four categories: decision variable grouping‐based LSMOEAs, non‐grouping dimensionality reduction‐based LSMOEAs, effective offspring generation‐based LSMOEAs, and learning models‐based LSMOEAs. It analyzes representative algorithms in each category, elaborating on their core strategies, advantages, and disadvantages. Finally, it explores the applications of LSMOEAs in computer vision, like tackling pixel‐level correlation, high‐resolution feature redundancy, dynamic target tracking, and complex visual modelling. This paper provides readers with a comprehensive and systematic overview of LSMOEAs, serving as a valuable reference for both researchers entering this field and practitioners seeking to select appropriate algorithms for practical problems.
Large‐scale multi‐objective optimization problems (LSMOPs) are characterised by concurrent optimization of multiple conflicting objectives and no fewer than 100 decision variables. They widely exist in the fields of practical engineering and scientific research. Over the past decade, many large‐scale multi‐objective evolutionary algorithms (LSMOEAs) have emerged to address LSMOPs. This paper systematically reviews and comprehensively analyzes the ideas, advantages, disadvantages, and latest developments of these LSMOEAs. Firstly, it introduces the relevant concepts of LSMOEAs. Then classify them into four categories: decision variable grouping‐based LSMOEAs, non‐grouping dimensionality reduction‐based LSMOEAs, effective offspring generation‐based LSMOEAs, and learning models‐based LSMOEAs. It analyzes representative algorithms in each category, elaborating on their core strategies, advantages, and disadvantages. Finally, it explores the applications of LSMOEAs in computer vision, like tackling pixel‐level correlation, high‐resolution feature redundancy, dynamic target tracking, and complex visual modelling. This paper provides readers with a comprehensive and systematic overview of LSMOEAs, serving as a valuable reference for both researchers entering this field and practitioners seeking to select appropriate algorithms for practical problems.
Author Wang, Pengtao
Wu, Xiangjuan
Deng, Hanqing
Author_xml – sequence: 1
  givenname: Pengtao
  surname: Wang
  fullname: Wang, Pengtao
  organization: Ningxia University
– sequence: 2
  givenname: Xiangjuan
  orcidid: 0000-0001-8723-5299
  surname: Wu
  fullname: Wu, Xiangjuan
  email: xjwu@nxu.edu.cn
  organization: Ningxia University
– sequence: 3
  givenname: Hanqing
  surname: Deng
  fullname: Deng, Hanqing
  organization: Ningxia University
BookMark eNp9kEFOwzAQRS0EEm1hwwkisUNKsR0nTthVpVCkoi4KEqysqTsprtKk2EkhrDgCZ-QkuJQ1s5jRSG_mf_0uOSyrEgk5Y7TPfF3iu2v7krJYHpAOE0ka0igTh6RDeZKEQnJ6TLrOrSilTMqkQ8YTsEv8_vyaaSgwuG-K2vhtOl-hrs0Wg-mmNmvzAbWpymBQLCtr6pe1uwoGwTVqWGAwa-wW2xNylEPh8PRv9sjjzehhOA4n09u74WASap5wGTKMQHhLDGSsgSa-pTmDKJtDoheRAB1nSKl3yjNAvYCU5xixWNAUUinmUY-c7_9ubPXaoKvVqmps6SVVxCUXMYtj4amLPaVt5ZzFXG2sWYNtFaNql5TaJaV-k_Iw28NvpsD2H1KNnmbP-5sfwGdurw
Cites_doi 10.1016/J.INS.2023.119253
10.1016/J.ASOC.2024.111341
10.1109/TEVC.2021.3118593
10.1109/TEVC.2008.925798
10.1016/J.INS.2020.02.066
10.1109/ICPR.2016.7900296
10.1109/TCYB.2020.2985081
10.1016/J.INS.2025.122116
10.1109/TEVC.2003.810758
10.1007/978-3-642-33275-3_2
10.1109/TEVC.2013.2281543
10.1109/TII.2017.2676000
10.1109/JAS.2024.124341
10.1016/J.ESWA.2023.121563
10.1016/J.SWEVO.2023.101262
10.1109/TEVC.2019.2896002
10.1145/1390156.1390294
10.1016/J.ASOC.2023.111081
10.1023/A:1008202821328
10.1016/J.SWEVO.2024.101622
10.1016/J.ASOC.2023.110925
10.1109/SSCI.2017.8280974
10.1109/TSMC.2020.3003926
10.1109/TEVC.2019.2918140
10.1109/CoDIT58514.2023.10284137
10.1109/TEVC.2015.2455812
10.1109/TEVC.2005.860762
10.1109/JAS.2022.105425
10.1109/CEC.2016.7743831
10.1016/J.ASOC.2015.04.061
10.1007/S12293‐022‐00385‐6
10.1016/J.INS.2022.07.110
10.1109/TEVC.2016.2600642
10.1109/TEVC.2024.3437762
10.1109/TEVC.2018.2881153
10.1016/J.INS.2024.120719
10.1109/TEVC.2021.3063606
10.1109/TEVC.2007.892759
10.1109/TCYB.2020.2979930
10.1016/J.SWEVO.2022.101045
10.1016/J.INS.2024.121347
10.1109/TEVC.2022.3213006
10.1109/TSMC.2018.2861879
10.1016/J.SWEVO.2020.100792
10.1016/J.INS.2023.119221
10.1007/s40747-022-00714-9
10.1109/ICPICS47731.2019.8942442
10.1016/J.SWEVO.2023.101393
10.1109/CEC48606.2020.9185553
10.1109/TEVC.2017.2704782
10.1016/J.INS.2018.10.007
10.1016/J.ASOC.2020.106947
10.1007/S12065‐019‐00250‐5
10.1016/J.INS.2025.121973
10.1109/TEVC.2021.3119933
10.1109/CEC48606.2020.9185846
10.1016/J.INS.2014.03.128
10.1109/TEVC.2013.2262178
10.1109/TEVC.2013.2281535
10.1016/J.SWEVO.2022.101152
10.1145/298151.298382
10.1109/TCYB.2020.3041325
10.1016/J.SWEVO.2024.101763
10.1109/TCYB.2023.3287596
10.1038/s41598-024-64570-y
10.1007/978-3-540-31880-4_20
10.48550/ARXIV.2411.13420
10.1109/TCYB.2016.2600577
10.1007/1-84628-137-7_6
10.1109/TEVC.2025.3529938
10.1016/J.ASOC.2020.106120
10.1109/TEVC.2017.2694221
10.1109/TNNLS.2021.3113158
10.1109/TCE.2024.3372691
10.1016/J.SWEVO.2024.101606
10.1109/CEC48606.2020.9185876
10.1109/TCYB.2019.2906383
10.1162/106365600568202
10.1109/CEC.2013.6557903
10.1016/J.ESWA.2023.122370
10.1080/01431161.2018.1463112
10.1109/ACCESS.2025.3541271
10.1016/J.INS.2021.11.031
10.1016/J.INS.2023.02.062
10.1016/J.SWEVO.2024.101499
10.1016/J.SWEVO.2023.101377
10.48550/ARXIV.2401.15931
10.1109/CoDIT58514.2023.10284401
10.1109/4235.797969
10.1109/TEVC.2022.3155593
10.1109/TEVC.2022.3230070
10.1109/TEVC.2024.3412049
10.1016/J.ASOC.2015.01.039
10.1016/J.INS.2023.02.055
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.70157
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_70157
EXSY70157
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 62362056
– fundername: Key R&D Program of Ningxia
  funderid: 2023BSB03016
– fundername: Natural Science Foundation of Ningxia Province
  funderid: 2023AAC05010
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77I
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2627-1e3a43941a75ca065ca8f1a39ba6cd34ac59e0047229aecda82fe315408a874b3
IEDL.DBID DRFUL
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001620772900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Sat Nov 29 14:32:21 EST 2025
Thu Nov 27 00:31:02 EST 2025
Tue Nov 18 09:10:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2627-1e3a43941a75ca065ca8f1a39ba6cd34ac59e0047229aecda82fe315408a874b3
Notes Funding
This work was supported by National Natural Science Foundation of China (No. 62362056), the Key R&D Program of Ningxia (No. 2023BSB03016), and the Natural Science Foundation of Ningxia Province (No. 2023AAC05010).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8723-5299
PQID 3272451554
PQPubID 32130
PageCount 18
ParticipantIDs proquest_journals_3272451554
crossref_primary_10_1111_exsy_70157
wiley_primary_10_1111_exsy_70157_EXSY70157
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
20251201
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 25
2015; 34
2023; 78
2023; 34
2022; 70
2017; 47
2024; 149
2015; 30
2000; 8
2020; 522
2022; 26
2020; 13
2024
2023; 83
2025; 712
2025; 686
2018; 39
2009; 13
1997; 11
2024; 237
2023; 27
2020; 50
2024; 239
2019; 23
2003; 7
2024; 70
2022; 609
2025; 29
2024; 154
2020; 89
2022; 75
2014; 18
2024; 674
2024; 28
2024; 29
2024; 150
2012
2023; 15
2006; 10
2017; 21
2023; 644
2008
2023; 643
2005
2024; 54
2024; 11
1999; 3
2025; 13
2020; 509
2024; 14
2018; 22
2007; 11
2021; 51
2014; 279
1999
2022; 583
2021; 99
2023
2021
2020
2022; 8
2024; 91
2017; 13
2022; 9
2019
2016; 20
2018
2024; 86
2017
2023; 631
2022; 52
2016
2020; 24
2024; 88
2014
2024; 89
2013
2021; 60
2025; 705
2023; 639
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_90_1
e_1_2_9_71_1
Kukkonen S. (e_1_2_9_40_1) 2005
e_1_2_9_103_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
Liu S. (e_1_2_9_53_1) 2019
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
Li Y. (e_1_2_9_48_1) 2021
e_1_2_9_23_1
e_1_2_9_80_1
e_1_2_9_5_1
Sander F. (e_1_2_9_67_1) 2018
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_81_1
e_1_2_9_4_1
Goodfellow I. J. (e_1_2_9_24_1) 2014
Yu W. (e_1_2_9_93_1) 2017
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_70_1
Kingma D. P. (e_1_2_9_39_1) 2014
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Qian H. (e_1_2_9_65_1) 2017
e_1_2_9_63_1
e_1_2_9_21_1
e_1_2_9_44_1
e_1_2_9_86_1
Chen H. (e_1_2_9_8_1) 2018
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
Ho J. (e_1_2_9_33_1) 2020
e_1_2_9_25_1
e_1_2_9_29_1
References_xml – volume: 83
  year: 2023
  article-title: Offspring Regeneration Driven by Finite Element Mapping for Large‐Scale Evolutionary Multiobjective Optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 24
  start-page: 380
  issue: 2
  year: 2020
  end-page: 393
  article-title: An Evolutionary Algorithm for Large‐Scale Sparse Multiobjective Optimization Problems
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 13
  start-page: 30976
  year: 2025
  end-page: 30992
  article-title: Learning‐Driven Algorithm With Dual Evolution Patterns for Solving Large‐Scale Multiobjective Optimization Problems
  publication-title: IEEE Access
– volume: 22
  start-page: 260
  issue: 2
  year: 2018
  end-page: 275
  article-title: A Framework for Large‐Scale Multiobjective Optimization Based on Problem Transformation
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 522
  start-page: 1
  year: 2020
  end-page: 16
  article-title: Enhancing MOEA/D With Information Feedback Models for Large‐Scale Many‐Objective Optimization
  publication-title: Information Sciences
– volume: 643
  year: 2023
  article-title: An Extended Fuzzy Decision Variables Framework for Solving Large‐Scale Multiobjective Optimization Problems
  publication-title: Information Sciences
– volume: 25
  start-page: 724
  issue: 4
  year: 2021
  end-page: 738
  article-title: Large‐Scale Evolutionary Multiobjective Optimization Assisted by Directed Sampling
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 4220
  year: 2016
  end-page: 4225
– volume: 70
  year: 2022
  article-title: Solve Large‐Scale Many‐Objective Optimization Problems Based on Dual Analysis of Objective Space and Decision Space
  publication-title: Swarm and Evolutionary Computation
– start-page: 468
  year: 2016
  end-page: 475
– volume: 27
  start-page: 67
  issue: 1
  year: 2023
  end-page: 81
  article-title: Learning to Accelerate Evolutionary Search for Large‐Scale Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 237
  year: 2024
  article-title: A Learning and Potential Area‐Mining Evolutionary Algorithm for Large‐Scale Multi‐Objective Optimization
  publication-title: Expert Systems With Applications
– start-page: 72
  year: 2021
  end-page: 85
– volume: 18
  start-page: 378
  issue: 3
  year: 2014
  end-page: 393
  article-title: Cooperative co‐Evolution With Differential Grouping for Large Scale Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 89
  year: 2024
  article-title: An Improved Problem Transformation Algorithm for Large‐Scale Multi‐Objective Optimization
  publication-title: Swarm Intelligence
– start-page: 1
  year: 2017
  end-page: 8
– volume: 705
  year: 2025
  article-title: Learning Improvement Representations to Accelerate Evolutionary Large‐Scale Multiobjective Optimization
  publication-title: Information Sciences
– start-page: 1096
  year: 2008
  end-page: 1103
– volume: 14
  issue: 1
  year: 2024
  article-title: A Multi ‐ Population Multi ‐ Stage Adaptive Weighted Large ‐ Scale Multi ‐ Objective Optimization Algorithm Framework
  publication-title: Scientific Reports
– volume: 279
  start-page: 396
  year: 2014
  end-page: 415
  article-title: Numerical Solution of Systems of Second‐Order Boundary Value Problems Using Continuous Genetic Algorithm
  publication-title: Information Sciences
– volume: 154
  year: 2024
  article-title: Clustering‐Based Genetic Offspring Generation for Solving Multi‐Objective Optimization Problems With Intricate Pareto Sets
  publication-title: Applied Soft Computing
– volume: 13
  start-page: 2030
  issue: 4
  year: 2017
  end-page: 2038
  article-title: A Distributed Parallel Cooperative Coevolutionary Multiobjective Evolutionary Algorithm for Large‐Scale Optimization
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  end-page: 601
  article-title: An Evolutionary Many‐Objective Optimization Algorithm Using Reference‐Point‐Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 712
  year: 2025
  article-title: Variational Graph Autoencoder‐Driven Balancing Strategy for Multimodal Multi‐Objective Optimization
  publication-title: Information Sciences
– volume: 29
  start-page: 1834
  year: 2024
  end-page: 1848
  article-title: Learning to Evolve With Guiding Solutions Generated by Generative Adversarial Network
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 9
  start-page: 1952
  issue: 11
  year: 2022
  end-page: 1966
  article-title: A bi‐Population Cooperative Optimization Algorithm Assisted by an Autoencoder for Medium‐Scale Expensive Problems
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 23
  start-page: 525
  issue: 3
  year: 2019
  end-page: 537
  article-title: A Scalable Indicator‐Based Evolutionary Algorithm for Large‐Scale Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– year: 2024
  article-title: EmoDM: A Diffusion Model for Evolutionary Multi‐Objective Optimization
  publication-title: Computing Research Repository
– volume: 75
  year: 2022
  article-title: Offspring Regeneration Method Based on Bi‐Level Sampling for Large‐Scale Evolutionary Multi‐Objective Optimization
  publication-title: Swarm and Evolutionary Computation
– start-page: 2758
  year: 2013
  end-page: 2765
– start-page: 2014
  year: 2014
– volume: 22
  start-page: 97
  issue: 1
  year: 2018
  end-page: 112
  article-title: A Decision Variable Clustering‐Based Evolutionary Algorithm for Large‐Scale Many‐Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 2672
  year: 2014
  end-page: 2680
– start-page: 1560
  year: 2019
  end-page: 1567
– volume: 7
  start-page: 117
  issue: 2
  year: 2003
  end-page: 132
  article-title: Performance Assessment of Multiobjective Optimizers: An Analysis and Review
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 23
  start-page: 949
  issue: 6
  year: 2019
  end-page: 961
  article-title: Accelerating Large‐Scale Multiobjective Optimization via Problem Reformulation
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 549
  year: 2023
  end-page: 554
– volume: 29
  start-page: 444
  issue: 2
  year: 2025
  end-page: 458
  article-title: Causal Inference‐Based Large‐Scale Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  end-page: 359
  article-title: Differential Evolution ‐ A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
  publication-title: Journal of Global Optimization
– volume: 34
  start-page: 286
  year: 2015
  end-page: 300
  article-title: Distributed Evolutionary Algorithms and Their Models: A Survey of the State‐of‐the‐Art
  publication-title: Applied Soft Computing
– volume: 3
  start-page: 257
  issue: 4
  year: 1999
  end-page: 271
  article-title: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 60
  year: 2021
  article-title: Multiobjective Multiple Features Fusion: A Case Study in Image Segmentation
  publication-title: Swarm Intelligence
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  end-page: 195
  article-title: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
  publication-title: Evolutionary Computation
– start-page: 351
  year: 1999
  end-page: 357
– volume: 52
  start-page: 786
  issue: 2
  year: 2022
  end-page: 798
  article-title: Adaptive Offspring Generation for Evolutionary Large‐Scale Multiobjective Optimization
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– start-page: 156
  year: 2019
  end-page: 159
– volume: 26
  start-page: 248
  issue: 2
  year: 2022
  end-page: 262
  article-title: A Multivariation Multifactorial Evolutionary Algorithm for Large‐Scale Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 631
  start-page: 449
  year: 2023
  end-page: 467
  article-title: An Evolutionary Algorithm Based on Dynamic Sparse Grouping for Sparse Large Scale Multiobjective Optimization
  publication-title: Information Sciences
– volume: 51
  start-page: 3115
  issue: 6
  year: 2021
  end-page: 3128
  article-title: Solving Large‐Scale Multiobjective Optimization Problems With Sparse Optimal Solutions via Unsupervised Neural Networks
  publication-title: IEEE Transactions on Cybernetics
– volume: 583
  start-page: 266
  year: 2022
  end-page: 287
  article-title: Multi‐Objective Optimization Based on an Adaptive Competitive Swarm Optimizer
  publication-title: Information Sciences
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  end-page: 731
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 105
  year: 2005
  end-page: 145
– volume: 21
  start-page: 929
  issue: 6
  year: 2017
  end-page: 942
  article-title: DG2: A Faster and More Accurate Differential Grouping for Large‐Scale Black‐Box Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 644
  year: 2023
  article-title: Cooperative Coevolutionary Competition Swarm Optimizer With Perturbation for High‐Dimensional Multi‐Objective Optimization
  publication-title: Information Sciences
– volume: 20
  start-page: 275
  issue: 2
  year: 2016
  end-page: 298
  article-title: A Multiobjective Evolutionary Algorithm Based on Decision Variable Analyses for Multiobjective Optimization Problems With Large‐Scale Variables
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 39
  start-page: 6572
  issue: 20
  year: 2018
  end-page: 6586
  article-title: Enhancing Multispectral Imagery Spatial Resolution Using Optimized Adaptive PCA and High‐Pass Modulation
  publication-title: International Journal of Remote Sensing
– volume: 47
  start-page: 4108
  issue: 12
  year: 2017
  end-page: 4121
  article-title: Test Problems for Large‐Scale Multiobjective and Many‐Objective Optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 86
  year: 2024
  article-title: A Modified Competitive Swarm Optimizer Guided by Space Sampling for Large‐Scale Multi‐Objective Optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 52
  start-page: 6784
  issue: 7
  year: 2022
  end-page: 6797
  article-title: A Pattern Mining‐Based Evolutionary Algorithm for Large‐Scale Sparse Multiobjective Optimization Problems
  publication-title: IEEE Transactions on Cybernetics
– volume: 27
  start-page: 445
  issue: 3
  year: 2023
  end-page: 459
  article-title: A Fuzzy Decision Variables Framework for Large‐Scale Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 88
  year: 2024
  article-title: Deep Reinforcement Learning Assisted Automated Guiding Vector Selection for Large‐Scale Sparse Multi‐Objective Optimization
  publication-title: Swarm Intelligence
– volume: 13
  start-page: 284
  issue: 2
  year: 2009
  end-page: 302
  article-title: Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA‐II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 28
  start-page: 32
  issue: 1
  year: 2024
  end-page: 46
  article-title: An Efficient Differential Grouping Algorithm for Large‐Scale Global Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 89
  year: 2020
  article-title: A Clustering and Dimensionality Reduction Based Evolutionary Algorithm for Large‐Scale Multi‐Objective Problems
  publication-title: Applied Soft Computing
– volume: 15
  start-page: 219
  issue: 2
  year: 2023
  end-page: 235
  article-title: Efficient Automatically Evolving Convolutional Neural Network for Image Denoising
  publication-title: Memetic Computing
– volume: 674
  year: 2024
  article-title: A Two‐Stage Direction‐Guided Evolutionary Algorithm for Large‐Scale Multiobjective Optimization
  publication-title: Information Sciences
– volume: 639
  year: 2023
  article-title: A Pearson Correlation‐Based Adaptive Variable Grouping Method for Large‐Scale Multi‐Objective Optimization
  publication-title: Information Sciences
– start-page: 1
  year: 2020
  end-page: 8
– volume: 54
  start-page: 3502
  issue: 6
  year: 2024
  end-page: 3515
  article-title: Neural Net‐Enhanced Competitive Swarm Optimizer for Large‐Scale Multiobjective Optimization
  publication-title: IEEE Transactions on Cybernetics
– start-page: 14
  year: 2012
  end-page: 36
– start-page: 875
  year: 2017
  end-page: 881
– start-page: 2199
  year: 2023
  end-page: 2204
– volume: 150
  year: 2024
  article-title: A Problem Transformation‐Based and Decomposition‐Based Evolutionary Algorithm for Large‐Scale Multiobjective Optimization
  publication-title: Applied Soft Computing
– start-page: 223
  year: 2018
  end-page: 232
– volume: 28
  start-page: 47
  issue: 1
  year: 2024
  end-page: 61
  article-title: Large‐Scale Multiobjective Optimization via Reformulated Decision Variable Analysis
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 91
  year: 2024
  article-title: Learning‐Guided Cross‐Sampling for Large‐Scale Evolutionary Multi‐Objective Optimization
  publication-title: Swarm and Evolutionary Computation
– volume: 149
  year: 2024
  article-title: Adaptive Multi‐Objective Competitive Swarm Optimization Algorithm Based on Kinematic Analysis for Municipal Solid Waste Incineration
  publication-title: Applied Soft Computing
– volume: 34
  start-page: 4631
  issue: 8
  year: 2023
  end-page: 4645
  article-title: Manifold Interpolation for Large‐Scale Multiobjective Optimization via Generative Adversarial Networks
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 30
  start-page: 48
  year: 2015
  end-page: 57
  article-title: A Multiobjective Spatial Fuzzy Clustering Algorithm for Image Segmentation
  publication-title: Applied Soft Computing
– volume: 50
  start-page: 4732
  issue: 11
  year: 2020
  end-page: 4745
  article-title: A Hybrid Multiobjective Memetic Algorithm for Multiobjective Periodic Vehicle Routing Problem With Time Windows
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
– volume: 239
  year: 2024
  article-title: Directed Quick Search Guided Evolutionary Framework for Large‐Scale Multi‐Objective Optimization Problems
  publication-title: Expert Systems With Applications
– volume: 29
  start-page: 1112
  year: 2024
  end-page: 1126
  article-title: Adversarial AutoEncoder‐Based Large‐Scale Dynamic Multi‐Objective Evolutionary Algorithm
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 78
  year: 2023
  article-title: Cooperative Coevolutionary Multi‐Guide Particle Swarm Optimization Algorithm for Large‐Scale Multi‐Objective Optimization Problems
  publication-title: Swarm Intelligence
– volume: 13
  start-page: 59
  issue: 1
  year: 2020
  end-page: 68
  article-title: A Node‐Priority Based Large‐Scale Overlapping Community Detection Using Evolutionary Multi‐Objective Optimization
  publication-title: Evolutionary Intelligence
– volume: 10
  start-page: 527
  issue: 5
  year: 2006
  end-page: 549
  article-title: A Distributed Cooperative Coevolutionary Algorithm for Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 83
  year: 2023
  article-title: A Population Cooperation Based Particle Swarm Optimization Algorithm for Large‐Scale Multi‐Objective Optimization
  publication-title: Swarm Intelligence
– volume: 8
  start-page: 4697
  issue: 6
  year: 2022
  end-page: 4725
  article-title: A Competitive Swarm Optimizer With Probabilistic Criteria for Many‐Objective Optimization Problems
  publication-title: Complex & Intelligent Systems
– volume: 50
  start-page: 3696
  issue: 8
  year: 2020
  end-page: 3708
  article-title: Efficient Large‐Scale Multiobjective Optimization Based on a Competitive Swarm Optimizer
  publication-title: IEEE Transactions on Cybernetics
– start-page: 729
  year: 2018
  end-page: 736
– volume: 686
  year: 2025
  article-title: A Two‐Stage Accelerated Search Strategy for Large‐Scale Multi‐Objective Evolutionary Algorithm
  publication-title: Information Sciences
– volume: 11
  start-page: 1342
  issue: 6
  year: 2024
  end-page: 1357
  article-title: A Two‐Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large‐Scale Multi‐Objective Optimization
  publication-title: IEEE/CAA Journal of Automatica Sinica
– year: 2020
– year: 2024
  article-title: Heuristically Adaptive Diffusion‐Model Evolutionary Strategy
  publication-title: Computing Research Repository
– volume: 51
  start-page: 3129
  issue: 6
  year: 2021
  end-page: 3142
  article-title: Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)
  publication-title: IEEE Transactions on Cybernetics
– volume: 509
  start-page: 457
  year: 2020
  end-page: 469
  article-title: Solving Large‐Scale Many‐Objective Optimization Problems by Covariance Matrix Adaptation Evolution Strategy With Scalable Small Subpopulations
  publication-title: Information Sciences
– start-page: 280
  year: 2005
  end-page: 295
– volume: 18
  start-page: 348
  issue: 3
  year: 2014
  end-page: 365
  article-title: Shift‐Based Density Estimation for Pareto‐Based Algorithms in Many‐Objective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 443
  year: 2005
  end-page: 450
– volume: 70
  start-page: 3867
  issue: 1
  year: 2024
  end-page: 3874
  article-title: Securing VANETs: Multi‐Objective Intrusion Detection With Variational Autoencoders
  publication-title: IEEE Transactions on Consumer Electronics
– start-page: 526
  year: 2017
  end-page: 530
– volume: 99
  year: 2021
  article-title: Large‐Scale Many‐Objective Particle Swarm Optimizer With Fast Convergence Based on Alpha‐Stable Mutation and Logistic Function
  publication-title: Applied Soft Computing
– volume: 609
  start-page: 1601
  year: 2022
  end-page: 1620
  article-title: A Self‐Exploratory Competitive Swarm Optimization Algorithm for Large‐Scale Multiobjective Optimization
  publication-title: Information Sciences
– ident: e_1_2_9_62_1
  doi: 10.1016/J.INS.2023.119253
– ident: e_1_2_9_46_1
  doi: 10.1016/J.ASOC.2024.111341
– start-page: 223
  volume-title: PEA: Parallel Evolutionary Algorithm by Separating Convergence and Diversity for Large‐Scale Multi‐Objective Optimization
  year: 2018
  ident: e_1_2_9_8_1
– ident: e_1_2_9_92_1
  doi: 10.1109/TEVC.2021.3118593
– ident: e_1_2_9_44_1
  doi: 10.1109/TEVC.2008.925798
– ident: e_1_2_9_98_1
  doi: 10.1016/J.INS.2020.02.066
– ident: e_1_2_9_38_1
  doi: 10.1109/ICPR.2016.7900296
– start-page: 875
  volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2017
  ident: e_1_2_9_65_1
– ident: e_1_2_9_29_1
  doi: 10.1109/TCYB.2020.2985081
– ident: e_1_2_9_91_1
  doi: 10.1016/J.INS.2025.122116
– start-page: 729
  volume-title: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15–19, 2018
  year: 2018
  ident: e_1_2_9_67_1
– ident: e_1_2_9_104_1
  doi: 10.1109/TEVC.2003.810758
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-642-33275-3_2
– ident: e_1_2_9_60_1
  doi: 10.1109/TEVC.2013.2281543
– ident: e_1_2_9_5_1
  doi: 10.1109/TII.2017.2676000
– ident: e_1_2_9_63_1
  doi: 10.1109/JAS.2024.124341
– ident: e_1_2_9_86_1
  doi: 10.1016/J.ESWA.2023.121563
– ident: e_1_2_9_58_1
  doi: 10.1016/J.SWEVO.2023.101262
– ident: e_1_2_9_30_1
  doi: 10.1109/TEVC.2019.2896002
– ident: e_1_2_9_49_1
– ident: e_1_2_9_81_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_9_89_1
  doi: 10.1016/J.ASOC.2023.111081
– ident: e_1_2_9_72_1
  doi: 10.1023/A:1008202821328
– ident: e_1_2_9_73_1
  doi: 10.1016/J.SWEVO.2024.101622
– ident: e_1_2_9_35_1
  doi: 10.1016/J.ASOC.2023.110925
– ident: e_1_2_9_101_1
  doi: 10.1109/SSCI.2017.8280974
– ident: e_1_2_9_28_1
  doi: 10.1109/TSMC.2020.3003926
– ident: e_1_2_9_78_1
  doi: 10.1109/TEVC.2019.2918140
– ident: e_1_2_9_12_1
  doi: 10.1109/CoDIT58514.2023.10284137
– ident: e_1_2_9_57_1
  doi: 10.1109/TEVC.2015.2455812
– ident: e_1_2_9_74_1
  doi: 10.1109/TEVC.2005.860762
– ident: e_1_2_9_13_1
  doi: 10.1109/JAS.2022.105425
– ident: e_1_2_9_70_1
  doi: 10.1109/CEC.2016.7743831
– ident: e_1_2_9_23_1
  doi: 10.1016/J.ASOC.2015.04.061
– ident: e_1_2_9_17_1
  doi: 10.1007/S12293‐022‐00385‐6
– ident: e_1_2_9_64_1
  doi: 10.1016/J.INS.2022.07.110
– ident: e_1_2_9_97_1
  doi: 10.1109/TEVC.2016.2600642
– ident: e_1_2_9_22_1
  doi: 10.1109/TEVC.2024.3437762
– ident: e_1_2_9_34_1
  doi: 10.1109/TEVC.2018.2881153
– ident: e_1_2_9_105_1
  doi: 10.1016/J.INS.2024.120719
– ident: e_1_2_9_66_1
  doi: 10.1109/TEVC.2021.3063606
– ident: e_1_2_9_96_1
  doi: 10.1109/TEVC.2007.892759
– ident: e_1_2_9_77_1
  doi: 10.1109/TCYB.2020.2979930
– ident: e_1_2_9_94_1
  doi: 10.1016/J.SWEVO.2022.101045
– ident: e_1_2_9_14_1
  doi: 10.1016/J.INS.2024.121347
– ident: e_1_2_9_26_1
  doi: 10.1109/TEVC.2022.3213006
– ident: e_1_2_9_83_1
  doi: 10.1109/TSMC.2018.2861879
– ident: e_1_2_9_50_1
  doi: 10.1016/J.SWEVO.2020.100792
– ident: e_1_2_9_84_1
  doi: 10.1016/J.INS.2023.119221
– ident: e_1_2_9_31_1
  doi: 10.1007/s40747-022-00714-9
– ident: e_1_2_9_9_1
  doi: 10.1109/ICPICS47731.2019.8942442
– ident: e_1_2_9_32_1
  doi: 10.1016/J.SWEVO.2023.101393
– ident: e_1_2_9_27_1
  doi: 10.1109/CEC48606.2020.9185553
– ident: e_1_2_9_100_1
  doi: 10.1109/TEVC.2017.2704782
– ident: e_1_2_9_7_1
  doi: 10.1016/J.INS.2018.10.007
– ident: e_1_2_9_11_1
  doi: 10.1016/J.ASOC.2020.106947
– ident: e_1_2_9_6_1
  doi: 10.1007/S12065‐019‐00250‐5
– start-page: 2014
  volume-title: 2nd International Conference on Learning Representations
  year: 2014
  ident: e_1_2_9_39_1
– ident: e_1_2_9_54_1
  doi: 10.1016/J.INS.2025.121973
– ident: e_1_2_9_19_1
  doi: 10.1109/TEVC.2021.3119933
– ident: e_1_2_9_3_1
  doi: 10.1109/CEC48606.2020.9185846
– ident: e_1_2_9_4_1
  doi: 10.1016/J.INS.2014.03.128
– ident: e_1_2_9_47_1
  doi: 10.1109/TEVC.2013.2262178
– start-page: 443
  volume-title: GDE3: The Third Evolution Step of Generalized Differential Evolution
  year: 2005
  ident: e_1_2_9_40_1
– ident: e_1_2_9_15_1
  doi: 10.1109/TEVC.2013.2281535
– ident: e_1_2_9_55_1
  doi: 10.1016/J.SWEVO.2022.101152
– ident: e_1_2_9_80_1
  doi: 10.1145/298151.298382
– ident: e_1_2_9_76_1
  doi: 10.1109/TCYB.2020.3041325
– ident: e_1_2_9_82_1
  doi: 10.1016/J.SWEVO.2024.101763
– ident: e_1_2_9_45_1
  doi: 10.1109/TCYB.2023.3287596
– ident: e_1_2_9_88_1
  doi: 10.1038/s41598-024-64570-y
– ident: e_1_2_9_37_1
  doi: 10.1007/978-3-540-31880-4_20
– ident: e_1_2_9_25_1
  doi: 10.48550/ARXIV.2411.13420
– ident: e_1_2_9_10_1
  doi: 10.1109/TCYB.2016.2600577
– start-page: 1560
  volume-title: Automatic Construction of Parallel Portfolios via Explicit Instance Grouping
  year: 2019
  ident: e_1_2_9_53_1
– ident: e_1_2_9_16_1
  doi: 10.1007/1-84628-137-7_6
– ident: e_1_2_9_42_1
  doi: 10.1109/TEVC.2025.3529938
– ident: e_1_2_9_51_1
  doi: 10.1016/J.ASOC.2020.106120
– ident: e_1_2_9_61_1
  doi: 10.1109/TEVC.2017.2694221
– start-page: 72
  volume-title: Intelligent Computing Theories and Application‐17th International Conference
  year: 2021
  ident: e_1_2_9_48_1
– ident: e_1_2_9_85_1
  doi: 10.1109/TNNLS.2021.3113158
– ident: e_1_2_9_59_1
  doi: 10.1109/TCE.2024.3372691
– start-page: 2672
  volume-title: Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems
  year: 2014
  ident: e_1_2_9_24_1
– ident: e_1_2_9_68_1
  doi: 10.1016/J.SWEVO.2024.101606
– ident: e_1_2_9_75_1
  doi: 10.1109/CEC48606.2020.9185876
– ident: e_1_2_9_79_1
  doi: 10.1109/TCYB.2019.2906383
– ident: e_1_2_9_102_1
  doi: 10.1162/106365600568202
– ident: e_1_2_9_2_1
  doi: 10.1109/CEC.2013.6557903
– ident: e_1_2_9_87_1
  doi: 10.1016/J.ESWA.2023.122370
– ident: e_1_2_9_18_1
  doi: 10.1080/01431161.2018.1463112
– ident: e_1_2_9_71_1
  doi: 10.1109/ACCESS.2025.3541271
– ident: e_1_2_9_36_1
  doi: 10.1016/J.INS.2021.11.031
– ident: e_1_2_9_106_1
  doi: 10.1016/J.INS.2023.02.062
– ident: e_1_2_9_21_1
  doi: 10.1016/J.SWEVO.2024.101499
– ident: e_1_2_9_56_1
  doi: 10.1016/J.SWEVO.2023.101377
– ident: e_1_2_9_90_1
  doi: 10.48550/ARXIV.2401.15931
– ident: e_1_2_9_69_1
  doi: 10.1109/CoDIT58514.2023.10284401
– volume-title: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020
  year: 2020
  ident: e_1_2_9_33_1
– start-page: 526
  volume-title: A Mixed Particle Swarm Optimization Algorithm's Application in Image/Video Super‐Resolution Reconstruction
  year: 2017
  ident: e_1_2_9_93_1
– ident: e_1_2_9_103_1
  doi: 10.1109/4235.797969
– ident: e_1_2_9_52_1
  doi: 10.1109/TEVC.2022.3155593
– ident: e_1_2_9_41_1
  doi: 10.1109/TEVC.2022.3230070
– ident: e_1_2_9_43_1
  doi: 10.1109/TEVC.2024.3412049
– ident: e_1_2_9_99_1
  doi: 10.1016/J.ASOC.2015.01.039
– ident: e_1_2_9_95_1
  doi: 10.1016/J.INS.2023.02.055
SSID ssj0001776
Score 2.3728468
SecondaryResourceType review_article
Snippet ABSTRACT Large‐scale multi‐objective optimization problems (LSMOPs) are characterised by concurrent optimization of multiple conflicting objectives and no...
Large‐scale multi‐objective optimization problems (LSMOPs) are characterised by concurrent optimization of multiple conflicting objectives and no fewer than...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Computer vision
decision variable grouping
effective offspring generation
Evolutionary algorithms
learning model
LSMOPs
non‐grouping dimensionality reduction
Optimization
Tracking
Title Large‐Scale Multi‐Objective Optimization Algorithms: A Decade Survey
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.70157
https://www.proquest.com/docview/3272451554
Volume 42
WOSCitedRecordID wos001620772900012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB5q68GLb7FaJaAnYWUf2WYjXopt8SBWrEI9LZM06wOtslvF3vwJ_kZ_iUl21-pFEC9LFjYhzM7jS5iZD2A3RBQsTBInUJQ7VDYTB11XP3SwQ89T0hNDSzbBTk-jwYCfVeCwrIXJ-0N8XbgZy7D-2hg4iuybkavXbLLPdDRjM1DzteLSKtTa593Lky9P7DFLLqePGU2HMt8t2pOaTJ7p7J8BaYoyv2NVG2y6C__b5iLMFyCTtHKtWIKKGi3DQkngQAp7XoHjE5MH_vH23td_ShFbjKvfeuIud4Okpx3KQ1GpSVr314_p7fjmITsgLdJWJrOe9J_TFzVZhctu5-Lo2CmoFRzpN33meCpAUxPrIQslahgiMUo8DLjAphwGFGXIVd5JkqOSQ4z8RAUabrkRRoyKYA2qo8eRWgeCknLFXamQJtQTPGJDpueY9VyquKjDTinf-CnvoBGXJw8jnNgKpw6NUvRxYUVZHPjMp4aDhtZhzwr5lxXizqB_ZUcbf_l4E-Z8Q-lrM1QaUB2nz2oLZuXL-DZLtwuN-gTe-9Ky
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJuiL84rTqQF9Eiq9pEvj23AbE-cmboP5VNI01YnbZDfcmz_B3-gvMUm7iy-C-FJSaEL4em4J55wP4NxlLCBuFBmOwNTAPB8ZzDTlQzo7ZlmCW0GoySZIrea12_Q-yc1RtTBxf4j5hZvSDG2vlYKrC-klLRfvw-klke6MrEIaSzlyU5AuPpRb1bkptohml5PnjLyBiW0m_UlVKs9i9k-PtAgzl4NV7W3KmX_ucws2kzATFWK52IYV0duBzIzCASUavQuVqsoE__r4bMh_JZAux5Vv9eAlNoSoLk1KN6nVRIXXp_6gM3ruDq9QARWFyq1HjfFgIqZ70CqXmtcVIyFXMLidt4lhCYepqliLEZczGYhw5kUWc2jA8jx0MOMuFXEvScoED5lnR8KRAZfpMY_gwNmHVK_fEweAGMdUUJMLhiNsBdQjIZFz1HomFjTIwtkMYP8t7qHhz84eChxfg5OF3Ax7P9Gjoe_YxMaKhQZn4UKj_MsKfqndeNSjw798fArrleZd1a_e1G6PYMNWBL86XyUHqdFgLI5hjU9GneHgJBGvb3vn1qI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58IV6sT6zPBT0JkTw22ay3YlsUSy1WoZ7CZjPRim2lqaI3f4K_0V_i7ia1ehHES0ggu4Qv-83MLjPzARz4QsTMT1PLQ8otKoPUEratLsrZCcdB6cSJEZtgzWbY6fBWkZuja2Hy_hBfB26aGcZea4LjY5J-Yzm-ZK9HTLkzNg2z1OeB4uVs9bJ-3fgyxQ4z6nJqnxFYlLl20Z9Up_JMRv_0SJMw83uwarxNvfTP71yCxSLMJJV8XSzDFPZXoDSWcCAFo1fhtKEzwT_e3tvqXyEx5bjq6SK-zw0huVAmpVfUapLKw-1g2B3d9bJjUiFV1Ln1pP00fMbXNbiu165OTq1CXMGSbuAyy0FP6KpYRzBfChWISBGmjvB4LAKZeFRIn2PeS5ILlIkI3RQ9FXDZoQgZjb11mOkP-rgBREjKkdsSBU2pE_OQJUyN0fPZFHlchv0xwNFj3kMjGu89NDiRAacM22Pso4JHWeS5zKVahYaW4dCg_MsMUa3TvjF3m395eQ_mW9V61Dhrnm_Bgqv1fU26yjbMjIZPuANz8nnUzYa7xer6BEXY1h0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Scale+Multi%E2%80%90Objective+Optimization+Algorithms%3A+A+Decade+Survey&rft.jtitle=Expert+systems&rft.au=Wang%2C+Pengtao&rft.au=Wu%2C+Xiangjuan&rft.au=Deng%2C+Hanqing&rft.date=2025-12-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=42&rft.issue=12&rft_id=info:doi/10.1111%2Fexsy.70157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_exsy_70157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon