Advancements in battery state prediction methods: A comprehensive review of data-driven approaches and degradation mechanisms

Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and repairs to extend their lifespan and ultimately reduce waste while advancing the development of clean energy. This comprehensive review aims to...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of power sources Ročník 659; s. 238192
Hlavní autoři: Zheng, Wentao, Wu, Dinglan, Yuan, Chenbo, Jiang, Huan, Wang, Shenghan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.12.2025
Témata:
ISSN:0378-7753
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and repairs to extend their lifespan and ultimately reduce waste while advancing the development of clean energy. This comprehensive review aims to provide an extensive overview of state prediction methods and characterization techniques, emphasizing the need for specific data-driven approaches to characterize battery degradation and establish correlations between inputs and outputs. Furthermore, the evaluation of primary anode, cathode, and separator materials in batteries is discussed. The study delves into the significance of both cycle degradation and calendar degradation, providing insights into degradation phenomena and parameters perspectives. Moreover, the roles and characteristics of physical parameters for degradation characterization and state parameters for battery operation status are analyzed. The review extensively examines the strengths and weaknesses of classic and state-of-the-art physics-based models, as well as data-driven models, highlighting critical issues and challenges related to degradation mechanisms, datasets, performance trade-offs, and optimization methods. Additionally, innovative ideas are proposed, and future development directions are discussed. •Key battery materials and their impact on degradation mechanisms are discussed.•This review examines physical parameters for battery dynamics and state parameters.•This review covers end-to-end prediction method development and future trends.•The review shows the pros and cons of physics-based, data-driven, and fusion models.
AbstractList Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and repairs to extend their lifespan and ultimately reduce waste while advancing the development of clean energy. This comprehensive review aims to provide an extensive overview of state prediction methods and characterization techniques, emphasizing the need for specific data-driven approaches to characterize battery degradation and establish correlations between inputs and outputs. Furthermore, the evaluation of primary anode, cathode, and separator materials in batteries is discussed. The study delves into the significance of both cycle degradation and calendar degradation, providing insights into degradation phenomena and parameters perspectives. Moreover, the roles and characteristics of physical parameters for degradation characterization and state parameters for battery operation status are analyzed. The review extensively examines the strengths and weaknesses of classic and state-of-the-art physics-based models, as well as data-driven models, highlighting critical issues and challenges related to degradation mechanisms, datasets, performance trade-offs, and optimization methods. Additionally, innovative ideas are proposed, and future development directions are discussed. •Key battery materials and their impact on degradation mechanisms are discussed.•This review examines physical parameters for battery dynamics and state parameters.•This review covers end-to-end prediction method development and future trends.•The review shows the pros and cons of physics-based, data-driven, and fusion models.
ArticleNumber 238192
Author Yuan, Chenbo
Wu, Dinglan
Zheng, Wentao
Jiang, Huan
Wang, Shenghan
Author_xml – sequence: 1
  givenname: Wentao
  surname: Zheng
  fullname: Zheng, Wentao
  organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
– sequence: 2
  givenname: Dinglan
  surname: Wu
  fullname: Wu, Dinglan
  organization: School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, 150080, China
– sequence: 3
  givenname: Chenbo
  surname: Yuan
  fullname: Yuan, Chenbo
  organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
– sequence: 4
  givenname: Huan
  surname: Jiang
  fullname: Jiang, Huan
  email: jianghuan22@mails.jlu.edu.cn
  organization: Jilin Police College, Changchun, 130012, China
– sequence: 5
  givenname: Shenghan
  orcidid: 0000-0001-9586-2997
  surname: Wang
  fullname: Wang, Shenghan
  email: shenghan@jlu.edu.cn
  organization: Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, China
BookMark eNqFkMtqwzAQRbVIoUnaXyj6AaeSHMtOVw2hLwh0k72QpVEtU0tGUhOy6L9Xwe26q4G53MPMWaCZ8w4QuqNkRQnl9_2qH_0p-q-wYoRVK1Y2dMNmaE7Kuinquiqv0SLGnhBCaU3m6Hurj9IpGMCliK3DrUwJwhnHJBPgMYC2Klnv8ACp8zo-4C1WfshBBy7aI-AARwsn7A3WMslCh7x0WI5j8FJ1ELF0Gmv4CDLnE0l10tk4xBt0ZeRnhNvfuUSH56fD7rXYv7-87bb7QjFOUwEGKKXc1HXT1FVbgSzbNZcbWm2YpLDmpNQNZDwxmnDeGqNIVbKWKqaaNS2XiE9YFXyMAYwYgx1kOAtKxMWb6MWfN3HxJiZvufg4FSEfl78MIioLWZe2AVQS2tv_ED8YNoJF
Cites_doi 10.1039/D2NR07273D
10.1016/j.est.2023.108045
10.1016/j.jpowsour.2020.228861
10.1016/j.electacta.2021.138294
10.3390/en16052484
10.1109/TIE.2020.2978688
10.1016/j.etran.2019.100034
10.1016/j.est.2016.02.005
10.1109/TIA.2014.2321028
10.1016/j.energy.2016.12.110
10.1038/srep00913
10.3390/en16073096
10.1149/1945-7111/acde10
10.3390/en12142784
10.1149/1945-7111/ac6d13
10.3389/fenrg.2022.937035
10.3390/app10196637
10.1038/s42256-020-0156-7
10.1016/j.nanoen.2020.105516
10.3390/en17071643
10.1002/tee.23287
10.1002/er.6355
10.1016/j.apenergy.2020.115232
10.1109/TTE.2024.3506778
10.1016/j.est.2023.106640
10.3390/en16031420
10.1109/TTE.2020.3017090
10.1038/s41560-021-00787-9
10.3389/fenrg.2023.1059701
10.1016/j.resconrec.2022.106204
10.3390/en16020767
10.3389/fenrg.2022.1033039
10.3390/batteries9030177
10.1016/j.energy.2022.126109
10.1002/er.5413
10.1016/j.ress.2021.107797
10.1038/s41560-020-0575-z
10.1016/j.jmsy.2021.03.019
10.1109/TVT.2019.2932605
10.1109/TPEL.2022.3182135
10.1109/TTE.2019.2944802
10.1016/j.jpowsour.2020.227950
10.1016/j.energy.2021.121233
10.3390/polym13111675
10.1016/j.rser.2020.110015
10.1002/ese3.877
10.1016/j.rser.2021.111004
10.1016/j.jpowsour.2007.09.025
10.1016/j.est.2021.102741
10.1109/TIE.2021.3095815
10.1016/j.jpowsour.2014.07.168
10.1002/er.5383
10.1109/TVT.2023.3234159
10.1109/JESTPE.2021.3133697
10.1016/j.energy.2021.121269
10.3390/en15239165
10.1016/j.isci.2021.102060
10.1016/j.ress.2021.107675
10.1016/j.jpowsour.2006.10.065
10.3390/en16020803
10.1016/j.energy.2021.121022
10.1039/D0TA10378K
10.3390/s23052587
10.1016/j.egyr.2021.02.058
10.1109/TII.2021.3106593
10.1016/j.apenergy.2020.115646
10.1016/j.energy.2018.10.131
10.1109/ACCESS.2019.2947294
10.1038/s41560-019-0405-3
10.1016/j.jpowsour.2022.231560
10.1016/j.rser.2019.109254
10.1016/j.jpowsour.2020.228069
10.1016/j.ress.2023.109361
10.1016/j.conengprac.2023.105451
10.1109/ACCESS.2020.3011625
10.1002/ente.202200600
10.1149/1.1870752
10.1016/j.est.2019.100911
10.1016/j.etran.2019.100005
10.1016/j.jpowsour.2017.05.110
10.1016/j.est.2021.102827
10.1016/j.jpowsour.2020.228983
10.1016/j.microrel.2023.114985
10.1016/j.jpowsour.2022.231127
10.1016/j.rser.2021.111287
10.1038/s41560-019-0356-8
10.1007/s00521-020-05105-0
10.1016/j.energy.2020.119490
10.9728/dcs.2021.22.4.697
10.3390/app11031099
10.1021/acs.chemrev.9b00531
10.1016/j.rser.2016.05.033
10.1002/ente.202201510
10.1016/j.energy.2021.120205
10.1109/TII.2022.3206776
10.1016/j.jpowsour.2019.227228
10.1016/j.ress.2021.107542
10.1016/j.jpowsour.2022.232432
10.1016/j.energy.2019.01.083
10.1177/01423312221143776
10.1007/s41918-022-00147-5
10.1016/j.jclepro.2020.120813
10.1016/j.ensm.2021.05.047
10.1109/TVT.2017.2751613
10.1109/ACCESS.2019.2939593
10.1016/j.aei.2021.101405
10.1038/s41560-019-0428-9
10.3390/app9153012
10.1109/TVT.2020.3039553
10.1021/acs.chemrev.0c00101
10.3390/batteries6030037
10.1109/TIE.2022.3148743
10.3390/batteries9060325
10.1016/j.cej.2022.136245
10.1016/j.jpowsour.2019.227015
10.1016/j.est.2023.107557
10.1038/s41467-020-15235-7
10.1007/s11814-023-1476-1
10.3389/fenrg.2022.905710
10.1016/j.egyr.2023.05.121
10.1002/ese3.973
10.1016/j.est.2018.12.011
10.1016/j.measurement.2020.108052
10.1016/j.jpowsour.2023.232805
10.1002/ese3.460
10.1002/aenm.202100046
10.3390/en18051188
10.1016/j.est.2023.106645
10.3390/su15065014
10.1016/j.energy.2023.128761
10.3390/en12122247
10.1016/j.est.2023.107161
10.3390/batteries9040224
10.1016/j.measurement.2019.07.064
10.1002/er.5002
10.3390/app11104671
10.1002/cite.201800218
10.1016/j.ssi.2019.115193
10.1002/er.6746
10.3390/app10103549
10.1016/j.egyr.2021.05.019
10.3390/en12091685
10.1016/j.energy.2021.120684
10.1109/JESTPE.2021.3130424
10.1007/s11581-023-05072-1
10.1149/1945-7111/acd300
10.1109/TEC.2024.3407136
10.1016/j.psep.2023.02.081
10.1016/j.energy.2021.120851
10.1016/j.est.2023.106788
10.1016/j.est.2023.106790
10.1002/eem2.12501
10.1039/C7CS00863E
10.1109/ACCESS.2019.2905740
10.1016/j.applthermaleng.2023.120303
10.1109/TVT.2021.3087004
10.1016/j.neucom.2019.09.074
10.1016/j.cie.2023.109231
10.1016/j.apenergy.2022.120289
10.1109/ACCESS.2022.3232282
10.1109/TII.2020.3008223
10.3390/s21041087
10.3390/ma15093331
10.3390/en13020375
10.1109/TVT.2020.3024019
10.1039/D2EE03019E
10.1016/j.ress.2018.09.018
10.1109/TIE.2021.3097613
10.1109/JESTPE.2021.3098378
10.1016/j.jpowsour.2022.232586
10.1109/ACCESS.2019.2947843
10.1016/j.est.2025.115485
10.1016/j.jpowsour.2020.228581
10.1016/j.ress.2022.108920
10.1016/j.est.2023.107179
10.1109/TVT.2021.3055811
10.1016/j.est.2023.107589
10.1016/j.jpowsour.2020.228654
10.1016/j.ejor.2010.11.018
10.1038/s41578-019-0165-5
10.3390/e25040646
10.1109/TIE.2020.3034855
10.1002/adma.202106897
10.1016/j.energy.2018.06.169
10.1038/s41578-019-0157-5
10.1016/j.ress.2020.107396
10.1109/TVT.2015.2473841
10.1149/MA2021-0251864mtgabs
10.1016/j.ress.2019.02.011
10.3390/en14238072
10.3390/en13030752
10.3390/en14061732
10.1109/ACCESS.2019.2925468
10.1002/er.3996
10.1016/j.energy.2021.120114
10.1016/j.jclepro.2018.12.041
10.1002/er.6910
10.3390/su12208544
10.1016/j.est.2023.106728
10.1109/TSG.2016.2578950
10.1016/j.etran.2019.100004
10.1002/adma.202108353
10.1021/cm901452z
10.1109/TII.2019.2948018
10.1016/j.jclepro.2024.143280
10.1109/ACCESS.2020.2968939
10.1109/TII.2019.2941747
10.1016/j.apenergy.2021.116897
10.3390/electronics10040487
10.1016/j.joule.2019.11.018
10.1109/ACCESS.2020.3005229
10.1038/s41560-018-0312-z
10.1016/j.est.2022.106193
10.1016/j.jpowsour.2008.01.028
10.1109/ACCESS.2025.3533137
10.3390/en12173271
10.1016/j.jechem.2022.03.011
10.1109/ACCESS.2019.2923095
10.3390/en16031469
10.1109/ACCESS.2021.3083395
10.1016/j.est.2022.105992
10.1109/TII.2017.2684821
10.1109/TVT.2020.3032989
10.1016/j.jpowsour.2020.229327
10.1016/j.apenergy.2023.120954
10.3390/en13092380
10.3390/en16020953
10.1016/j.apenergy.2023.120808
10.1002/ente.202300232
10.1016/j.ress.2023.109315
10.1021/acs.chemrev.9b00427
10.1016/j.est.2023.106787
10.1016/j.ijheatmasstransfer.2022.123685
10.1016/j.est.2020.102118
10.1109/TTE.2022.3173918
10.1007/s11760-023-02532-z
10.1149/2.044302jes
10.3390/s22239522
10.1021/acsenergylett.1c00743
10.1002/adma.202101474
10.1109/ACCESS.2019.2929177
10.1016/j.ijoes.2023.100122
10.1109/TPEL.2020.3033297
10.1016/j.jpowsour.2017.08.045
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2025.238192
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jpowsour_2025_238192
S0378775325020282
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
~HD
29L
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
SAC
SCB
SCE
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c261t-efe1116f778875b5ea3b46a91592a1e4603d8eada0fd066bffc0532b1c2c8413
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001583657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7753
IngestDate Sat Nov 29 06:56:47 EST 2025
Sat Nov 29 17:03:53 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion battery
Aging mechanism
Physics-based models
State prediction
Data-driven methods
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-efe1116f778875b5ea3b46a91592a1e4603d8eada0fd066bffc0532b1c2c8413
ORCID 0000-0001-9586-2997
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2025_238192
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2025_238192
PublicationCentury 2000
PublicationDate 2025-12-15
PublicationDateYYYYMMDD 2025-12-15
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wei, Wu (bib150) 2022; 230
Wang, Wang, Wu, Zhou, Liu, Zhou (bib133) 2021; 80
Liu, Li, Hu, Lucu, Widanage (bib257) 2020; 16
Gao, Xie, Yu, Ma, Liu, Chen (bib196) 2022; 10
Wang, Jiang, Li, Yan (bib11) 2016; 64
Cao, Zhang, Yu, Liu (bib182) 2019; 7
Wang, Huang, Mamo (bib234) 2020; 10
Kouhestani, Liu, Wang, Chandra (bib21) 2023; 70
Ren, Dong, Meng, Zhao, Wang, Deen (bib233) 2021; 17
Chen, Chen, Liu, Cheng, Li (bib222) 2021; 50
Ungurean, Micea, Carstoiu (bib239) 2020; 44
Lin, Ling, Cabrera, Yang, Yu, Tsui (bib90) 2021; 214
Kim, Lee (bib108) 2020; 12
Cong, Zhang, Jiang, Zhang, Jiang (bib210) 2020; 69
Liu, Li, Guo, Zhang, Shen, Ye, Peng, Qi, Wu, Li, Duan (bib15) 2025
Li, Liu, Cheng (bib80) 2023; 62
Jiang, Xu, Xu, Li, Ni, Wang, Liu, Cai, Lai (bib118) 2022; 442
Zinth, Lüders, Hofmann, Hattendorff, Buchberger, Erhard, Rebelo-Kornmeier, Jossen, Gilles (bib141) 2014; 271
Zhang, Wang, Xie, Yang, Hao, Fernandez (bib50) 2023; 29
Horstkötter, Bäker (bib112) 2023; 60
Xue, Shen, Li, Zhang, Chen, Liu (bib175) 2020; 69
Han, Wang, Wei (bib63) 2021; 302
Pan, Huang, He, Lin, Sun, Zhao, Wang (bib246) 2021; 9
Huang, Liu, Meng, Li, Jin, Teodorescu, Stroe (bib159) 2023; 11
Liu, Hu, Wei, Li, Jiang (bib264) 2019; 5
Duan, Zhang, Geng, Zhang (bib251) 2019; 44
Mao, Xu, Chen, Zhao, Wu, Yao (bib231) 2020; 19
Chen, Liu, He, Lyu, Cai, Zhang (bib36) 2025; 74
.
Xu, Zhen, Cai, Wang, Gao, Jiang (bib40) 2021; 9
Dong, Yu, Zhang, Luo, Zou, Feng, Ma (bib67) 2023; 172
Liu (bib25) 2023
Li, Zhang, Xiong, Ding, Jie, Luo, Rong, Li (bib221) 2020; 459
Xu, Tang, Yu, Xie, Han, Ouyang (bib60) 2021; 214
Xie, Peng, Li, Hei, Hu (bib250) 2019; 18
Zhang, Bai, Yang, Li (bib238) 2023; 11
Al‐Gabalawy, Hosny, Hussien (bib197) 2020; 6
Feng, Song (bib153) 2021; 34
Lyu, Gao, Chen (bib201) 2021; 36
Zhang, Wang, Zhang, Wu, Jiang, Shi, Lyu, Cai (bib37) 2025; 112
Lybbert, Ghaemi, Balaji, Warren (bib198) 2021; 144
Deng, Gao, Chen, Kudreyko, Cattani, Zio, Song (bib209) 2023; 25
Liu, Gao, Marma, Miao, Liu (bib18) 2024; 17
Gou, Xu, Feng (bib211) 2020; 69
Zhang, Xu, Wang, Han, Hong, Hong (bib249) 2021; 16
Li, Chao, Li, Xiao, Li, Yang, Cui, Xu, Li, Yang, Yu, Wilkinson, Zhang (bib137) 2023; 6
Shen, Xu, Wu, Guan (bib206) 2019; 7
Li, Fang, Shi (bib55) 2021; 210
Li, Wang, Chen, Xu, Lu (bib124) 2020; 120
Rouhi Ardeshiri, Ma (bib237) 2021; 45
Xiao, Wang, Bo, Kim, Miara, Ceder (bib123) 2019; 5
Chen, Li, Cui, Yang, Wang, Wang (bib217) 2023; 10
Yang, Cui, Xia, Jiang, Ren, Sun, Feng, Wang, Yang (bib207) 2022; 15
Lin, Tian, Ding (bib203) 2023; 72
Tang, Zhang, Ning, Zhang (bib218) 2023; 170
Dong, Yang, Wei, Wei, Tsui (bib204) 2020; 16
Yang (bib152) 2021; 292
Ye, Chen, Shi, Peng, Shi (bib39) 2023; 18
Si, Wang, Hu, Zhou (bib32) 2011; 213
Tarar, Naqvi, Khalid, Pecht (bib216) 2023; 11
Chen, Shi, Ji, Mu, Wang (bib145) 2021; 234
Hong, Lee, Jeong, Yi (bib27) 2020; 278
von Kolzenberg, Stadler, Fath, Ecker, Horstmann, Latz (bib194) 2022; 539
Ding, Liu, Huiqin, Zequan, Ke, Shao, Abedinia (bib244) 2021; 148
Zhigang, Meng, Ruohai, Peng, Hui, Hongxi (bib58) 2023; 145
Wu, Guo, Tang, Sun, Qin (bib113) 2024; 13
Liu, Li (bib13) 2023; 45
Park, Choi, Choi, Ryu, Kim (bib232) 2020; 8
Wei, Chen (bib114) 2021; 229
Xing, Zhang, Zhang (bib166) 2023; 219
Wassiliadis, Kriegler, Gamra, Lienkamp (bib85) 2023; 561
Li, Landers, Park (bib101) 2020; 456
Go, Lee, Kim (bib229) 2021; 22
Liu (bib22) 2023; 170
Xue, Zhang, Cheng, Ma (bib57) 2020; 376
Deng, Xu, Liu, Hu, Duan, Xu (bib185) 2023; 339
Long, Gao, Li, Liu (bib46) 2020; 8
Dufo-López, Cortés-Arcos, Artal-Sevil, Bernal-Agustín (bib106) 2021; 11
Yang, Yu, Zhao, Wong, Wang (bib191) 2021; 70
Liu, Wang, Bai (bib155) 2022; 70
Fan, Fan, Liu, Qu, Li (bib51) 2019; 7
Xiang, Jin, Chen, Ge, Guo, Sun (bib126) 2007; 174
Mouais, Kittaneh, Majid (bib7) 2021; 41
Wang, Zhao (bib188) 2023; 133
Li, Wei, Xiong, Vilathgamuwa (bib17) 2022; 69
Xu, Yu, Tang, Sun, Si, Wu (bib132) 2019; 7
Guo, Wang, Zhao, Zhao, Ni (bib12) 2023; 202
Han, Lu, Zheng, Feng, Li, Li, Ouyang (bib96) 2019; 1
Wang, Fan, Jin, Takyi‐Aninakwa, Fernandez (bib226) 2023; 230
Wang, Ye, Li, Zhu (bib64) 2023; 15
Cheng, Sha, Wang, Tang, Ma, Chen, Wang, Lou, Lu, Cao (bib104) 2021; 11
López-Villanueva, Rodríguez-Iturriaga, Parrilla, Rodríguez-Bolívar (bib129) 2023; 16
Li, Liu, Foley, Zulke, Berecibar, Nanini-Maury, Mierlo, Hoster (bib29) 2019; 113
Sarkar, Shrotriya, Chandra, Hu (bib87) 2019; 25
Dong, Han, Wang (bib253) 2021; 68
Fei, Yang, Tsui, Li, Zhang (bib81) 2021; 225
Xiong, Xu, Li, Zhang, Ye, Li (bib255) 2023; 62
Goodenough, Kim (bib100) 2010; 22
Liu, Chandra (bib35) 2022
Zhang, Li, Li (bib235) 2020; 164
Shin, Kim, Lee (bib171) 2023; 40
Li, Li, He, Ji, Zeng, Li, Zhang, Zhang, Zhao (bib99) 2022; 15
Tian, Qin, Li, Zhao (bib135) 2020; 261
Jafari, Byun (bib248) 2022; 22
Xu, Wang, Zhao, Wang (bib73) 2019; 438
Che, Hu, Lin, Guo, Teodorescu (bib34) 2023; 16
Yang, Leng, Zhang, Ge, Wang (bib84) 2017; 360
Elmahallawy, Elfouly, Alouani, Massoud (bib30) 2022; 10
Yang, Wen, Shi, Zeng (bib43) 2021; 10
Zhu, Quan, Wan, Wang (bib151) 2021; 11
Wang, Ni, Li, Lu, Zhang, Feng, Wang (bib44) 2019; 7
Li, Saldivar, Bai, Li (bib61) 2019; 12
Sui, Swierczynski, Teodorescu, Stroe (bib105) 2021; 14
Zhang, Wang, Wu (bib269) 2023; 263
Yang, Wen, Liang, Shi, Tian, Wang (bib54) 2023; 15
Zhou, Zheng, Chen, Fu, Zhu, Song, Qu, Wang (bib263) 2021; 230
Yin, Tan, Tan (bib92) 2021; 21
Abdel-Monem, Trad, Omar, Hegazy, Hegazy, Bossche, Mierlo (bib158) 2017; 120
Lv, Zhou, Zhong, Yan, Srinivasan, Seh, Liu, Pan, Li, Wen, Yan (bib8) 2021; 34
Bai, Su, Rahman, Wang (bib242) 2022; 231
Hu, Che, Lin, Onori (bib258) 2020; 7
Qu, Liu, Ma, Fan (bib45) 2019; 7
Wang, Ni, Lu, Wang, Zhang (bib42) 2019; 68
Guha, Vaisakh, Patra (bib240) 2016
Pang, Yang, Wang, Fan, Wang, Li, Zhong, Zheng, Zou, Chen, Liu (bib214) 2023; 61
Jaguemont, Boulon, Venet, Dubé, Sari (bib163) 2016; 65
Deng, Shen, Wang, Wang (bib147) 2020; 33
Liu, Kouhestani, Chandra (bib38) 2021
Wei (bib154) 2023; 23
Zhao, Stalin, Zhao, Archer (bib116) 2020; 5
Chang, Hsieh, Chai, Lin (bib156) 2023; 16
Greenbank, Howey (bib262) 2021; 18
Li, Cai, Zheng, Shen, Dong, Liu (bib68) 2023; 11
T. Hu, H. Ma, K. Liu, H. Sun, Lithium-ion battery calendar health prognostics based on knowledge-data-driven attention, IEEE Trans. Ind. Electron. 70 (1) 407-417.
Hosen, Jaguemont, Van Mierlo, Berecibar (bib111) 2021; 24
Song, Hu, Tong, Yue (bib31) 2023; 57
Jiang, Zhang, Xia, Liu (bib190) 2020; 8
Guo, Sun, Vilsen, Meng, Stroe (bib33) 2022; 56
Pedersen, Lybbert, Warren (bib91) 2022; 180
Hong, Kang, Kim, Baek (bib75) 2023; 179
Liu, Zhu, Cui (bib2) 2019; 4
Pinson, Bazant (bib136) 2012; 160
Zhu, He, Bao, Sun, Gao (bib77) 2023; 16
Severson, Attia, Jin, Perkins, Jiang, Yang, Chen, Aykol, Herring, Fraggedakis, Bazant, Harris, Chueh, Braatz (bib93) 2019; 4
Dechent, Epp, Jöst, Preger, Attia, Li, Sauer (bib4) 2021; 6
Liu, Wu, Xie, Sheng, Liu, Wang, Wu, He (bib3) 2023; 6
Wu, Maier, Yu (bib94) 2020; 49
Zheng, Li, Huang, Yang, Deng, Zhang, Tang (bib138) 2022; 10
Illa Font, Siqueira, Machado Neto, Santos, Stevan, Converti, Corrêa (bib9) 2023; 16
Couture, Lin (bib179) 2022; 9
Ji, Zhang, Pan, Hua, Chung, Shu, Zhang (bib168) 2020; 44
Xu, Yang, Fei, Huang, Tsui (bib170) 2021; 208
Tang, Li, Wang, Xiong, Li, Pan (bib24) 2024; 39
Wang, Yang, Xu, Wang, Yan, Xie (bib180) 2023; 336
Chang, Fang (bib78) 2019; 186
Shchurov, Dedov, Malozyomov, Shtang, Martyushev, Klyuev, Andriashin (bib122) 2021; 14
Ruan, Barreras, Engstrom, Merla, Millar, Wu (bib160) 2023; 563
Cheng, Wang, He (bib219) 2021; 232
Boerger, Gottschalk, Drescher, Boerger (bib178) 2022; 94
Li, Zhang, Wang, Dong (bib215) 2019; 21
Sun, Pan, Wu, Xia, Wang, Ren, Yang, Guo, Feng (bib167) 2023; 556
Wu, Huang, Tang, Yang, Liu, Li, Zhou, Huang, Xing, Shu, Jiang (bib121) 2021; 13
Wang, Kong, Zhao, Tsui (bib148) 2019; 147
Zhao, Zhu, Zhang, Liu, Wang, Liu, Hao (bib193) 2023; 15
Ghaeminezhad, Wang, Quan (bib165) 2022; 219
Zhou, Xie, Wu, Mei, Hao, Li, Chen (bib142) 2022; 34
Wang, Zhu, Zhang, Tian, Gao, Zhao, Bu, Qing (bib23) 2024; 470
Shen, Wu, Kang, Guan, Peng (bib107) 2021; 218
Thomas, Crasta, Kausthubha, Gowda, Rao (bib223) 2021; 40
Biggins, Homan, Roberts, Brown (bib6) 2021; 7
Guo, Wang, Yao, Fu, Ning (bib76) 2023; 9
Ng, Zhao, Yan, Conduit, Seh (bib192) 2020; 2
Sun, Qu, Zhang, Shi, Jia (bib56) 2022; 16
Mandli, Ramachandran, Khandelwal, Kim, Hariharan (bib59) 2018; 42
Bao, Qin, Yun (bib53) 2023; 9
Lee, Fujiki, Jung, Suzuki, Yashiro, Omoda, Ko, Shiratsuchi, Sugimoto, Ryu, Ku, Watanabe, Park, Aihara, Im, Han (bib144) 2020; 5
Jia, Ma, Guo, Li (bib183) 2021; 61
C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Garnet-type solid-state electrolytes: materials, interfaces, and batteries, Chem. Rev., 120 (10) 4257-4300.
Li, Tian, Li (bib86) 2023; 67
Kong, Yang, Zhang, Pan, Peng, Wang (bib174) 2021; 223
Chen, Kang, E, Huang, Wei, Zhang, Zhu, Deng, Zhang, Liao (bib16) 2019; 442
Ma, Wu, Guan, Peng (bib82) 2020; 476
Zhang, Xiong, He, Pecht (bib265) 2019; 212
Hosen, Kalogiannis, Youssef, Karimi, Behi, Jin, Van Mierlo, Berecibar (bib110) 2021; 9
Duan, Tian, Lu, Wang, Shen, Xiong (bib189) 2021; 41
Long, Li, Gao, Liu (bib236) 2019; 12
Ma, Wang, Liu, Fang, Zhang, Ding, Yuan (bib243) 2022; 259
Rout, Das (bib14) 2025; 13
Singh, Chen, Tan, Huang (bib88) 2019; 9
Lyu, Zhang, Miao (bib225) 2023; 236
Xu, Liu, Hu, Ouyang, Chen (bib212) 2022; 69
Meng, Yang, Yang, Xie (bib254) 2023; 237
Wang, Feng (bib268) 2020; 37
Quan, Wu, Yang, Hu, Zhang, Hu, Liang, Li (bib139) 2023; 15
Lv, Li, Ren, Li, Ma, Duan (bib109) 2021; 9
Shao, Zhang, Zheng, He, Zheng, Liu (bib267) 2023; 16
Wu, Cheng, Huang, Fang, Zhang, Zhao, Zhang, Xing (bib47) 2023; 10
Zhou, Duan, Li, Kang, Shang, Zhang (bib26) 2025; 11
Jiang, Dai, Wei, Jiang (bib41) 2023; 11
Amini, Nazari, Hosseinian (bib131) 2022; 11
Zhang, Tang, Zhang, Wang, Stimming, Lee (bib169) 2020; 11
Liu, Wang, Liu, Liu, Tang, Li (bib157) 2021; 384
Chou, Wang, Lo (bib186) 2023; 9
Liu, Chen (bib260) 2019; 7
Garg, Tanim, Rahn, Bryngelsson, Legnedahl (bib162) 2018; 159
He, Li, Liu, Zhang, Lv, Yang, Li, Du, Zhang, Yang, Kim, Kang (bib98) 2012; 2
Xu, Oudalov, Ulbig, Andersson, Kirschen (bib103) 2018; 9
Ma, Xu, Wei, Wu, He, Zhang, Ma, Liu, Fan, Lin, Liu, Wang (bib14
Severson (10.1016/j.jpowsour.2025.238192_bib93) 2019; 4
Downey (10.1016/j.jpowsour.2025.238192_bib199) 2019; 182
Li (10.1016/j.jpowsour.2025.238192_bib137) 2023; 6
Xing (10.1016/j.jpowsour.2025.238192_bib166) 2023; 219
Che (10.1016/j.jpowsour.2025.238192_bib34) 2023; 16
Amini (10.1016/j.jpowsour.2025.238192_bib131) 2022; 11
Go (10.1016/j.jpowsour.2025.238192_bib229) 2021; 22
Mandli (10.1016/j.jpowsour.2025.238192_bib59) 2018; 42
10.1016/j.jpowsour.2025.238192_bib119
Ren (10.1016/j.jpowsour.2025.238192_bib134) 2020; 45
Couture (10.1016/j.jpowsour.2025.238192_bib179) 2022; 9
Yang (10.1016/j.jpowsour.2025.238192_bib54) 2023; 15
Hong (10.1016/j.jpowsour.2025.238192_bib75) 2023; 179
Zhao (10.1016/j.jpowsour.2025.238192_bib116) 2020; 5
Kouhestani (10.1016/j.jpowsour.2025.238192_bib21) 2023; 70
Bao (10.1016/j.jpowsour.2025.238192_bib53) 2023; 9
Chen (10.1016/j.jpowsour.2025.238192_bib16) 2019; 442
Liu (10.1016/j.jpowsour.2025.238192_bib2) 2019; 4
Zhao (10.1016/j.jpowsour.2025.238192_bib193) 2023; 15
Tang (10.1016/j.jpowsour.2025.238192_bib218) 2023; 170
Kumar Thakur (10.1016/j.jpowsour.2025.238192_bib164) 2023; 226
Shen (10.1016/j.jpowsour.2025.238192_bib107) 2021; 218
Banerjee (10.1016/j.jpowsour.2025.238192_bib117) 2020; 120
Li (10.1016/j.jpowsour.2025.238192_bib61) 2019; 12
10.1016/j.jpowsour.2025.238192_bib128
Bai (10.1016/j.jpowsour.2025.238192_bib242) 2022; 231
Illa Font (10.1016/j.jpowsour.2025.238192_bib9) 2023; 16
Wang (10.1016/j.jpowsour.2025.238192_bib42) 2019; 68
Lui (10.1016/j.jpowsour.2025.238192_bib74) 2021; 485
Meng (10.1016/j.jpowsour.2025.238192_bib254) 2023; 237
Wang (10.1016/j.jpowsour.2025.238192_bib234) 2020; 10
Pang (10.1016/j.jpowsour.2025.238192_bib214) 2023; 61
Liu (10.1016/j.jpowsour.2025.238192_bib161) 2019; 4
Wang (10.1016/j.jpowsour.2025.238192_bib252) 2020; 131
Zhang (10.1016/j.jpowsour.2025.238192_bib37) 2025; 112
Xiong (10.1016/j.jpowsour.2025.238192_bib255) 2023; 62
Chang (10.1016/j.jpowsour.2025.238192_bib78) 2019; 186
Hosen (10.1016/j.jpowsour.2025.238192_bib110) 2021; 9
Wang (10.1016/j.jpowsour.2025.238192_bib23) 2024; 470
Guo (10.1016/j.jpowsour.2025.238192_bib76) 2023; 9
Han (10.1016/j.jpowsour.2025.238192_bib63) 2021; 302
Sarkar (10.1016/j.jpowsour.2025.238192_bib87) 2019; 25
Xiang (10.1016/j.jpowsour.2025.238192_bib126) 2007; 174
Chen (10.1016/j.jpowsour.2025.238192_bib217) 2023; 10
Zhou (10.1016/j.jpowsour.2025.238192_bib142) 2022; 34
Li (10.1016/j.jpowsour.2025.238192_bib17) 2022; 69
Lv (10.1016/j.jpowsour.2025.238192_bib8) 2021; 34
Chen (10.1016/j.jpowsour.2025.238192_bib222) 2021; 50
Duan (10.1016/j.jpowsour.2025.238192_bib251) 2019; 44
Yang (10.1016/j.jpowsour.2025.238192_bib207) 2022; 15
Keil (10.1016/j.jpowsour.2025.238192_bib208) 2016; 6
Wang (10.1016/j.jpowsour.2025.238192_bib177) 2020; 10
Lyu (10.1016/j.jpowsour.2025.238192_bib225) 2023; 236
Xie (10.1016/j.jpowsour.2025.238192_bib10) 2020; 69
Wang (10.1016/j.jpowsour.2025.238192_bib148) 2019; 147
Peng (10.1016/j.jpowsour.2025.238192_bib48) 2020; 13
Boyle (10.1016/j.jpowsour.2025.238192_bib130) 2021; 6
Liu (10.1016/j.jpowsour.2025.238192_bib15) 2025
Ren (10.1016/j.jpowsour.2025.238192_bib5) 2019; 2
Cong (10.1016/j.jpowsour.2025.238192_bib210) 2020; 69
Liu (10.1016/j.jpowsour.2025.238192_bib3) 2023; 6
Dong (10.1016/j.jpowsour.2025.238192_bib67) 2023; 172
Han (10.1016/j.jpowsour.2025.238192_bib120) 2019; 4
Lu (10.1016/j.jpowsour.2025.238192_bib224) 2023; 68
Yang (10.1016/j.jpowsour.2025.238192_bib43) 2021; 10
Ma (10.1016/j.jpowsour.2025.238192_bib143) 2020; 345
Pinson (10.1016/j.jpowsour.2025.238192_bib136) 2012; 160
Kim (10.1016/j.jpowsour.2025.238192_bib256) 2021; 68
Liu (10.1016/j.jpowsour.2025.238192_bib257) 2020; 16
Xu (10.1016/j.jpowsour.2025.238192_bib89) 2019; 12
Sui (10.1016/j.jpowsour.2025.238192_bib105) 2021; 14
Jiang (10.1016/j.jpowsour.2025.238192_bib41) 2023; 11
Zhang (10.1016/j.jpowsour.2025.238192_bib265) 2019; 212
Zhang (10.1016/j.jpowsour.2025.238192_bib249) 2021; 16
Abdel-Monem (10.1016/j.jpowsour.2025.238192_bib158) 2017; 120
Liu (10.1016/j.jpowsour.2025.238192_bib38) 2021
Ji (10.1016/j.jpowsour.2025.238192_bib168) 2020; 44
Zhang (10.1016/j.jpowsour.2025.238192_bib115) 2007; 164
Wang (10.1016/j.jpowsour.2025.238192_bib44) 2019; 7
Liu (10.1016/j.jpowsour.2025.238192_bib18) 2024; 17
Jafari (10.1016/j.jpowsour.2025.238192_bib248) 2022; 22
Elmahallawy (10.1016/j.jpowsour.2025.238192_bib30) 2022; 10
Xu (10.1016/j.jpowsour.2025.238192_bib170) 2021; 208
Zhang (10.1016/j.jpowsour.2025.238192_bib195) 2008; 179
Zhang (10.1016/j.jpowsour.2025.238192_bib169) 2020; 11
Lybbert (10.1016/j.jpowsour.2025.238192_bib198) 2021; 144
Kim (10.1016/j.jpowsour.2025.238192_bib181) 2021; 10
Du (10.1016/j.jpowsour.2025.238192_bib241) 2023; 16
Zinth (10.1016/j.jpowsour.2025.238192_bib141) 2014; 271
Pedersen (10.1016/j.jpowsour.2025.238192_bib91) 2022; 180
Wu (10.1016/j.jpowsour.2025.238192_bib94) 2020; 49
Zhou (10.1016/j.jpowsour.2025.238192_bib26) 2025; 11
Huang (10.1016/j.jpowsour.2025.238192_bib159) 2023; 11
Ruan (10.1016/j.jpowsour.2025.238192_bib160) 2023; 563
Garg (10.1016/j.jpowsour.2025.238192_bib162) 2018; 159
Rouhi Ardeshiri (10.1016/j.jpowsour.2025.238192_bib237) 2021; 45
Liu (10.1016/j.jpowsour.2025.238192_bib65) 2023; 61
Duan (10.1016/j.jpowsour.2025.238192_bib189) 2021; 41
Ungurean (10.1016/j.jpowsour.2025.238192_bib239) 2020; 44
Stroe (10.1016/j.jpowsour.2025.238192_bib127) 2013; 50
Deng (10.1016/j.jpowsour.2025.238192_bib209) 2023; 25
Xu (10.1016/j.jpowsour.2025.238192_bib40) 2021; 9
Sun (10.1016/j.jpowsour.2025.238192_bib56) 2022; 16
Goodenough (10.1016/j.jpowsour.2025.238192_bib100) 2010; 22
Pang (10.1016/j.jpowsour.2025.238192_bib149) 2019; 12
Jiang (10.1016/j.jpowsour.2025.238192_bib118) 2022; 442
Jaguemont (10.1016/j.jpowsour.2025.238192_bib163) 2016; 65
Tang (10.1016/j.jpowsour.2025.238192_bib24) 2024; 39
Si (10.1016/j.jpowsour.2025.238192_bib32) 2011; 213
Liu (10.1016/j.jpowsour.2025.238192_bib155) 2022; 70
Lin (10.1016/j.jpowsour.2025.238192_bib90) 2021; 214
Zhu (10.1016/j.jpowsour.2025.238192_bib77) 2023; 16
Liu (10.1016/j.jpowsour.2025.238192_bib35) 2022
Boerger (10.1016/j.jpowsour.2025.238192_bib178) 2022; 94
Thomas (10.1016/j.jpowsour.2025.238192_bib223) 2021; 40
Liao (10.1016/j.jpowsour.2025.238192_bib52) 2025
Shao (10.1016/j.jpowsour.2025.238192_bib267) 2023; 16
Wang (10.1016/j.jpowsour.2025.238192_bib227) 2023; 38
Tarar (10.1016/j.jpowsour.2025.238192_bib216) 2023; 11
Ma (10.1016/j.jpowsour.2025.238192_bib243) 2022; 259
Ng (10.1016/j.jpowsour.2025.238192_bib192) 2020; 2
Li (10.1016/j.jpowsour.2025.238192_bib55) 2021; 210
Zhu (10.1016/j.jpowsour.2025.238192_bib176) 2021; 482
Liu (10.1016/j.jpowsour.2025.238192_bib13) 2023; 45
Li (10.1016/j.jpowsour.2025.238192_bib29) 2019; 113
Lyu (10.1016/j.jpowsour.2025.238192_bib201) 2021; 36
Wu (10.1016/j.jpowsour.2025.238192_bib121) 2021; 13
Ding (10.1016/j.jpowsour.2025.238192_bib244) 2021; 148
Liu (10.1016/j.jpowsour.2025.238192_bib260) 2019; 7
Deng (10.1016/j.jpowsour.2025.238192_bib185) 2023; 339
Hu (10.1016/j.jpowsour.2025.238192_bib220) 2023; 17
Jia (10.1016/j.jpowsour.2025.238192_bib183) 2021; 61
Hosen (10.1016/j.jpowsour.2025.238192_bib111) 2021; 24
Zhu (10.1016/j.jpowsour.2025.238192_bib151) 2021; 11
Mao (10.1016/j.jpowsour.2025.238192_bib231) 2020; 19
Hu (10.1016/j.jpowsour.2025.238192_bib258) 2020; 7
Wei (10.1016/j.jpowsour.2025.238192_bib271) 2021; 7
Gou (10.1016/j.jpowsour.2025.238192_bib211) 2020; 69
Yin (10.1016/j.jpowsour.2025.238192_bib72) 2020; 271
Quan (10.1016/j.jpowsour.2025.238192_bib139) 2023; 15
Zhai (10.1016/j.jpowsour.2025.238192_bib205) 2017; 13
Wang (10.1016/j.jpowsour.2025.238192_bib268) 2020; 37
Hong (10.1016/j.jpowsour.2025.238192_bib173) 2023; 64
Wassiliadis (10.1016/j.jpowsour.2025.238192_bib85) 2023; 561
Wang (10.1016/j.jpowsour.2025.238192_bib188) 2023; 133
Liu (10.1016/j.jpowsour.2025.238192_bib49) 2023
Xue (10.1016/j.jpowsour.2025.238192_bib57) 2020; 376
Qu (10.1016/j.jpowsour.2025.238192_bib45) 2019; 7
Park (10.1016/j.jpowsour.2025.238192_bib232) 2020; 8
Kim (10.1016/j.jpowsour.2025.238192_bib108) 2020; 12
Che (10.1016/j.jpowsour.2025.238192_bib259) 2021; 70
Xue (10.1016/j.jpowsour.2025.238192_bib175) 2020; 69
Yang (10.1016/j.jpowsour.2025.238192_bib152) 2021; 292
Pan (10.1016/j.jpowsour.2025.238192_bib246) 2021; 9
Shchurov (10.1016/j.jpowsour.2025.238192_bib122) 2021; 14
Lin (10.1016/j.jpowsour.2025.238192_bib95) 2017; 365
Wang (10.1016/j.jpowsour.2025.238192_bib180) 2023; 336
Shen (10.1016/j.jpowsour.2025.238192_bib206) 2019; 7
Wang (10.1016/j.jpowsour.2025.238192_bib11) 2016; 64
Wang (10.1016/j.jpowsour.2025.238192_bib226) 2023; 230
Song (10.1016/j.jpowsour.2025.238192_bib66) 2023; 16
Du (10.1016/j.jpowsour.2025.238192_bib202) 2019; 100
Yang (10.1016/j.jpowsour.2025.238192_bib191) 2021; 70
Chen (10.1016/j.jpowsour.2025.238192_bib36) 2025; 74
Zhou (10.1016/j.jpowsour.2025.238192_bib263) 2021; 230
Wu (10.1016/j.jpowsour.2025.238192_bib47) 2023; 10
Fan (10.1016/j.jpowsour.2025.238192_bib51) 2019; 7
Rout (10.1016/j.jpowsour.2025.238192_bib14) 2025; 13
Miao (10.1016/j.jpowsour.2025.238192_bib19) 2025; 18
Cheng (10.1016/j.jpowsour.2025.238192_bib219) 2021; 232
Chang (10.1016/j.jpowsour.2025.238192_bib156) 2023; 16
Pang (10.1016/j.jpowsour.2025.238192_bib79) 2018
Yin (10.1016/j.jpowsour.2025.238192_bib92) 2021; 21
Guha (10.1016/j.jpowsour.2025.238192_bib240) 2016
Li (10.1016/j.jpowsour.2025.238192_bib99) 2022; 15
Lipu (10.1016/j.jpowsour.2025.238192_bib20) 2021; 292
Zhang (10.1016/j.jpowsour.2025.238192_bib1) 2022; 34
Wei (10.1016/j.jpowsour.2025.238192_bib150) 2022; 230
Tian (10.1016/j.jpowsour.2025.238192_bib135) 2020; 261
Zhang (10.1016/j.jpowsour.2025.238192_bib238) 2023; 11
López-Villanueva (10.1016/j.jpowsour.2025.238192_bib129) 2023; 16
Zhang (10.1016/j.jpowsour.2025.238192_bib70) 2019; 1
Tu (10.1016/j.jpowsour.2025.238192_bib83) 2023; 329
Zhigang (10.1016/j.jpowsour.2025.238192_bib58) 2023; 145
Biggins (10.1016/j.jpowsour.2025.238192_bib6) 2021; 7
Li (10.1016/j.jpowsour.2025.238192_bib80) 2023; 62
Deng (10.1016/j.jpowsour.2025.238192_bib147) 2020; 33
Christensen (10.1016/j.jpowsour.2025.238192_bib184) 2005; 152
Horstkötter (10.1016/j.jpowsour.2025.238192_bib112) 2023; 60
Lin (10.1016/j.jpowsour.2025.2381
References_xml – volume: 11
  year: 2021
  ident: bib140
  article-title: A growing appreciation for the role of LiF in the solid electrolyte interphase
  publication-title: Adv. Energy Mater.
– volume: 10
  year: 2023
  ident: bib217
  article-title: Remaining useful life prognostics of lithium-ion batteries based on a coordinate reconfiguration of degradation trajectory and multiple linear regression
  publication-title: Front. Energy Res.
– start-page: 1004
  year: 2018
  end-page: 1009
  ident: bib79
  article-title: Research on modeling method of life prediction for satellite lithium battery based on SVR
  publication-title: 2018 Prognostics and System Health Management Conference (PHM-Chongqing)
– volume: 50
  start-page: 4006
  year: 2013
  end-page: 4017
  ident: bib127
  article-title: Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants
  publication-title: IEEE Trans. Ind. Appl.
– year: 2025
  ident: bib52
  article-title: Zwitterionic poly(ionic liquid)-induced fast structural diffusion electrolytes for lithium metal batteries
  publication-title: Chin. Chem. Lett.
– volume: 15
  start-page: 5014
  year: 2023
  ident: bib193
  article-title: Review of state estimation and remaining useful life prediction methods for lithium-ion batteries
  publication-title: Sustainability
– volume: 13
  start-page: 752
  year: 2020
  ident: bib48
  article-title: A data-driven method with feature enhancement and adaptive optimization for lithium-ion battery remaining useful life prediction
  publication-title: Energies
– volume: 10
  start-page: 119040
  year: 2022
  end-page: 119070
  ident: bib30
  article-title: A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction
  publication-title: IEEE IEEE Veh. Technol. Soc. Section
– volume: 4
  start-page: 187
  year: 2019
  end-page: 196
  ident: bib120
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat. Energy
– volume: 41
  start-page: 24
  year: 2021
  end-page: 31
  ident: bib189
  article-title: Deep neural network battery impedance spectra prediction by only using constant-current curve
  publication-title: Energy Storage Mater.
– volume: 476
  year: 2020
  ident: bib82
  article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach
  publication-title: J. Power Sources
– volume: 9
  start-page: 224
  year: 2023
  ident: bib53
  article-title: A multi-stage adaptive method for remaining useful life prediction of lithium-ion batteries based on swarm intelligence optimization
  publication-title: Batteries
– volume: 470
  year: 2024
  ident: bib23
  article-title: Competition between discharge reaction and side reaction for anode's lithium during internal short circuit in lithium-ion batteries
  publication-title: J. Clean. Prod.
– volume: 180
  year: 2022
  ident: bib91
  article-title: Life cycle analysis of LiCoO
  publication-title: Resour. Conserv. Recycl.
– volume: 285
  year: 2023
  ident: bib266
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm
  publication-title: Energy
– volume: 37
  start-page: 1232
  year: 2020
  end-page: 1243
  ident: bib268
  article-title: Remaining useful life prediction of lithium‐ion battery using a novel health indicator
  publication-title: Energy
– volume: 174
  start-page: 335
  year: 2007
  end-page: 341
  ident: bib126
  article-title: Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries
  publication-title: J. Power Sources
– volume: 40
  start-page: 1850
  year: 2023
  end-page: 1862
  ident: bib171
  article-title: Feature construction for on-board early prediction of electric vehicle battery cycle life
  publication-title: Kor. J. Chem. Eng.
– volume: 336
  year: 2023
  ident: bib180
  article-title: Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network
  publication-title: Appl. Energy
– volume: 159
  start-page: 716
  year: 2018
  end-page: 723
  ident: bib162
  article-title: Elevated temperature for life extension of lithium ion power cells
  publication-title: Energy
– volume: 9
  start-page: 1299
  year: 2023
  end-page: 1306
  ident: bib76
  article-title: RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model
  publication-title: Energy Rep.
– reference: C. Wang, K. Fu, S.P. Kammampata, D.W. McOwen, A.J. Samson, L. Zhang, G.T. Hitz, A.M. Nolan, E.D. Wachsman, Y. Mo, V. Thangadurai, L. Hu, Garnet-type solid-state electrolytes: materials, interfaces, and batteries, Chem. Rev., 120 (10) 4257-4300.
– volume: 563
  year: 2023
  ident: bib160
  article-title: Lithium-ion battery lifetime extension: a review of derating methods
  publication-title: J. Power Sources
– volume: 15
  start-page: 9176
  year: 2023
  ident: bib64
  article-title: Remaining useful life prediction for lithium-ion batteries based on improved mode decomposition and time series
  publication-title: IEEE Access
– volume: 329
  year: 2023
  ident: bib83
  article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries
  publication-title: Appl. Energy
– volume: 13
  start-page: 2619
  year: 2024
  ident: bib113
  article-title: Remaining useful life prediction of lithium-ion batteries based on neural network and adaptive unscented kalman filter
  publication-title: Appl. Energy
– volume: 230
  year: 2023
  ident: bib226
  article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 11
  year: 2023
  ident: bib68
  article-title: Prediction of lithium‐ion battery remaining useful life via empirical mode decomposition‐autoregressive integrated moving average and regularized particle filter algorithm
  publication-title: Energy Technol.
– volume: 182
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib199
  article-title: Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 1
  year: 2019
  ident: bib70
  article-title: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries
  publication-title: eTransportation
– volume: 234
  year: 2021
  ident: bib145
  article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM
  publication-title: Energy
– volume: 133
  year: 2023
  ident: bib188
  article-title: A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy
  publication-title: Control Eng. Pract.
– volume: 40
  year: 2021
  ident: bib223
  article-title: Battery monitoring system using machine learning
  publication-title: J. Energy Storage
– volume: 7
  start-page: 382
  year: 2020
  end-page: 398
  ident: bib258
  article-title: Battery health prediction using fusion-based feature selection and machine learning
  publication-title: IEEE Trans. Transp. Electrification
– volume: 278
  year: 2020
  ident: bib27
  article-title: Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning
  publication-title: Appl. Energy
– volume: 147
  year: 2019
  ident: bib148
  article-title: Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena
  publication-title: Measurement
– volume: 6
  start-page: 125
  year: 2016
  end-page: 141
  ident: bib208
  article-title: Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different 18650 high-power cells
  publication-title: J. Energy Storage
– volume: 11
  year: 2023
  ident: bib238
  article-title: State‐of‐Charge prediction of lithium‐ion batteries based on sparse autoencoder and gated recurrent unit neural network
  publication-title: Energy Technol.
– volume: 219
  year: 2022
  ident: bib165
  article-title: A review on lithium-ion battery thermal management system techniques: a control-oriented analysis
  publication-title: Appl. Therm. Eng.
– volume: 169
  year: 2022
  ident: bib187
  article-title: Review—“Knees”in lithium-ion battery aging trajectories
  publication-title: J. Electrochem. Soc.
– volume: 131
  year: 2020
  ident: bib252
  article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 7
  start-page: 2797
  year: 2019
  end-page: 2813
  ident: bib44
  article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries
  publication-title: Energy Sci. Eng.
– volume: 7
  start-page: 34
  year: 2021
  end-page: 41
  ident: bib6
  article-title: Exploring the economics of large scale lithium ion and lead acid batteries performing frequency response
  publication-title: Energy Rep.
– volume: 34
  year: 2021
  ident: bib8
  article-title: Machine learning: an advanced platform for materials development and state prediction in lithium‐ion batteries
  publication-title: Adv. Mater.
– volume: 160
  year: 2012
  ident: bib136
  article-title: Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction
  publication-title: J. Electrochem. Soc.
– volume: 1
  year: 2019
  ident: bib96
  article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle
  publication-title: eTransportation
– volume: 4
  start-page: 683
  year: 2019
  end-page: 689
  ident: bib125
  article-title: Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte
  publication-title: Nat. Energy
– volume: 16
  start-page: 338
  year: 2023
  end-page: 371
  ident: bib34
  article-title: Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects
  publication-title: Energy Environ. Sci.
– volume: 229
  year: 2021
  ident: bib114
  article-title: A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries
  publication-title: Energy
– start-page: 385
  year: 2023
  ident: bib25
  article-title: Data-driven prognosis of lithium-ion batteries thermal runaway: a novel machine learning approach
  publication-title: ECS Meeting Abstracts
– volume: 74
  start-page: 1
  year: 2025
  end-page: 14
  ident: bib36
  article-title: SOC estimation of lithium-ion battery pack based on discharge stage division and fusion modeling
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 225
  year: 2021
  ident: bib81
  article-title: Early prediction of battery lifetime via a machine learning based framework
  publication-title: Energy
– volume: 25
  start-page: 646
  year: 2023
  ident: bib209
  article-title: Multi-fractal weibull adaptive model for the remaining useful life prediction of electric vehicle lithium batteries
  publication-title: Entropy
– volume: 25
  year: 2019
  ident: bib87
  article-title: Chemo-economic analysis of battery aging and capacity fade in lithium-ion battery
  publication-title: J. Energy Storage
– volume: 21
  start-page: 1087
  year: 2021
  ident: bib92
  article-title: Life prediction of battery using a neural gaussian process with early discharge characteristics
  publication-title: Sensors
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  ident: bib100
  article-title: Challenges for rechargeable li batteries
  publication-title: Chem. Mater.
– volume: 68
  year: 2023
  ident: bib224
  article-title: A novel method of prediction for capacity and remaining useful life of lithium-ion battery based on multi-time scale Weibull accelerated failure time regression
  publication-title: J. Energy Storage
– volume: 218
  year: 2021
  ident: bib107
  article-title: A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current
  publication-title: Energy
– volume: 144
  year: 2021
  ident: bib198
  article-title: Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 9165
  year: 2022
  ident: bib99
  article-title: Electrochemical failure results inevitable capacity degradation in Li-Ion Batteries-A review
  publication-title: Energies
– volume: 70
  start-page: 531
  year: 2022
  end-page: 541
  ident: bib155
  article-title: Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery
  publication-title: J. Energy Chem.
– volume: 11
  start-page: 6335
  year: 2025
  end-page: 6343
  ident: bib26
  article-title: Life-cycle state-of-charge estimation for lithium-ion battery considering coulomb efficiency and capacity decay
  publication-title: IEEE Trans. Transp. Electrification
– volume: 11
  start-page: 57
  year: 2023
  end-page: 66
  ident: bib159
  article-title: Lifetime extension of lithium-ion batteries with low-frequency pulsed current charging
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
– volume: 148
  year: 2021
  ident: bib244
  article-title: Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 4772
  year: 2023
  end-page: 4780
  ident: bib139
  article-title: Improving performances of the electrode/electrolyte interface via the regulation of solvation complexes: a review and prospect
  publication-title: Nanoscale
– volume: 5
  start-page: 1225
  year: 2019
  end-page: 1236
  ident: bib264
  article-title: Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries
  publication-title: IEEE Trans. Transp. Electrification
– volume: 16
  start-page: 767
  year: 2023
  ident: bib66
  article-title: Lithium-Ion battery life prediction method under thermal gradient conditions
  publication-title: Energies
– volume: 69
  start-page: 12775
  year: 2020
  end-page: 12785
  ident: bib210
  article-title: A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation
  publication-title: IEEE Trans. Veh. Technol.
– volume: 112
  year: 2025
  ident: bib37
  article-title: Fault diagnosis of energy storage batteries based on dual driving of data and models
  publication-title: J. Energy Storage
– volume: 208
  year: 2021
  ident: bib170
  article-title: Life prediction of lithium-ion batteries based on stacked denoising autoencoders
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 19
  start-page: 6471
  year: 2023
  end-page: 6481
  ident: bib245
  article-title: Semi-supervised self-learning-based lifetime prediction for batteries
  publication-title: IEEE Trans. Ind. Inf.
– volume: 10
  year: 2022
  ident: bib196
  article-title: Study on lithium-ion battery degradation caused by side reactions in fast-charging process
  publication-title: Front. Energy Res.
– volume: 213
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib32
  article-title: Remaining useful life estimation-A review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
– volume: 69
  start-page: 14765
  year: 2020
  end-page: 14779
  ident: bib175
  article-title: Remaining useful life prediction for lithium-ion batteries based on capacity estimation and box-cox transformation
  publication-title: IEEE Trans. Veh. Technol.
– volume: 70
  start-page: 1269
  year: 2021
  end-page: 1277
  ident: bib259
  article-title: Predictive battery health management with transfer learning and online model correction
  publication-title: IEEE Trans. Veh. Technol.
– volume: 18
  start-page: 1888
  year: 2025
  ident: bib19
  article-title: Analysis of state-of-charge estimation methods for Li-Ion batteries considering wide temperature range
  publication-title: Energies
– volume: 210
  year: 2021
  ident: bib55
  article-title: Remaining useful life estimation of lithium-ion battery based on interacting multiple model particle filter and support vector regression
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 232
  year: 2021
  ident: bib219
  article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network
  publication-title: Energy
– volume: 561
  year: 2023
  ident: bib85
  article-title: Model-based health-aware fast charging to mitigate the risk of lithium plating and prolong the cycle life of lithium-ion batteries in electric vehicles
  publication-title: J. Power Sources
– volume: 120
  start-page: 6783
  year: 2020
  end-page: 6819
  ident: bib124
  article-title: New concepts in electrolytes
  publication-title: Chem. Rev.
– start-page: 555
  year: 2016
  end-page: 560
  ident: bib240
  article-title: Remaining useful life estimation of lithium-ion batteries based on a new capacity degradation model
  publication-title: 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific)
– volume: 365
  start-page: 235
  year: 2017
  end-page: 239
  ident: bib95
  article-title: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy
  publication-title: J. Power Sources
– volume: 7
  start-page: 2862
  year: 2021
  end-page: 2871
  ident: bib271
  article-title: Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and gated recurrent unit
  publication-title: Energy Rep.
– volume: 11
  start-page: 1359
  year: 2022
  end-page: 1371
  ident: bib131
  article-title: Optimal scheduling and cost-benefit analysis of lithium-ion batteries based on battery state of health
  publication-title: IEEE Access
– volume: 164
  year: 2020
  ident: bib235
  article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation
  publication-title: Measurement
– volume: 17
  start-page: 1643
  year: 2024
  ident: bib18
  article-title: Advances in the study of techniques to determine the lithium-ion battery's state of charge
  publication-title: Energies
– volume: 69
  start-page: 10854
  year: 2020
  end-page: 10867
  ident: bib211
  article-title: State-of-Health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: J. Power Sources
– volume: 152
  year: 2005
  ident: bib184
  article-title: Cyclable lithium and capacity loss in Li-Ion cells
  publication-title: J. Electrochem. Soc.
– volume: 7
  start-page: 130638
  year: 2019
  end-page: 130649
  ident: bib206
  article-title: Research on degradation modeling and life prediction method of lithium-ion battery in dynamic environment
  publication-title: IEEE Access
– volume: 61
  year: 2023
  ident: bib214
  article-title: A novel hybrid model for lithium-ion batteries lifespan prediction with high accuracy and interpretability
  publication-title: J. Energy Storage
– volume: 39
  start-page: 2230
  year: 2024
  end-page: 2243
  ident: bib24
  article-title: Data-driven state of health estimation method of lithium-ion batteries for partial charging curves
  publication-title: IEEE Trans. Energy Convers.
– volume: 16
  start-page: 3096
  year: 2023
  ident: bib156
  article-title: Remaining-useful-life prediction for Li-Ion batteries
  publication-title: Energies
– volume: 10
  start-page: 3549
  year: 2020
  ident: bib234
  article-title: Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries
  publication-title: Appl. Sci.
– volume: 230
  year: 2021
  ident: bib263
  article-title: Research on state of health prediction model for lithium batteries based on actual diverse data
  publication-title: Energy
– volume: 186
  start-page: 51
  year: 2019
  end-page: 63
  ident: bib78
  article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 438
  year: 2019
  ident: bib73
  article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model
  publication-title: J. Power Sources
– volume: 271
  year: 2020
  ident: bib72
  article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control
  publication-title: Appl. Energy
– volume: 12
  start-page: 2247
  year: 2019
  ident: bib149
  article-title: A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon
  publication-title: Energies
– volume: 18
  year: 2019
  ident: bib250
  article-title: Remaining useful life prediction of lithium‐ion battery based on an improved particle filter algorithm
  publication-title: Int. J. Electrochem. Sci.
– volume: 113
  year: 2019
  ident: bib29
  article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 94
  start-page: 603
  year: 2022
  end-page: 606
  ident: bib178
  article-title: Shaking lithium‐ion cells on a Rocker-Temperature‐Dependent influence of mechanical movement on lithium‐ion battery lifetime
  publication-title: Chem. Ing. Tech.
– volume: 482
  year: 2021
  ident: bib176
  article-title: Data-driven analysis on thermal effects and temperature changes of lithium-ion battery
  publication-title: J. Power Sources
– volume: 61
  year: 2023
  ident: bib65
  article-title: A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm
  publication-title: J. Energy Storage
– volume: 18
  start-page: 2965
  year: 2021
  end-page: 2973
  ident: bib262
  article-title: Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life
  publication-title: IEEE Trans. Ind. Inf.
– volume: 13
  start-page: 2911
  year: 2017
  end-page: 2921
  ident: bib205
  article-title: RUL prediction of deteriorating products using an adaptive wiener process model
  publication-title: IEEE Trans. Ind. Inf.
– volume: 11
  start-page: 143
  year: 2021
  end-page: 153
  ident: bib151
  article-title: Remaining useful life prediction of lithium-ion batteries: a hybrid approach of grey–markov chain model and improved gaussian process
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
– volume: 6
  start-page: 2351
  year: 2021
  end-page: 2355
  ident: bib4
  article-title: ENPOLITE: comparing lithium-ion cells across energy, power, lifetime, and temperature
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 175
  year: 2023
  end-page: 186
  ident: bib41
  article-title: Multi-kernel relevance vector machine with parameter optimization for cycling aging prediction of lithium-ion batteries
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
– volume: 2
  year: 2019
  ident: bib5
  article-title: A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries
  publication-title: eTransportation
– volume: 49
  start-page: 1569
  year: 2020
  end-page: 1614
  ident: bib94
  article-title: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries
  publication-title: Chem. Soc. Rev.
– year: 2025
  ident: bib15
  article-title: 2D TMD-based lateral heterostructures: preparation, property, and application
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 803
  year: 2023
  ident: bib77
  article-title: Prognosis of lithium-ion batteries' remaining useful life based on a sequence-to-sequence model with variational mode decomposition
  publication-title: Energies
– volume: 539
  year: 2022
  ident: bib194
  article-title: A four parameter model for the solid-electrolyte interphase to predict battery aging during operation
  publication-title: J. Power Sources
– volume: 16
  start-page: 953
  year: 2023
  ident: bib9
  article-title: Second life of lithium-ion batteries of electric vehicles: a short review and perspectives
  publication-title: Energies
– volume: 16
  start-page: 2484
  year: 2023
  ident: bib129
  article-title: Application of variable-order fractional calculus to the modeling of calendar aging in lithium-ion batteries
  publication-title: Energies
– volume: 44
  start-page: 1724
  year: 2019
  end-page: 1734
  ident: bib251
  article-title: Remaining useful life prediction of lithium‐ion battery based on extended kalman particle filter
  publication-title: Int. J. Energy Res.
– volume: 7
  start-page: 39474
  year: 2019
  end-page: 39484
  ident: bib260
  article-title: Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model
  publication-title: IEEE Access
– volume: 11
  start-page: 4671
  year: 2021
  ident: bib104
  article-title: Solid-state lithium battery cycle life prediction using machine learning
  publication-title: Appl. Sci.
– volume: 384
  year: 2021
  ident: bib157
  article-title: Battery degradation model and multiple-indicators based lifetime estimator for energy storage system design and operation: experimental analyses of cycling-induced aging
  publication-title: Electrochim. Acta
– volume: 69
  start-page: 6984
  year: 2022
  end-page: 6996
  ident: bib17
  article-title: Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
– volume: 4
  start-page: 310
  year: 2020
  end-page: 346
  ident: bib28
  article-title: Battery lifetime prognostics
  publication-title: Joule
– volume: 41
  year: 2021
  ident: bib7
  article-title: Choosing the best lifetime model for commercial lithium-ion batteries
  publication-title: J. Energy Storage
– volume: 67
  year: 2023
  ident: bib86
  article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect
  publication-title: J. Energy Storage
– volume: 237
  year: 2023
  ident: bib254
  article-title: A power model considering initial battery state for remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 8
  start-page: 142557
  year: 2020
  end-page: 142570
  ident: bib46
  article-title: Multi-parameter optimization method for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Access
– volume: 214
  year: 2021
  ident: bib90
  article-title: Prognostics for lithium-ion batteries using a two-phase gamma degradation process model
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 9
  start-page: 3012
  year: 2019
  ident: bib88
  article-title: Semi-empirical capacity fading model for SoH estimation of Li-Ion batteries
  publication-title: Appl. Sci.
– volume: 16
  start-page: 1469
  year: 2023
  ident: bib267
  article-title: A review of remaining useful life prediction for energy storage components based on stochastic filtering methods
  publication-title: Energies
– volume: 14
  start-page: 8072
  year: 2021
  ident: bib122
  article-title: Degradation of lithium-ion batteries in an electric transport complex
  publication-title: Energies
– volume: 120
  start-page: 179
  year: 2017
  end-page: 191
  ident: bib158
  article-title: Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries
  publication-title: Energy
– volume: 10
  start-page: 1497
  year: 2021
  ident: bib43
  article-title: State of health prediction of lithium-ion batteries based on the discharge voltage and temperature
  publication-title: IEEE Trans. Veh. Technol.
– volume: 9
  start-page: 1115
  year: 2021
  end-page: 1133
  ident: bib246
  article-title: Prediction of remaining useful life for lithium‐ion battery based on particle filter with residual resampling
  publication-title: Energy Sci. Eng.
– volume: 70
  year: 2023
  ident: bib21
  article-title: Data-driven prognosis of failure detection and prediction of lithium-ion batteries
  publication-title: J. Energy Storage
– volume: 34
  year: 2021
  ident: bib153
  article-title: A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction
  publication-title: J. Energy Storage
– volume: 7
  start-page: 87178
  year: 2019
  end-page: 87191
  ident: bib45
  article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery
  publication-title: IEEE Access
– volume: 212
  start-page: 240
  year: 2019
  end-page: 249
  ident: bib265
  article-title: Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries
  publication-title: J. Clean. Prod.
– volume: 11
  year: 2023
  ident: bib216
  article-title: Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features
  publication-title: Front. Energy Res.
– volume: 302
  year: 2021
  ident: bib63
  article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion
  publication-title: Appl. Energy
– volume: 13
  start-page: 375
  year: 2020
  ident: bib172
  article-title: SOH and RUL prediction of lithium-ion batteries based on gaussian process regression with indirect health indicators
  publication-title: Energies
– volume: 57
  year: 2023
  ident: bib31
  article-title: Remaining life prediction of lithium-ion batteries based on health management: a review
  publication-title: J. Energy Storage
– volume: 62
  year: 2023
  ident: bib80
  article-title: The co-estimation of states for lithium-ion batteries based on segment data
  publication-title: J. Energy Storage
– volume: 50
  year: 2021
  ident: bib222
  article-title: Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery
  publication-title: Adv. Eng. Inform.
– volume: 12
  start-page: 1685
  year: 2019
  ident: bib89
  article-title: Remaining useful life prediction of lithium-ion batteries based on wiener processes with considering the relaxation effect
  publication-title: Energies
– volume: 22
  start-page: 697
  year: 2021
  end-page: 703
  ident: bib229
  article-title: LSTM model-based SOH prediction for lithium-ion battery
  publication-title: J. Digital Contents Soc.
– volume: 243
  year: 2021
  ident: bib69
  article-title: A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery
  publication-title: Energy
– volume: 339
  year: 2023
  ident: bib185
  article-title: Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles
  publication-title: Appl. Energy
– volume: 5
  start-page: 105
  year: 2019
  end-page: 126
  ident: bib123
  article-title: Understanding interface stability in solid-state batteries
  publication-title: Nat. Rev. Mater.
– volume: 6
  year: 2023
  ident: bib3
  article-title: Prelithiation enhances cycling life of lithium‐ion batteries: a mini review
  publication-title: Energy Environ. Mater.
– volume: 442
  year: 2022
  ident: bib118
  article-title: Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes
  publication-title: Chem. Eng. J.
– volume: 527
  year: 2022
  ident: bib270
  article-title: Feature engineering for machine learning enabled early prediction of battery lifetime
  publication-title: J. Power Sources
– volume: 17
  start-page: 3109
  year: 2023
  end-page: 3117
  ident: bib220
  article-title: Image, RUL prediction for lithium-ion batteries based on variational mode decomposition and hybrid network model
  publication-title: Signal, Image and Video Processing
– volume: 263
  year: 2023
  ident: bib269
  article-title: Life prediction model for lithium-ion battery considering fast-charging protocol
  publication-title: Energy
– volume: 9
  start-page: 2191
  year: 2021
  end-page: 2201
  ident: bib110
  article-title: Twin‐model framework development for a comprehensive battery lifetime prediction validated with a realistic driving profile
  publication-title: Energy Sci. Eng.
– reference: T. Hu, H. Ma, K. Liu, H. Sun, Lithium-ion battery calendar health prognostics based on knowledge-data-driven attention, IEEE Trans. Ind. Electron. 70 (1) 407-417.
– volume: 100
  year: 2019
  ident: bib202
  article-title: Remaining useful life prediction of Lithium-ion batteries of stratospheric airship by model-based method
  publication-title: Microelectron. Reliab.
– volume: 202
  year: 2023
  ident: bib12
  article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids
  publication-title: Int. J. Heat Mass Tran.
– volume: 376
  start-page: 95
  year: 2020
  end-page: 102
  ident: bib57
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression
  publication-title: Neurocomputing
– volume: 166
  start-page: 796
  year: 2019
  end-page: 806
  ident: bib62
  article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system
  publication-title: Energy
– volume: 45
  start-page: 7732
  year: 2020
  end-page: 7740
  ident: bib134
  article-title: A practical approach to predict volume deformation of lithium‐ion batteries from crystal structure changes of electrode materials
  publication-title: Int. J. Energy Res.
– volume: 9
  start-page: 85431
  year: 2021
  end-page: 85441
  ident: bib40
  article-title: State of health diagnosis and remaining useful life prediction of lithium-ion batteries based on multi-feature data and mechanism fusion
  publication-title: IEEE Access
– volume: 16
  start-page: 313
  year: 2022
  ident: bib56
  article-title: Remaining useful life prediction for lithium-ion batteries based on improved variational mode decomposition and machine learning algorithm
  publication-title: IEEE Access
– volume: 259
  year: 2022
  ident: bib243
  article-title: A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries
  publication-title: Knowl. Base Syst.
– volume: 16
  start-page: 3767
  year: 2020
  end-page: 3777
  ident: bib257
  article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Inf.
– volume: 214
  year: 2021
  ident: bib60
  article-title: Remaining useful life prediction of lithium-ion batteries based on wiener process under time-varying temperature condition
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 80
  year: 2021
  ident: bib133
  article-title: Advanced electrolyte design for stable lithium metal anode: from liquid to solid
  publication-title: Nano Energy
– volume: 10
  start-page: 487
  year: 2021
  ident: bib181
  article-title: Novel practical life cycle prediction method by entropy estimation of Li-Ion battery
  publication-title: Electronics
– volume: 2
  start-page: 161
  year: 2020
  end-page: 170
  ident: bib192
  article-title: Predicting the state of charge and health of batteries using data-driven machine learning
  publication-title: Nat. Mach. Intell.
– volume: 23
  start-page: 2587
  year: 2023
  ident: bib154
  article-title: Prediction of state of health of lithium-ion battery using health index informed attention model
  publication-title: Sensors
– volume: 18
  year: 2023
  ident: bib39
  article-title: Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter
  publication-title: Int. J. Electrochem. Sci.
– volume: 68
  start-page: 9543
  year: 2019
  end-page: 9553
  ident: bib42
  article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony
  publication-title: IEEE Trans. Veh. Technol.
– volume: 24
  year: 2021
  ident: bib111
  article-title: Battery lifetime prediction and performance assessment of different modeling approaches
  publication-title: iScience
– volume: 236
  year: 2023
  ident: bib225
  article-title: Parallel state fusion LSTM-based early-cycle stage lithium-ion battery RUL prediction under Lebesgue sampling framework
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 34
  year: 2022
  ident: bib142
  article-title: Encapsulation of metallic Zn in a hybrid MXene/Graphene aerogel as a stable Zn anode for foldable Zn-Ion batteries
  publication-title: Adv. Mater.
– volume: 8
  start-page: 123858
  year: 2020
  end-page: 123868
  ident: bib190
  article-title: State of health estimation for lithium-ion battery using empirical degradation and error compensation models
  publication-title: IEEE Access
– volume: 12
  start-page: 8544
  year: 2020
  ident: bib108
  article-title: Scale-Up of physics-based models for predicting degradation of large lithium ion batteries
  publication-title: Sustainability
– volume: 68
  start-page: 10949
  year: 2021
  end-page: 10958
  ident: bib253
  article-title: Dynamic bayesian network-based lithium-ion battery health prognosis for electric vehicles
  publication-title: IEEE Trans. Ind. Electron.
– volume: 360
  start-page: 28
  year: 2017
  end-page: 40
  ident: bib84
  article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging
  publication-title: J. Power Sources
– volume: 2
  start-page: 913
  year: 2012
  ident: bib98
  article-title: Gassing in Li
  publication-title: Sci. Rep.
– volume: 6
  start-page: 487
  year: 2021
  end-page: 494
  ident: bib130
  article-title: Corrosion of lithium metal anodes during calendar ageing and its microscopic origins
  publication-title: Nat. Energy
– volume: 72
  start-page: 5934
  year: 2023
  end-page: 5947
  ident: bib203
  article-title: Ensemble remaining useful life prediction for lithium-ion batteries with the fusion of historical and real-time degradation data
  publication-title: IEEE Trans. Veh. Technol.
– volume: 14
  start-page: 1732
  year: 2021
  ident: bib105
  article-title: The degradation behavior of LiFePO
  publication-title: Energies
– volume: 5
  start-page: 299
  year: 2020
  end-page: 308
  ident: bib144
  article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
  publication-title: Nat. Energy
– volume: 15
  start-page: 1602
  year: 2023
  ident: bib54
  article-title: Remaining useful life prediction for lithium-ion batteries based on the partial voltage and temperature
  publication-title: IEEE Access
– volume: 234
  year: 2021
  ident: bib146
  article-title: Remaining useful life prediction of lithium battery based on capacity regeneration point detection
  publication-title: Energy
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  ident: bib2
  article-title: Challenges and opportunities towards fast-charging battery materials
  publication-title: Nat. Energy
– volume: 170
  year: 2023
  ident: bib22
  article-title: Data-driven prognosis of multiscale and multiphysics complex system anomalies: its application to lithium-ion batteries failure detection
  publication-title: J. Electrochem. Soc.
– volume: 292
  year: 2021
  ident: bib20
  article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: progress
  publication-title: J. Clean. Prod.
– volume: 36
  start-page: 6228
  year: 2021
  end-page: 6240
  ident: bib201
  article-title: Li-Ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method
  publication-title: IEEE Trans. Power Electron.
– volume: 164
  start-page: 351
  year: 2007
  end-page: 364
  ident: bib115
  article-title: A review on the separators of liquid electrolyte Li-ion batteries
  publication-title: J. Power Sources
– start-page: 2779
  year: 2023
  ident: bib49
  article-title: (Digital presentation) data-driven prognosis of lithium-ion batteries thermal runaway early warning and detection
  publication-title: Electrochem. Soc.
– volume: 9
  start-page: 3995
  year: 2021
  end-page: 4006
  ident: bib109
  article-title: Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method
  publication-title: J. Mater. Chem. A
– volume: 62
  year: 2023
  ident: bib255
  article-title: Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curves
  publication-title: J. Energy Storage
– start-page: 1864
  year: 2021
  ident: bib38
  article-title: Data-driven prognosis of the failure of lithium-ion batteries
  publication-title: ECS Meeting Abstracts
– volume: 16
  start-page: 1420
  year: 2023
  ident: bib241
  article-title: Research on state-of-health estimation for lithium-ion batteries based on the charging phase
  publication-title: Energies
– volume: 45
  start-page: 14692
  year: 2021
  end-page: 14709
  ident: bib200
  article-title: A novel dual time scale life prediction method for lithium‐ion batteries considering effects of temperature and state of charge
  publication-title: Int. J. Energy Res.
– volume: 442
  year: 2019
  ident: bib16
  article-title: Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review
  publication-title: J. Power Sources
– volume: 456
  year: 2020
  ident: bib101
  article-title: A comprehensive single-particle-degradation model for battery state-of-health prediction
  publication-title: J. Power Sources
– volume: 33
  start-page: 2035
  year: 2020
  end-page: 2046
  ident: bib147
  article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery
  publication-title: Neural Comput. Appl.
– volume: 4
  start-page: 540
  year: 2019
  end-page: 550
  ident: bib161
  article-title: Challenges and opportunities towards fast-charging battery materials
  publication-title: Nat. Energy
– volume: 172
  start-page: 894
  year: 2023
  end-page: 907
  ident: bib67
  article-title: Data-driven predictive prognostic model for power batteries based on machine learning
  publication-title: Process Saf. Environ. Prot.
– volume: 69
  start-page: 14657
  year: 2020
  end-page: 14673
  ident: bib10
  article-title: An MPC-based control strategy for electric vehicle battery cooling considering energy saving and battery lifespan
  publication-title: IEEE Trans. Veh. Technol.
– volume: 292
  year: 2021
  ident: bib152
  article-title: A machine-learning prediction method of lithium-ion battery life based on charge process for different applications
  publication-title: Appl. Energy
– volume: 17
  start-page: 3478
  year: 2021
  end-page: 3487
  ident: bib233
  article-title: A data-driven Auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life
  publication-title: IEEE Trans. Ind. Inf.
– volume: 22
  start-page: 9552
  year: 2022
  ident: bib248
  article-title: XGBoost-Based remaining useful life estimation model with extended kalman particle filter for lithium-ion batteries
  publication-title: Sensors
– volume: 42
  start-page: 1973
  year: 2018
  end-page: 1982
  ident: bib59
  article-title: Fast computational framework for optimal life management of lithium ion batteries
  publication-title: Int. J. Energy Res.
– volume: 485
  year: 2021
  ident: bib74
  article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction
  publication-title: J. Power Sources
– volume: 6
  start-page: 7
  year: 2023
  ident: bib137
  article-title: A review of Solid Electrolyte Interphase (SEI) and dendrite formation in lithium batteries
  publication-title: Electrochem. Energy Rev.
– volume: 9
  start-page: 1131
  year: 2018
  end-page: 1140
  ident: bib103
  article-title: Modeling of lithium-ion battery degradation for cell life assessment
  publication-title: IEEE Trans. Smart Grid
– volume: 56
  year: 2022
  ident: bib33
  article-title: Review of “grey box” lifetime modeling for lithium-ion battery: combining physics and data-driven methods
  publication-title: J. Energy Storage
– volume: 68
  start-page: 3485
  year: 2021
  end-page: 3493
  ident: bib256
  article-title: A novel prognostics approach using shifting kernel particle filter of Li-Ion batteries under State changes
  publication-title: IEEE Trans. Ind. Electron.
– volume: 261
  year: 2020
  ident: bib135
  article-title: A review of the state of health for lithium-ion batteries: research status and suggestions
  publication-title: J. Clean. Prod.
– volume: 481
  year: 2021
  ident: bib97
  article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health
  publication-title: J. Power Sources
– volume: 67
  start-page: 92
  year: 2018
  end-page: 103
  ident: bib247
  article-title: The Co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles
  publication-title: IEEE Trans. Veh. Technol.
– volume: 19
  start-page: 2380
  year: 2020
  ident: bib231
  article-title: A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD
  publication-title: Energies
– volume: 44
  start-page: 6502
  year: 2020
  end-page: 6510
  ident: bib168
  article-title: State of health prediction model based on internal resistance
  publication-title: Int. J. Energy Res.
– volume: 8
  start-page: 20786
  year: 2020
  end-page: 20798
  ident: bib232
  article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles
  publication-title: IEEE Access
– volume: 10
  year: 2022
  ident: bib138
  article-title: Investigation on the performance and recession mechanisms of high nickel ternary lithium‐ion batteries under artificial aging discharge rates
  publication-title: Energy Technol.
– volume: 6
  start-page: 37
  year: 2020
  ident: bib197
  article-title: Lithium-ion battery modeling including degradation based on single-particle approximations
  publication-title: Batteries
– volume: 179
  year: 2023
  ident: bib75
  article-title: Sequential application of denoising autoencoder and long-short recurrent convolutional network for noise-robust remaining-useful-life prediction framework of lithium-ion batteries
  publication-title: Comput. Ind. Eng.
– volume: 476
  year: 2020
  ident: bib213
  article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model
  publication-title: J. Power Sources
– volume: 179
  start-page: 793
  year: 2008
  end-page: 798
  ident: bib195
  article-title: Capacity fade analysis of a lithium ion cell
  publication-title: J. Power Sources
– volume: 145
  year: 2023
  ident: bib58
  article-title: Remaining useful life prediction of lithium-ion batteries based on KS agglomeration function integrating multi-expert knowledge
  publication-title: Microelectron. Reliab.
– volume: 34
  year: 2022
  ident: bib1
  article-title: Interfacial design for a 4.6 V high‐voltage single‐crystalline LiCoO
  publication-title: Adv. Mater.
– volume: 64
  year: 2023
  ident: bib173
  article-title: State-of-health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm
  publication-title: J. Energy Storage
– volume: 7
  start-page: 141549
  year: 2019
  end-page: 141561
  ident: bib182
  article-title: A method for interval prediction of satellite battery state of health based on sample entropy
  publication-title: IEEE Access
– volume: 10
  year: 2023
  ident: bib47
  article-title: Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
  publication-title: Front. Energy Res.
– volume: 231
  year: 2022
  ident: bib242
  article-title: Prognostics of lithium-ion batteries using knowledge-constrained machine learning and Kalman filtering
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 70
  start-page: 6613
  year: 2021
  end-page: 6625
  ident: bib191
  article-title: Online equivalent degradation indicator calculation for remaining charging-discharging cycle determination of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 171
  start-page: 1173
  year: 2019
  end-page: 1182
  ident: bib102
  article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries
  publication-title: Energy
– volume: 65
  start-page: 4328
  year: 2016
  end-page: 4343
  ident: bib163
  article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation
  publication-title: IEEE Trans. Veh. Technol.
– volume: 7
  start-page: 150383
  year: 2019
  end-page: 150394
  ident: bib261
  article-title: State-of-Health prediction for lithium-ion batteries with multiple gaussian process regression model
  publication-title: IEEE Access
– volume: 120
  start-page: 6878
  year: 2020
  end-page: 6933
  ident: bib117
  article-title: Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes
  publication-title: Chem. Rev.
– volume: 170
  year: 2023
  ident: bib218
  article-title: Prediction of battery SOH and RUL based on cooperative characteristics in voltage-temperature-time dimensions
  publication-title: J. Electrochem. Soc.
– volume: 64
  year: 2023
  ident: bib228
  article-title: State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method
  publication-title: J. Energy Storage
– volume: 21
  start-page: 510
  year: 2019
  end-page: 518
  ident: bib215
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: J. Energy Storage
– volume: 556
  year: 2023
  ident: bib167
  article-title: Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries
  publication-title: J. Power Sources
– volume: 9
  year: 2022
  ident: bib179
  article-title: Novel image-based rapid RUL prediction for Li-Ion batteries using a capsule network and transfer learning
  publication-title: IEEE Trans. Transp. Electrification
– volume: 45
  start-page: 16633
  year: 2021
  end-page: 16648
  ident: bib237
  article-title: Multivariate gated recurrent unit for battery remaining useful life prediction: a deep learning approach
  publication-title: Int. J. Energy Res.
– volume: 16
  start-page: 206
  year: 2021
  end-page: 214
  ident: bib249
  article-title: Remaining useful life prediction of lithium batteries based on extended kalman particle filter
  publication-title: IEEJ Trans. Electr. Electron. Eng.
– volume: 64
  start-page: 106
  year: 2016
  end-page: 128
  ident: bib11
  article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles
  publication-title: Renew. Sustain. Energy Rev.
– volume: 12
  start-page: 2784
  year: 2019
  ident: bib61
  article-title: Battery remaining useful life prediction with inheritance particle filtering
  publication-title: Energies
– volume: 9
  start-page: 177
  year: 2023
  ident: bib230
  article-title: Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method
  publication-title: Batteries
– volume: 10
  start-page: 6637
  year: 2020
  ident: bib177
  article-title: SOH estimation of lithium-ion battery pack based on integrated state information from cells
  publication-title: Appl. Sci.
– volume: 12
  start-page: 3271
  year: 2019
  ident: bib236
  article-title: Prognostics comparison of lithium-ion battery based on the shallow and deep neural networks model
  publication-title: Energies
– volume: 7
  start-page: 160043
  year: 2019
  end-page: 160061
  ident: bib51
  article-title: A novel machine learning method based approach for Li-Ion battery prognostic and health management
  publication-title: IEEE Access
– volume: 11
  start-page: 1099
  year: 2021
  ident: bib106
  article-title: Comparison of lead-acid and Li-Ion batteries lifetime prediction models in stand-alone photovoltaic systems
  publication-title: Appl. Sci.
– volume: 45
  start-page: 1570
  year: 2023
  end-page: 1578
  ident: bib13
  article-title: Thermal monitoring of lithium-ion batteries based on machine learning and fibre bragg grating sensors
  publication-title: Trans. Inst. Meas. Control
– volume: 4
  start-page: 383
  year: 2019
  end-page: 391
  ident: bib93
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
– volume: 60
  year: 2023
  ident: bib112
  article-title: An application-oriented lithium-ion battery degradation modelling framework for ageing prediction
  publication-title: J. Energy Storage
– volume: 69
  start-page: 6635
  year: 2022
  end-page: 6644
  ident: bib212
  article-title: State-of-Charge estimation for lithium-ion batteries based on fuzzy information granulation and asymmetric gaussian membership function
  publication-title: IEEE Trans. Ind. Electron.
– reference: ..
– volume: 345
  year: 2020
  ident: bib143
  article-title: Study on lithium plating caused by inconsistent electrode decay rate during aging of traction batteries
  publication-title: Solid State Ionics
– volume: 13
  start-page: 16770
  year: 2025
  end-page: 16786
  ident: bib14
  article-title: A joint forgetting factor-based adaptive extended kalman filtering approach to predict the state-of-charge and model parameter of lithium-ion battery
  publication-title: IEEE Access
– volume: 11
  start-page: 1706
  year: 2020
  ident: bib169
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
– volume: 223
  year: 2021
  ident: bib174
  article-title: Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries
  publication-title: Energy
– volume: 5
  start-page: 229
  year: 2020
  end-page: 252
  ident: bib116
  article-title: Designing solid-state electrolytes for safe, energy-dense batteries
  publication-title: Nat. Rev. Mater.
– volume: 230
  year: 2022
  ident: bib150
  article-title: Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 459
  year: 2020
  ident: bib221
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J. Power Sources
– start-page: 2430
  year: 2022
  ident: bib35
  article-title: (Digital presentation) data-driven prognosis of battery failure detection and prediction
  publication-title: Electrochem. Soc.
– volume: 29
  start-page: 3597
  year: 2023
  end-page: 3607
  ident: bib50
  article-title: Hybrid gray wolf optimization method in support vector regression framework for highly precise prediction of remaining useful life of lithium-ion batteries
  publication-title: Ionics
– volume: 13
  start-page: 1675
  year: 2021
  ident: bib121
  article-title: Thermal effect and mechanism analysis of flame-retardant modified polymer electrolyte for lithium-ion battery
  publication-title: Polymers
– volume: 226
  year: 2023
  ident: bib164
  article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging
  publication-title: Appl. Therm. Eng.
– volume: 7
  start-page: 105186
  year: 2019
  end-page: 105201
  ident: bib132
  article-title: State-of-Health estimation for lithium-ion batteries based on wiener process with modeling the relaxation effect
  publication-title: IEEE Access
– volume: 61
  start-page: 773
  year: 2021
  end-page: 781
  ident: bib183
  article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine
  publication-title: J. Manuf. Syst.
– volume: 61
  year: 2023
  ident: bib71
  article-title: A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries
  publication-title: J. Energy Storage
– volume: 9
  start-page: 325
  year: 2023
  ident: bib186
  article-title: A novel fine-tuning model based on transfer learning for future capacity prediction of lithium-ion batteries
  publication-title: Batteries
– volume: 44
  start-page: 6767
  year: 2020
  end-page: 6777
  ident: bib239
  article-title: Online state of health prediction method for lithium‐ion batteries, based on gated recurrent unit neural networks
  publication-title: Int. J. Energy Res.
– volume: 16
  start-page: 4736
  year: 2020
  end-page: 4746
  ident: bib204
  article-title: Data-driven battery health prognosis using adaptive brownian motion model
  publication-title: IEEE Trans. Ind. Inf.
– volume: 271
  start-page: 152
  year: 2014
  end-page: 159
  ident: bib141
  article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction
  publication-title: J. Power Sources
– volume: 219
  year: 2023
  ident: bib166
  article-title: Remaining useful life prediction of - lithium batteries based on principal component analysis and improved Gaussian process regression
  publication-title: Appl. Therm. Eng.
– volume: 38
  start-page: 1054
  year: 2023
  end-page: 1063
  ident: bib227
  article-title: Prognostics of remaining useful life for lithium-ion batteries based on hybrid approach of linear pattern extraction and nonlinear relationship mining
  publication-title: IEEE Trans. Power Electron.
– volume: 15
  start-page: 3331
  year: 2022
  ident: bib207
  article-title: A digital twin-driven life prediction method of lithium-ion batteries based on adaptive model evolution
  publication-title: Materials
– volume: 15
  start-page: 4772
  issue: 10
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib139
  article-title: Improving performances of the electrode/electrolyte interface via the regulation of solvation complexes: a review and prospect
  publication-title: Nanoscale
  doi: 10.1039/D2NR07273D
– volume: 70
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib21
  article-title: Data-driven prognosis of failure detection and prediction of lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108045
– volume: 481
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib97
  article-title: Prediction of remaining useful life for a composite electrode lithium ion battery cell using an electrochemical model to estimate the state of health
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228861
– volume: 384
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib157
  article-title: Battery degradation model and multiple-indicators based lifetime estimator for energy storage system design and operation: experimental analyses of cycling-induced aging
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138294
– volume: 16
  start-page: 2484
  issue: 5
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib129
  article-title: Application of variable-order fractional calculus to the modeling of calendar aging in lithium-ion batteries
  publication-title: Energies
  doi: 10.3390/en16052484
– volume: 68
  start-page: 3485
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib256
  article-title: A novel prognostics approach using shifting kernel particle filter of Li-Ion batteries under State changes
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2978688
– volume: 2
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib5
  article-title: A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries
  publication-title: eTransportation
  doi: 10.1016/j.etran.2019.100034
– volume: 6
  start-page: 125
  year: 2016
  ident: 10.1016/j.jpowsour.2025.238192_bib208
  article-title: Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different 18650 high-power cells
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2016.02.005
– volume: 50
  start-page: 4006
  issue: 6
  year: 2013
  ident: 10.1016/j.jpowsour.2025.238192_bib127
  article-title: Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2014.2321028
– volume: 120
  start-page: 179
  year: 2017
  ident: 10.1016/j.jpowsour.2025.238192_bib158
  article-title: Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.110
– start-page: 555
  year: 2016
  ident: 10.1016/j.jpowsour.2025.238192_bib240
  article-title: Remaining useful life estimation of lithium-ion batteries based on a new capacity degradation model
– volume: 2
  start-page: 913
  issue: 1
  year: 2012
  ident: 10.1016/j.jpowsour.2025.238192_bib98
  article-title: Gassing in Li4Ti5O12-based batteries and its remedy
  publication-title: Sci. Rep.
  doi: 10.1038/srep00913
– volume: 16
  start-page: 3096
  issue: 7
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib156
  article-title: Remaining-useful-life prediction for Li-Ion batteries
  publication-title: Energies
  doi: 10.3390/en16073096
– volume: 170
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib218
  article-title: Prediction of battery SOH and RUL based on cooperative characteristics in voltage-temperature-time dimensions
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acde10
– volume: 12
  start-page: 2784
  issue: 14
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib61
  article-title: Battery remaining useful life prediction with inheritance particle filtering
  publication-title: Energies
  doi: 10.3390/en12142784
– volume: 169
  issue: 6
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib187
  article-title: Review—“Knees”in lithium-ion battery aging trajectories
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac6d13
– volume: 10
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib47
  article-title: Remaining useful life prediction of Lithium-ion batteries based on PSO-RF algorithm
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.937035
– volume: 10
  start-page: 6637
  issue: 19
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib177
  article-title: SOH estimation of lithium-ion battery pack based on integrated state information from cells
  publication-title: Appl. Sci.
  doi: 10.3390/app10196637
– volume: 2
  start-page: 161
  issue: 3
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib192
  article-title: Predicting the state of charge and health of batteries using data-driven machine learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0156-7
– volume: 80
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib133
  article-title: Advanced electrolyte design for stable lithium metal anode: from liquid to solid
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105516
– volume: 37
  start-page: 1232
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib268
  article-title: Remaining useful life prediction of lithium‐ion battery using a novel health indicator
  publication-title: Energy
– volume: 17
  start-page: 1643
  year: 2024
  ident: 10.1016/j.jpowsour.2025.238192_bib18
  article-title: Advances in the study of techniques to determine the lithium-ion battery's state of charge
  publication-title: Energies
  doi: 10.3390/en17071643
– volume: 16
  start-page: 206
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib249
  article-title: Remaining useful life prediction of lithium batteries based on extended kalman particle filter
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23287
– volume: 45
  start-page: 7732
  issue: 5
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib134
  article-title: A practical approach to predict volume deformation of lithium‐ion batteries from crystal structure changes of electrode materials
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6355
– volume: 271
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib72
  article-title: Actively temperature controlled health-aware fast charging method for lithium-ion battery using nonlinear model predictive control
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115232
– volume: 11
  start-page: 6335
  issue: 2
  year: 2025
  ident: 10.1016/j.jpowsour.2025.238192_bib26
  article-title: Life-cycle state-of-charge estimation for lithium-ion battery considering coulomb efficiency and capacity decay
  publication-title: IEEE Trans. Transp. Electrification
  doi: 10.1109/TTE.2024.3506778
– volume: 60
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib112
  article-title: An application-oriented lithium-ion battery degradation modelling framework for ageing prediction
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106640
– volume: 16
  start-page: 1420
  issue: 3
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib241
  article-title: Research on state-of-health estimation for lithium-ion batteries based on the charging phase
  publication-title: Energies
  doi: 10.3390/en16031420
– volume: 7
  start-page: 382
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib258
  article-title: Battery health prediction using fusion-based feature selection and machine learning
  publication-title: IEEE Trans. Transp. Electrification
  doi: 10.1109/TTE.2020.3017090
– volume: 6
  start-page: 487
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib130
  article-title: Corrosion of lithium metal anodes during calendar ageing and its microscopic origins
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00787-9
– volume: 11
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib216
  article-title: Accurate prediction of remaining useful life for lithium-ion battery using deep neural networks with memory features
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1059701
– volume: 180
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib91
  article-title: Life cycle analysis of LiCoO2/graphite batteries with cooling using combined electrochemical-thermal modeling
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2022.106204
– volume: 16
  start-page: 767
  issue: 2
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib66
  article-title: Lithium-Ion battery life prediction method under thermal gradient conditions
  publication-title: Energies
  doi: 10.3390/en16020767
– volume: 10
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib217
  article-title: Remaining useful life prognostics of lithium-ion batteries based on a coordinate reconfiguration of degradation trajectory and multiple linear regression
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.1033039
– volume: 9
  start-page: 177
  issue: 3
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib230
  article-title: Accurate prediction approach of SOH for lithium-ion batteries based on LSTM method
  publication-title: Batteries
  doi: 10.3390/batteries9030177
– volume: 263
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib269
  article-title: Life prediction model for lithium-ion battery considering fast-charging protocol
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126109
– volume: 44
  start-page: 6767
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib239
  article-title: Online state of health prediction method for lithium‐ion batteries, based on gated recurrent unit neural networks
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5413
– volume: 214
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib90
  article-title: Prognostics for lithium-ion batteries using a two-phase gamma degradation process model
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107797
– volume: 5
  start-page: 299
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib144
  article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0575-z
– volume: 61
  start-page: 773
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib183
  article-title: A sample entropy based prognostics method for lithium-ion batteries using relevance vector machine
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.03.019
– volume: 68
  start-page: 9543
  issue: 10
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib42
  article-title: Remaining useful life prediction of lithium-ion batteries using support vector regression optimized by artificial bee colony
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2019.2932605
– volume: 38
  start-page: 1054
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib227
  article-title: Prognostics of remaining useful life for lithium-ion batteries based on hybrid approach of linear pattern extraction and nonlinear relationship mining
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2022.3182135
– volume: 16
  start-page: 313
  issue: 1
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib56
  article-title: Remaining useful life prediction for lithium-ion batteries based on improved variational mode decomposition and machine learning algorithm
  publication-title: IEEE Access
– volume: 5
  start-page: 1225
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib264
  article-title: Modified Gaussian process regression models for cyclic capacity prediction of lithium-ion batteries
  publication-title: IEEE Trans. Transp. Electrification
  doi: 10.1109/TTE.2019.2944802
– volume: 456
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib101
  article-title: A comprehensive single-particle-degradation model for battery state-of-health prediction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.227950
– volume: 234
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib146
  article-title: Remaining useful life prediction of lithium battery based on capacity regeneration point detection
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121233
– volume: 230
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib150
  article-title: Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 13
  start-page: 1675
  issue: 11
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib121
  article-title: Thermal effect and mechanism analysis of flame-retardant modified polymer electrolyte for lithium-ion battery
  publication-title: Polymers
  doi: 10.3390/polym13111675
– volume: 131
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib252
  article-title: A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110015
– volume: 9
  start-page: 1115
  issue: 8
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib246
  article-title: Prediction of remaining useful life for lithium‐ion battery based on particle filter with residual resampling
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.877
– volume: 10
  start-page: 119040
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib30
  article-title: A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction
  publication-title: IEEE IEEE Veh. Technol. Soc. Section
– volume: 144
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib198
  article-title: Integrating life cycle assessment and electrochemical modeling to study the effects of cell design and operating conditions on the environmental impacts of lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111004
– volume: 174
  start-page: 335
  issue: 1
  year: 2007
  ident: 10.1016/j.jpowsour.2025.238192_bib126
  article-title: Dimethyl methylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.025
– start-page: 2430
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib35
  article-title: (Digital presentation) data-driven prognosis of battery failure detection and prediction
  publication-title: Electrochem. Soc.
– volume: 40
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib223
  article-title: Battery monitoring system using machine learning
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102741
– volume: 69
  start-page: 6984
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib17
  article-title: Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3095815
– volume: 219
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib165
  article-title: A review on lithium-ion battery thermal management system techniques: a control-oriented analysis
  publication-title: Appl. Therm. Eng.
– volume: 271
  start-page: 152
  year: 2014
  ident: 10.1016/j.jpowsour.2025.238192_bib141
  article-title: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.07.168
– volume: 44
  start-page: 6502
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib168
  article-title: State of health prediction model based on internal resistance
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5383
– volume: 72
  start-page: 5934
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib203
  article-title: Ensemble remaining useful life prediction for lithium-ion batteries with the fusion of historical and real-time degradation data
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2023.3234159
– volume: 11
  start-page: 175
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib41
  article-title: Multi-kernel relevance vector machine with parameter optimization for cycling aging prediction of lithium-ion batteries
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
  doi: 10.1109/JESTPE.2021.3133697
– volume: 234
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib145
  article-title: Lithium-ion batteries remaining useful life prediction based on BLS-RVM
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121269
– volume: 15
  start-page: 9165
  issue: 23
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib99
  article-title: Electrochemical failure results inevitable capacity degradation in Li-Ion Batteries-A review
  publication-title: Energies
  doi: 10.3390/en15239165
– volume: 24
  issue: 2
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib111
  article-title: Battery lifetime prediction and performance assessment of different modeling approaches
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102060
– volume: 214
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib60
  article-title: Remaining useful life prediction of lithium-ion batteries based on wiener process under time-varying temperature condition
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107675
– volume: 164
  start-page: 351
  issue: 1
  year: 2007
  ident: 10.1016/j.jpowsour.2025.238192_bib115
  article-title: A review on the separators of liquid electrolyte Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.10.065
– volume: 16
  start-page: 803
  issue: 2
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib77
  article-title: Prognosis of lithium-ion batteries' remaining useful life based on a sequence-to-sequence model with variational mode decomposition
  publication-title: Energies
  doi: 10.3390/en16020803
– volume: 232
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib219
  article-title: Remaining useful life and state of health prediction for lithium batteries based on empirical mode decomposition and a long and short memory neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121022
– volume: 9
  start-page: 3995
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib109
  article-title: Revealing the degradation mechanism of Ni-rich cathode materials after ambient storage and related regeneration method
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10378K
– volume: 23
  start-page: 2587
  issue: 5
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib154
  article-title: Prediction of state of health of lithium-ion battery using health index informed attention model
  publication-title: Sensors
  doi: 10.3390/s23052587
– volume: 7
  start-page: 34
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib6
  article-title: Exploring the economics of large scale lithium ion and lead acid batteries performing frequency response
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.02.058
– volume: 18
  start-page: 2965
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib262
  article-title: Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3106593
– volume: 278
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib27
  article-title: Towards the swift prediction of the remaining useful life of lithium-ion batteries with end-to-end deep learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115646
– volume: 166
  start-page: 796
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib62
  article-title: Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.131
– volume: 7
  start-page: 150383
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib261
  article-title: State-of-Health prediction for lithium-ion batteries with multiple gaussian process regression model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947294
– volume: 259
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib243
  article-title: A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries
  publication-title: Knowl. Base Syst.
– volume: 4
  start-page: 540
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib161
  article-title: Challenges and opportunities towards fast-charging battery materials
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0405-3
– volume: 539
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib194
  article-title: A four parameter model for the solid-electrolyte interphase to predict battery aging during operation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231560
– volume: 113
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib29
  article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109254
– volume: 459
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib221
  article-title: State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228069
– volume: 237
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib254
  article-title: A power model considering initial battery state for remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109361
– volume: 133
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib188
  article-title: A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2023.105451
– volume: 8
  start-page: 142557
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib46
  article-title: Multi-parameter optimization method for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3011625
– volume: 243
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib69
  article-title: A hybrid method with cascaded structure for early-stage remaining useful life prediction of lithium-ion battery
  publication-title: Energy
– volume: 10
  issue: 11
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib138
  article-title: Investigation on the performance and recession mechanisms of high nickel ternary lithium‐ion batteries under artificial aging discharge rates
  publication-title: Energy Technol.
  doi: 10.1002/ente.202200600
– volume: 152
  issue: 4
  year: 2005
  ident: 10.1016/j.jpowsour.2025.238192_bib184
  article-title: Cyclable lithium and capacity loss in Li-Ion cells
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1870752
– volume: 25
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib87
  article-title: Chemo-economic analysis of battery aging and capacity fade in lithium-ion battery
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2019.100911
– volume: 1
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib96
  article-title: A review on the key issues of the lithium ion battery degradation among the whole life cycle
  publication-title: eTransportation
  doi: 10.1016/j.etran.2019.100005
– volume: 360
  start-page: 28
  year: 2017
  ident: 10.1016/j.jpowsour.2025.238192_bib84
  article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.110
– volume: 41
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib7
  article-title: Choosing the best lifetime model for commercial lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.102827
– volume: 482
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib176
  article-title: Data-driven analysis on thermal effects and temperature changes of lithium-ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228983
– volume: 145
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib58
  article-title: Remaining useful life prediction of lithium-ion batteries based on KS agglomeration function integrating multi-expert knowledge
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2023.114985
– volume: 527
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib270
  article-title: Feature engineering for machine learning enabled early prediction of battery lifetime
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231127
– volume: 148
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib244
  article-title: Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111287
– volume: 4
  start-page: 383
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib93
  article-title: Data-driven prediction of battery cycle life before capacity degradation
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0356-8
– volume: 33
  start-page: 2035
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib147
  article-title: A rest-time-based prognostic model for remaining useful life prediction of lithium-ion battery
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05105-0
– volume: 218
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib107
  article-title: A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119490
– volume: 22
  start-page: 697
  issue: 4
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib229
  article-title: LSTM model-based SOH prediction for lithium-ion battery
  publication-title: J. Digital Contents Soc.
  doi: 10.9728/dcs.2021.22.4.697
– volume: 11
  start-page: 1099
  issue: 3
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib106
  article-title: Comparison of lead-acid and Li-Ion batteries lifetime prediction models in stand-alone photovoltaic systems
  publication-title: Appl. Sci.
  doi: 10.3390/app11031099
– volume: 120
  start-page: 6783
  issue: 14
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib124
  article-title: New concepts in electrolytes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00531
– volume: 64
  start-page: 106
  year: 2016
  ident: 10.1016/j.jpowsour.2025.238192_bib11
  article-title: A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.05.033
– volume: 11
  issue: 6
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib238
  article-title: State‐of‐Charge prediction of lithium‐ion batteries based on sparse autoencoder and gated recurrent unit neural network
  publication-title: Energy Technol.
  doi: 10.1002/ente.202201510
– volume: 225
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib81
  article-title: Early prediction of battery lifetime via a machine learning based framework
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120205
– volume: 19
  start-page: 6471
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib245
  article-title: Semi-supervised self-learning-based lifetime prediction for batteries
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3206776
– volume: 442
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib16
  article-title: Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227228
– volume: 210
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib55
  article-title: Remaining useful life estimation of lithium-ion battery based on interacting multiple model particle filter and support vector regression
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2021.107542
– volume: 556
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib167
  article-title: Adaptive evolution enhanced physics-informed neural networks for time-variant health prognosis of lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.232432
– year: 2025
  ident: 10.1016/j.jpowsour.2025.238192_bib15
  article-title: 2D TMD-based lateral heterostructures: preparation, property, and application
  publication-title: Adv. Funct. Mater.
– volume: 171
  start-page: 1173
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib102
  article-title: A coulombic efficiency-based model for prognostics and health estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.083
– volume: 45
  start-page: 1570
  issue: 8
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib13
  article-title: Thermal monitoring of lithium-ion batteries based on machine learning and fibre bragg grating sensors
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/01423312221143776
– volume: 6
  start-page: 7
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib137
  article-title: A review of Solid Electrolyte Interphase (SEI) and dendrite formation in lithium batteries
  publication-title: Electrochem. Energy Rev.
  doi: 10.1007/s41918-022-00147-5
– volume: 261
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib135
  article-title: A review of the state of health for lithium-ion batteries: research status and suggestions
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120813
– start-page: 1004
  year: 2018
  ident: 10.1016/j.jpowsour.2025.238192_bib79
  article-title: Research on modeling method of life prediction for satellite lithium battery based on SVR
– volume: 41
  start-page: 24
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib189
  article-title: Deep neural network battery impedance spectra prediction by only using constant-current curve
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.05.047
– volume: 67
  start-page: 92
  year: 2018
  ident: 10.1016/j.jpowsour.2025.238192_bib247
  article-title: The Co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2017.2751613
– volume: 7
  start-page: 141549
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib182
  article-title: A method for interval prediction of satellite battery state of health based on sample entropy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939593
– volume: 50
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib222
  article-title: Combining empirical mode decomposition and deep recurrent neural networks for predictive maintenance of lithium-ion battery
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2021.101405
– start-page: 2779
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib49
  article-title: (Digital presentation) data-driven prognosis of lithium-ion batteries thermal runaway early warning and detection
  publication-title: Electrochem. Soc.
– volume: 4
  start-page: 683
  issue: 8
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib125
  article-title: Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0428-9
– volume: 9
  start-page: 3012
  issue: 15
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib88
  article-title: Semi-empirical capacity fading model for SoH estimation of Li-Ion batteries
  publication-title: Appl. Sci.
  doi: 10.3390/app9153012
– volume: 69
  start-page: 14765
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib175
  article-title: Remaining useful life prediction for lithium-ion batteries based on capacity estimation and box-cox transformation
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3039553
– volume: 120
  start-page: 6878
  issue: 14
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib117
  article-title: Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00101
– volume: 231
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib242
  article-title: Prognostics of lithium-ion batteries using knowledge-constrained machine learning and Kalman filtering
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 6
  start-page: 37
  issue: 3
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib197
  article-title: Lithium-ion battery modeling including degradation based on single-particle approximations
  publication-title: Batteries
  doi: 10.3390/batteries6030037
– ident: 10.1016/j.jpowsour.2025.238192_bib128
  doi: 10.1109/TIE.2022.3148743
– volume: 9
  start-page: 325
  issue: 6
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib186
  article-title: A novel fine-tuning model based on transfer learning for future capacity prediction of lithium-ion batteries
  publication-title: Batteries
  doi: 10.3390/batteries9060325
– volume: 442
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib118
  article-title: Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136245
– volume: 438
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib73
  article-title: Fast charging optimization for lithium-ion batteries based on dynamic programming algorithm and electrochemical-thermal-capacity fade coupled model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.227015
– volume: 67
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib86
  article-title: Remaining useful life prediction of lithium-ion batteries using a spatial temporal network model based on capacity self-recovery effect
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107557
– volume: 11
  start-page: 1706
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib169
  article-title: Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15235-7
– volume: 40
  start-page: 1850
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib171
  article-title: Feature construction for on-board early prediction of electric vehicle battery cycle life
  publication-title: Kor. J. Chem. Eng.
  doi: 10.1007/s11814-023-1476-1
– volume: 10
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib196
  article-title: Study on lithium-ion battery degradation caused by side reactions in fast-charging process
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.905710
– volume: 9
  start-page: 1299
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib76
  article-title: RUL prediction of lithium ion battery based on CEEMDAN-CNN BiLSTM model
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.05.121
– volume: 9
  start-page: 2191
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib110
  article-title: Twin‐model framework development for a comprehensive battery lifetime prediction validated with a realistic driving profile
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.973
– volume: 21
  start-page: 510
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib215
  article-title: Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.12.011
– volume: 164
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib235
  article-title: Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108052
– volume: 563
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib160
  article-title: Lithium-ion battery lifetime extension: a review of derating methods
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232805
– volume: 7
  start-page: 2797
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib44
  article-title: A method based on improved ant lion optimization and support vector regression for remaining useful life estimation of lithium‐ion batteries
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.460
– volume: 11
  issue: 16
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib140
  article-title: A growing appreciation for the role of LiF in the solid electrolyte interphase
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100046
– volume: 18
  start-page: 1888
  year: 2025
  ident: 10.1016/j.jpowsour.2025.238192_bib19
  article-title: Analysis of state-of-charge estimation methods for Li-Ion batteries considering wide temperature range
  publication-title: Energies
  doi: 10.3390/en18051188
– volume: 61
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib65
  article-title: A novel remaining useful life prediction method for lithium-ion battery based on long short-term memory network optimized by improved sparrow search algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106645
– volume: 13
  start-page: 2619
  issue: 13
  year: 2024
  ident: 10.1016/j.jpowsour.2025.238192_bib113
  article-title: Remaining useful life prediction of lithium-ion batteries based on neural network and adaptive unscented kalman filter
  publication-title: Appl. Energy
– volume: 15
  start-page: 5014
  issue: 6
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib193
  article-title: Review of state estimation and remaining useful life prediction methods for lithium-ion batteries
  publication-title: Sustainability
  doi: 10.3390/su15065014
– volume: 285
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib266
  article-title: Remaining useful life prediction and state of health diagnosis for lithium-ion batteries based on improved grey wolf optimization algorithm-deep extreme learning machine algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128761
– volume: 12
  start-page: 2247
  issue: 12
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib149
  article-title: A lithium-ion battery RUL prediction method considering the capacity regeneration phenomenon
  publication-title: Energies
  doi: 10.3390/en12122247
– volume: 64
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib228
  article-title: State of health and remaining useful life prediction of lithium-ion batteries based on a disturbance-free incremental capacity and differential voltage analysis method
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107161
– volume: 9
  start-page: 224
  issue: 4
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib53
  article-title: A multi-stage adaptive method for remaining useful life prediction of lithium-ion batteries based on swarm intelligence optimization
  publication-title: Batteries
  doi: 10.3390/batteries9040224
– volume: 147
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib148
  article-title: Piecewise model based intelligent prognostics for state of health prediction of rechargeable batteries with capacity regeneration phenomena
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.07.064
– volume: 44
  start-page: 1724
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib251
  article-title: Remaining useful life prediction of lithium‐ion battery based on extended kalman particle filter
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5002
– volume: 11
  start-page: 4671
  issue: 10
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib104
  article-title: Solid-state lithium battery cycle life prediction using machine learning
  publication-title: Appl. Sci.
  doi: 10.3390/app11104671
– volume: 94
  start-page: 603
  issue: 4
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib178
  article-title: Shaking lithium‐ion cells on a Rocker-Temperature‐Dependent influence of mechanical movement on lithium‐ion battery lifetime
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.201800218
– volume: 345
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib143
  article-title: Study on lithium plating caused by inconsistent electrode decay rate during aging of traction batteries
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2019.115193
– volume: 45
  start-page: 14692
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib200
  article-title: A novel dual time scale life prediction method for lithium‐ion batteries considering effects of temperature and state of charge
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6746
– volume: 10
  start-page: 3549
  issue: 10
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib234
  article-title: Ensemble model based on stacked long short-term memory model for cycle life prediction of lithium-ion batteries
  publication-title: Appl. Sci.
  doi: 10.3390/app10103549
– volume: 7
  start-page: 2862
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib271
  article-title: Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and gated recurrent unit
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.05.019
– volume: 12
  start-page: 1685
  issue: 9
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib89
  article-title: Remaining useful life prediction of lithium-ion batteries based on wiener processes with considering the relaxation effect
  publication-title: Energies
  doi: 10.3390/en12091685
– volume: 229
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib114
  article-title: A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120684
– volume: 11
  start-page: 57
  issue: 1
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib159
  article-title: Lifetime extension of lithium-ion batteries with low-frequency pulsed current charging
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
  doi: 10.1109/JESTPE.2021.3130424
– volume: 29
  start-page: 3597
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib50
  article-title: Hybrid gray wolf optimization method in support vector regression framework for highly precise prediction of remaining useful life of lithium-ion batteries
  publication-title: Ionics
  doi: 10.1007/s11581-023-05072-1
– volume: 18
  issue: 5
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib250
  article-title: Remaining useful life prediction of lithium‐ion battery based on an improved particle filter algorithm
  publication-title: Int. J. Electrochem. Sci.
– volume: 170
  issue: 5
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib22
  article-title: Data-driven prognosis of multiscale and multiphysics complex system anomalies: its application to lithium-ion batteries failure detection
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acd300
– volume: 39
  start-page: 2230
  issue: 4
  year: 2024
  ident: 10.1016/j.jpowsour.2025.238192_bib24
  article-title: Data-driven state of health estimation method of lithium-ion batteries for partial charging curves
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2024.3407136
– volume: 172
  start-page: 894
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib67
  article-title: Data-driven predictive prognostic model for power batteries based on machine learning
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2023.02.081
– volume: 219
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib166
  article-title: Remaining useful life prediction of - lithium batteries based on principal component analysis and improved Gaussian process regression
  publication-title: Appl. Therm. Eng.
– volume: 230
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib263
  article-title: Research on state of health prediction model for lithium batteries based on actual diverse data
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120851
– volume: 61
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib71
  article-title: A novel method of discharge capacity prediction based on simplified electrochemical model-aging mechanism for lithium-ion batteries
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106788
– volume: 62
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib255
  article-title: Early prediction of lithium-ion battery cycle life based on voltage-capacity discharge curves
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106790
– volume: 6
  issue: 6
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib3
  article-title: Prelithiation enhances cycling life of lithium‐ion batteries: a mini review
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12501
– volume: 4
  start-page: 540
  issue: 7
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib2
  article-title: Challenges and opportunities towards fast-charging battery materials
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0405-3
– volume: 49
  start-page: 1569
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib94
  article-title: Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00863E
– volume: 15
  start-page: 1602
  issue: 2
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib54
  article-title: Remaining useful life prediction for lithium-ion batteries based on the partial voltage and temperature
  publication-title: IEEE Access
– volume: 7
  start-page: 39474
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib260
  article-title: Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905740
– volume: 226
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib164
  article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120303
– volume: 70
  start-page: 6613
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib191
  article-title: Online equivalent degradation indicator calculation for remaining charging-discharging cycle determination of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3087004
– volume: 376
  start-page: 95
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib57
  article-title: Remaining useful life prediction of lithium-ion batteries with adaptive unscented kalman filter and optimized support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.074
– volume: 179
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib75
  article-title: Sequential application of denoising autoencoder and long-short recurrent convolutional network for noise-robust remaining-useful-life prediction framework of lithium-ion batteries
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109231
– volume: 329
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib83
  article-title: Integrating physics-based modeling with machine learning for lithium-ion batteries
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.120289
– volume: 11
  start-page: 1359
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib131
  article-title: Optimal scheduling and cost-benefit analysis of lithium-ion batteries based on battery state of health
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3232282
– volume: 17
  start-page: 3478
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib233
  article-title: A data-driven Auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3008223
– volume: 21
  start-page: 1087
  issue: 4
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib92
  article-title: Life prediction of battery using a neural gaussian process with early discharge characteristics
  publication-title: Sensors
  doi: 10.3390/s21041087
– volume: 292
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib20
  article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: progress
  publication-title: J. Clean. Prod.
– volume: 15
  start-page: 3331
  issue: 9
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib207
  article-title: A digital twin-driven life prediction method of lithium-ion batteries based on adaptive model evolution
  publication-title: Materials
  doi: 10.3390/ma15093331
– volume: 13
  start-page: 375
  issue: 2
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib172
  article-title: SOH and RUL prediction of lithium-ion batteries based on gaussian process regression with indirect health indicators
  publication-title: Energies
  doi: 10.3390/en13020375
– volume: 69
  start-page: 12775
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib210
  article-title: A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3024019
– volume: 16
  start-page: 338
  issue: 2
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib34
  article-title: Health prognostics for lithium-ion batteries: mechanisms, methods, and prospects
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03019E
– volume: 182
  start-page: 1
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib199
  article-title: Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.09.018
– volume: 69
  start-page: 6635
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib212
  article-title: State-of-Charge estimation for lithium-ion batteries based on fuzzy information granulation and asymmetric gaussian membership function
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3097613
– volume: 11
  start-page: 143
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib151
  article-title: Remaining useful life prediction of lithium-ion batteries: a hybrid approach of grey–markov chain model and improved gaussian process
  publication-title: IEEE J. Emerg. Selected Topics Power Electron.
  doi: 10.1109/JESTPE.2021.3098378
– volume: 561
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib85
  article-title: Model-based health-aware fast charging to mitigate the risk of lithium plating and prolong the cycle life of lithium-ion batteries in electric vehicles
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.232586
– volume: 7
  start-page: 160043
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib51
  article-title: A novel machine learning method based approach for Li-Ion battery prognostic and health management
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947843
– volume: 112
  year: 2025
  ident: 10.1016/j.jpowsour.2025.238192_bib37
  article-title: Fault diagnosis of energy storage batteries based on dual driving of data and models
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2025.115485
– volume: 476
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib82
  article-title: The capacity estimation and cycle life prediction of lithium-ion batteries using a new broad extreme learning machine approach
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228581
– volume: 230
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib226
  article-title: Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108920
– volume: 64
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib173
  article-title: State-of-health estimation and remaining useful life prediction for lithium-ion batteries based on an improved particle filter algorithm
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107179
– volume: 70
  start-page: 1269
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib259
  article-title: Predictive battery health management with transfer learning and online model correction
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3055811
– volume: 68
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib224
  article-title: A novel method of prediction for capacity and remaining useful life of lithium-ion battery based on multi-time scale Weibull accelerated failure time regression
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107589
– volume: 476
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib213
  article-title: Lifespan prediction of lithium-ion batteries based on various extracted features and gradient boosting regression tree model
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228654
– volume: 213
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.jpowsour.2025.238192_bib32
  article-title: Remaining useful life estimation-A review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.11.018
– volume: 5
  start-page: 229
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib116
  article-title: Designing solid-state electrolytes for safe, energy-dense batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0165-5
– volume: 25
  start-page: 646
  issue: 4
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib209
  article-title: Multi-fractal weibull adaptive model for the remaining useful life prediction of electric vehicle lithium batteries
  publication-title: Entropy
  doi: 10.3390/e25040646
– volume: 68
  start-page: 10949
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib253
  article-title: Dynamic bayesian network-based lithium-ion battery health prognosis for electric vehicles
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.3034855
– volume: 34
  issue: 1
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib142
  article-title: Encapsulation of metallic Zn in a hybrid MXene/Graphene aerogel as a stable Zn anode for foldable Zn-Ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106897
– volume: 159
  start-page: 716
  year: 2018
  ident: 10.1016/j.jpowsour.2025.238192_bib162
  article-title: Elevated temperature for life extension of lithium ion power cells
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.169
– volume: 5
  start-page: 105
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib123
  article-title: Understanding interface stability in solid-state batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0157-5
– volume: 208
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib170
  article-title: Life prediction of lithium-ion batteries based on stacked denoising autoencoders
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107396
– year: 2025
  ident: 10.1016/j.jpowsour.2025.238192_bib52
  article-title: Zwitterionic poly(ionic liquid)-induced fast structural diffusion electrolytes for lithium metal batteries
  publication-title: Chin. Chem. Lett.
– volume: 65
  start-page: 4328
  year: 2016
  ident: 10.1016/j.jpowsour.2025.238192_bib163
  article-title: Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2473841
– start-page: 1864
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib38
  article-title: Data-driven prognosis of the failure of lithium-ion batteries
  publication-title: ECS Meeting Abstracts
  doi: 10.1149/MA2021-0251864mtgabs
– volume: 186
  start-page: 51
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib78
  article-title: A hybrid prognostic method for system degradation based on particle filter and relevance vector machine
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2019.02.011
– volume: 14
  start-page: 8072
  issue: 23
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib122
  article-title: Degradation of lithium-ion batteries in an electric transport complex
  publication-title: Energies
  doi: 10.3390/en14238072
– volume: 13
  start-page: 752
  issue: 3
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib48
  article-title: A data-driven method with feature enhancement and adaptive optimization for lithium-ion battery remaining useful life prediction
  publication-title: Energies
  doi: 10.3390/en13030752
– volume: 14
  start-page: 1732
  issue: 6
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib105
  article-title: The degradation behavior of LiFePO4/C batteries during long-term calendar aging
  publication-title: Energies
  doi: 10.3390/en14061732
– volume: 7
  start-page: 87178
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib45
  article-title: A neural-network-based method for RUL prediction and SOH monitoring of lithium-ion battery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925468
– volume: 42
  start-page: 1973
  year: 2018
  ident: 10.1016/j.jpowsour.2025.238192_bib59
  article-title: Fast computational framework for optimal life management of lithium ion batteries
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3996
– volume: 223
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib174
  article-title: Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120114
– volume: 212
  start-page: 240
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib265
  article-title: Validation and verification of a hybrid method for remaining useful life prediction of lithium-ion batteries
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.12.041
– start-page: 385
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib25
  article-title: Data-driven prognosis of lithium-ion batteries thermal runaway: a novel machine learning approach
  publication-title: ECS Meeting Abstracts
– volume: 45
  start-page: 16633
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib237
  article-title: Multivariate gated recurrent unit for battery remaining useful life prediction: a deep learning approach
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6910
– volume: 12
  start-page: 8544
  issue: 20
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib108
  article-title: Scale-Up of physics-based models for predicting degradation of large lithium ion batteries
  publication-title: Sustainability
  doi: 10.3390/su12208544
– volume: 61
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib214
  article-title: A novel hybrid model for lithium-ion batteries lifespan prediction with high accuracy and interpretability
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106728
– volume: 9
  start-page: 1131
  year: 2018
  ident: 10.1016/j.jpowsour.2025.238192_bib103
  article-title: Modeling of lithium-ion battery degradation for cell life assessment
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2578950
– volume: 1
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib70
  article-title: Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries
  publication-title: eTransportation
  doi: 10.1016/j.etran.2019.100004
– volume: 34
  issue: 8
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib1
  article-title: Interfacial design for a 4.6 V high‐voltage single‐crystalline LiCoO2 cathode
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108353
– volume: 22
  start-page: 587
  issue: 3
  year: 2010
  ident: 10.1016/j.jpowsour.2025.238192_bib100
  article-title: Challenges for rechargeable li batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 16
  start-page: 4736
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib204
  article-title: Data-driven battery health prognosis using adaptive brownian motion model
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2948018
– volume: 470
  year: 2024
  ident: 10.1016/j.jpowsour.2025.238192_bib23
  article-title: Competition between discharge reaction and side reaction for anode's lithium during internal short circuit in lithium-ion batteries
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.143280
– volume: 8
  start-page: 20786
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib232
  article-title: LSTM-based battery remaining useful life prediction with multi-channel charging profiles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968939
– volume: 16
  start-page: 3767
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib257
  article-title: Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2941747
– volume: 74
  start-page: 1
  year: 2025
  ident: 10.1016/j.jpowsour.2025.238192_bib36
  article-title: SOC estimation of lithium-ion battery pack based on discharge stage division and fusion modeling
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 292
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib152
  article-title: A machine-learning prediction method of lithium-ion battery life based on charge process for different applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.116897
– volume: 10
  start-page: 487
  issue: 4
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib181
  article-title: Novel practical life cycle prediction method by entropy estimation of Li-Ion battery
  publication-title: Electronics
  doi: 10.3390/electronics10040487
– volume: 15
  start-page: 9176
  issue: 12
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib64
  article-title: Remaining useful life prediction for lithium-ion batteries based on improved mode decomposition and time series
  publication-title: IEEE Access
– volume: 69
  start-page: 10854
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib211
  article-title: State-of-Health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method
  publication-title: J. Power Sources
– volume: 4
  start-page: 310
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib28
  article-title: Battery lifetime prognostics
  publication-title: Joule
  doi: 10.1016/j.joule.2019.11.018
– volume: 8
  start-page: 123858
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib190
  article-title: State of health estimation for lithium-ion battery using empirical degradation and error compensation models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005229
– volume: 4
  start-page: 187
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib120
  article-title: High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0312-z
– volume: 57
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib31
  article-title: Remaining life prediction of lithium-ion batteries based on health management: a review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.106193
– volume: 179
  start-page: 793
  issue: 2
  year: 2008
  ident: 10.1016/j.jpowsour.2025.238192_bib195
  article-title: Capacity fade analysis of a lithium ion cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.01.028
– volume: 13
  start-page: 16770
  year: 2025
  ident: 10.1016/j.jpowsour.2025.238192_bib14
  article-title: A joint forgetting factor-based adaptive extended kalman filtering approach to predict the state-of-charge and model parameter of lithium-ion battery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2025.3533137
– volume: 12
  start-page: 3271
  issue: 17
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib236
  article-title: Prognostics comparison of lithium-ion battery based on the shallow and deep neural networks model
  publication-title: Energies
  doi: 10.3390/en12173271
– volume: 70
  start-page: 531
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib155
  article-title: Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.03.011
– volume: 7
  start-page: 105186
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib132
  article-title: State-of-Health estimation for lithium-ion batteries based on wiener process with modeling the relaxation effect
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923095
– volume: 16
  start-page: 1469
  issue: 3
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib267
  article-title: A review of remaining useful life prediction for energy storage components based on stochastic filtering methods
  publication-title: Energies
  doi: 10.3390/en16031469
– volume: 9
  start-page: 85431
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib40
  article-title: State of health diagnosis and remaining useful life prediction of lithium-ion batteries based on multi-feature data and mechanism fusion
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3083395
– volume: 56
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib33
  article-title: Review of “grey box” lifetime modeling for lithium-ion battery: combining physics and data-driven methods
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.105992
– volume: 13
  start-page: 2911
  year: 2017
  ident: 10.1016/j.jpowsour.2025.238192_bib205
  article-title: RUL prediction of deteriorating products using an adaptive wiener process model
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2684821
– volume: 69
  start-page: 14657
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib10
  article-title: An MPC-based control strategy for electric vehicle battery cooling considering energy saving and battery lifespan
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2020.3032989
– volume: 485
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib74
  article-title: Physics-based prognostics of implantable-grade lithium-ion battery for remaining useful life prediction
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229327
– volume: 339
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib185
  article-title: Prognostics of battery capacity based on charging data and data-driven methods for on-road vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120954
– volume: 19
  start-page: 2380
  issue: 9
  year: 2020
  ident: 10.1016/j.jpowsour.2025.238192_bib231
  article-title: A LSTM-STW and GS-LM fusion method for lithium-ion battery RUL prediction based on EEMD
  publication-title: Energies
  doi: 10.3390/en13092380
– volume: 16
  start-page: 953
  issue: 2
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib9
  article-title: Second life of lithium-ion batteries of electric vehicles: a short review and perspectives
  publication-title: Energies
  doi: 10.3390/en16020953
– volume: 336
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib180
  article-title: Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120808
– volume: 11
  issue: 9
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib68
  article-title: Prediction of lithium‐ion battery remaining useful life via empirical mode decomposition‐autoregressive integrated moving average and regularized particle filter algorithm
  publication-title: Energy Technol.
  doi: 10.1002/ente.202300232
– volume: 236
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib225
  article-title: Parallel state fusion LSTM-based early-cycle stage lithium-ion battery RUL prediction under Lebesgue sampling framework
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2023.109315
– ident: 10.1016/j.jpowsour.2025.238192_bib119
  doi: 10.1021/acs.chemrev.9b00427
– volume: 10
  start-page: 1497
  issue: 12
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib43
  article-title: State of health prediction of lithium-ion batteries based on the discharge voltage and temperature
  publication-title: IEEE Trans. Veh. Technol.
– volume: 62
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib80
  article-title: The co-estimation of states for lithium-ion batteries based on segment data
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.106787
– volume: 202
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib12
  article-title: Investigation of battery thermal management system with considering effect of battery aging and nanofluids
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2022.123685
– volume: 34
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib153
  article-title: A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.102118
– volume: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib179
  article-title: Novel image-based rapid RUL prediction for Li-Ion batteries using a capsule network and transfer learning
  publication-title: IEEE Trans. Transp. Electrification
  doi: 10.1109/TTE.2022.3173918
– volume: 17
  start-page: 3109
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib220
  article-title: Image, RUL prediction for lithium-ion batteries based on variational mode decomposition and hybrid network model
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-023-02532-z
– volume: 160
  issue: 2
  year: 2012
  ident: 10.1016/j.jpowsour.2025.238192_bib136
  article-title: Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.044302jes
– volume: 22
  start-page: 9552
  issue: 23
  year: 2022
  ident: 10.1016/j.jpowsour.2025.238192_bib248
  article-title: XGBoost-Based remaining useful life estimation model with extended kalman particle filter for lithium-ion batteries
  publication-title: Sensors
  doi: 10.3390/s22239522
– volume: 6
  start-page: 2351
  issue: 6
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib4
  article-title: ENPOLITE: comparing lithium-ion cells across energy, power, lifetime, and temperature
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00743
– volume: 34
  issue: 25
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib8
  article-title: Machine learning: an advanced platform for materials development and state prediction in lithium‐ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101474
– volume: 7
  start-page: 130638
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib206
  article-title: Research on degradation modeling and life prediction method of lithium-ion battery in dynamic environment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929177
– volume: 18
  issue: 5
  year: 2023
  ident: 10.1016/j.jpowsour.2025.238192_bib39
  article-title: Remaining useful life prediction of lithium-ion battery based on chaotic particle swarm optimization and particle filter
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.1016/j.ijoes.2023.100122
– volume: 302
  issue: 15
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib63
  article-title: A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion
  publication-title: Appl. Energy
– volume: 36
  start-page: 6228
  year: 2021
  ident: 10.1016/j.jpowsour.2025.238192_bib201
  article-title: Li-Ion battery state of health estimation and remaining useful life prediction through a model-data-fusion method
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.3033297
– volume: 365
  start-page: 235
  year: 2017
  ident: 10.1016/j.jpowsour.2025.238192_bib95
  article-title: Understanding the crack formation of graphite particles in cycled commercial lithium-ion batteries by focused ion beam - scanning electron microscopy
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.08.045
– volume: 100
  year: 2019
  ident: 10.1016/j.jpowsour.2025.238192_bib202
  article-title: Remaining useful life prediction of Lithium-ion batteries of stratospheric airship by model-based method
  publication-title: Microelectron. Reliab.
SSID ssj0001170
Score 2.494882
SecondaryResourceType review_article
Snippet Predicting the state of lithium-ion batteries (LIBs) plays a vital role in proactively identifying aging and damage, thereby enabling timely maintenance and...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 238192
SubjectTerms Aging mechanism
Data-driven methods
Lithium-ion battery
Physics-based models
State prediction
Title Advancements in battery state prediction methods: A comprehensive review of data-driven approaches and degradation mechanisms
URI https://dx.doi.org/10.1016/j.jpowsour.2025.238192
Volume 659
WOSCitedRecordID wos001583657600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0378-7753
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001170
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZptof2UPqku32gQ2_BaWLLltVbKFu2S1kKDTT0YixZog7FCXks28P2t3fGIz9KFtpSejHB2FI88zEzkma-YezVRAhpIoPZ_VoFInYqSCORBzovnDQyN1LXPLMf5MVFulioj4PBj6YW5vKbrKr06kqt_6uq4R4oG0tn_0Ld7aBwA36D0uEKaofrHyl-Rqf6VLpWViNdM2h-H9WlQ8gJUJTUHpyaR2-pNh1Tyzf2q09n7wpaMIM0KDZoE1v-cUu8zgXyTFBLJhgLK4jLrec-P4x219iNbURHBW0Y_wXmq03NZ8xgX7UOYl9bwrLuL9KapX3u8wNspdtHz0u_332294_6HYwwxmwQquGkbbWD0hoq54LlrZTEJNyY6oTYww_MPu1ALMdL-Bj8kjFOMya2t87RtemHn3BwHBvivxAXnbfYUShjlQ7Z0ez96eK89eXYl6c-h_J_pldjfvNsN4c3vZBlfp_d89LnM8LIAzaw1UN2t8dA-Yhd99HCy4p7tPAaLbxDC_doecNn_BescMIKXznewwrvsMIBK7yHFd5h5TGbvzudvz0LfEeOwMBKexdYZ8E3Jk5iDmqsY5tHWiS5gpg4zKdWJJOoSME25RNXQCyrnTPYeURPTWhSCJeesGG1quxTxqda6ChNlJxYLZCRDH2NEVo5PdVGyGP2upFjtibelaxJSFxmjeQzlHxGkj9mqhF35qNHigozQMlv3j35h3efsTsdqJ-z4W6zty_YbXO5K7eblx5QPwE54J-r
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advancements+in+battery+state+prediction+methods%3A+A+comprehensive+review+of+data-driven+approaches+and+degradation+mechanisms&rft.jtitle=Journal+of+power+sources&rft.au=Zheng%2C+Wentao&rft.au=Wu%2C+Dinglan&rft.au=Yuan%2C+Chenbo&rft.au=Jiang%2C+Huan&rft.date=2025-12-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.volume=659&rft_id=info:doi/10.1016%2Fj.jpowsour.2025.238192&rft.externalDocID=S0378775325020282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon