Energy management system scheduling optimization based on an improved generative adversarial network deep reinforcement learning algorithm
Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides technical support for the efficient integration and distribution of renewable energy, gradually extending to household users. This has led to h...
Saved in:
| Published in: | Engineering applications of artificial intelligence Vol. 161; p. 112129 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2025
|
| Subjects: | |
| ISSN: | 0952-1976 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides technical support for the efficient integration and distribution of renewable energy, gradually extending to household users. This has led to higher demands for the stability of electricity supply to address the growing electricity demand and the uncertainties associated with renewable energy. To address this, this paper proposes an improved generative adversarial network and an enhanced deep reinforcement learning algorithm to improve the scheduling capability of the energy management system. First, we introduce an improved wasserstein generative adversarial network that combines stochastic differential equations and autocorrelation penalty terms with the generator. The experimental results demonstrate that the proposed method can generate high-quality time series data. The generated data were used to train our scheduling model, effectively enhancing its generalization capability. Secondly, We introduced the Minmax mechanism to address Q-value estimation bias by utilizing multiple Q-networks. This mechanism first divides the target Q-values into several groups, selects the maximum value from each group, and then takes the minimum among these maxima as the final target Q-value. We applied this mechanism to improve deep reinforcement learning algorithms based on multi-Q-value evaluation. Comparison experiments show that this improvement significantly enhances the algorithm’s performance, outperforming traditional algorithms in terms of convergence, volatility, and final rewards. The energy management system demonstrates stronger adaptability when handling uncertainties arising from renewable energy variations, ensuring reliable power supply and achieving balanced energy management.
•Proposed an enhanced GAN capturing data nonlinearity and randomness.•Mitigated deep RL bias and optimized energy scheduling.•Proposed a new evaluation method to stabilize learning and improve reliability.•Proposed a scheduling optimization to enhance system stability under renewable energy.•Extensive experiments demonstrated the improvement’s superiority. |
|---|---|
| AbstractList | Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides technical support for the efficient integration and distribution of renewable energy, gradually extending to household users. This has led to higher demands for the stability of electricity supply to address the growing electricity demand and the uncertainties associated with renewable energy. To address this, this paper proposes an improved generative adversarial network and an enhanced deep reinforcement learning algorithm to improve the scheduling capability of the energy management system. First, we introduce an improved wasserstein generative adversarial network that combines stochastic differential equations and autocorrelation penalty terms with the generator. The experimental results demonstrate that the proposed method can generate high-quality time series data. The generated data were used to train our scheduling model, effectively enhancing its generalization capability. Secondly, We introduced the Minmax mechanism to address Q-value estimation bias by utilizing multiple Q-networks. This mechanism first divides the target Q-values into several groups, selects the maximum value from each group, and then takes the minimum among these maxima as the final target Q-value. We applied this mechanism to improve deep reinforcement learning algorithms based on multi-Q-value evaluation. Comparison experiments show that this improvement significantly enhances the algorithm’s performance, outperforming traditional algorithms in terms of convergence, volatility, and final rewards. The energy management system demonstrates stronger adaptability when handling uncertainties arising from renewable energy variations, ensuring reliable power supply and achieving balanced energy management.
•Proposed an enhanced GAN capturing data nonlinearity and randomness.•Mitigated deep RL bias and optimized energy scheduling.•Proposed a new evaluation method to stabilize learning and improve reliability.•Proposed a scheduling optimization to enhance system stability under renewable energy.•Extensive experiments demonstrated the improvement’s superiority. |
| ArticleNumber | 112129 |
| Author | Chao, Weipeng Shi, Yuanbo Leng, Xiaoling Li, Yushuai Liu, Meng |
| Author_xml | – sequence: 1 givenname: Weipeng surname: Chao fullname: Chao, Weipeng organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China – sequence: 2 givenname: Yuanbo orcidid: 0000-0001-8696-2996 surname: Shi fullname: Shi, Yuanbo email: syb2011@yeah.net organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China – sequence: 3 givenname: Yushuai orcidid: 0000-0002-3043-3777 surname: Li fullname: Li, Yushuai organization: Department of Computer Science, Aalborg University, 9220, Aalborg, Denmark – sequence: 4 givenname: Meng surname: Liu fullname: Liu, Meng organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China – sequence: 5 givenname: Xiaoling surname: Leng fullname: Leng, Xiaoling organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China |
| BookMark | eNqFkE1OwzAQRr0oEm3hCsgXSLGdxGl2oKr8SJXYwNpy7XHqktiRbYLKETg1qQJrVjOj0fdm9BZo5rwDhG4oWVFC-e1xBa6RfS_tihFWrihllNUzNCd1yTJaV_wSLWI8EkLydcHn6HvrIDQn3EknG-jAJRxPMUGHozqA_mita7Dvk-3sl0zWO7yXETQeG-mw7frgh3FsYMSM-wGw1AOEKIOVLXaQPn14xxqgxwGsMz6o6UoLMrgzXLaNDzYduit0YWQb4fq3LtHbw_Z185TtXh6fN_e7TDFOUwbVnpaariXlpiLScMZqUnGmC1LoynBlSqgJM4QoY2pd7FXBi6osVK5zWpd5vkR84qrgYwxgRB9sJ8NJUCLOFsVR_FkUZ4tisjgG76YgjN8NFoKIyoJToG0AlYT29j_ED6uEhyA |
| Cites_doi | 10.1016/j.solener.2024.113031 10.1109/TNNLS.2019.2959129 10.1016/j.renene.2019.07.081 10.1016/j.energy.2024.133805 10.1016/j.cja.2024.03.008 10.1109/TII.2024.3431009 10.1016/j.enbuild.2025.115489 10.1109/TSG.2023.3310947 10.1016/j.enbuild.2014.03.057 10.1109/TSTE.2024.3390808 10.1016/j.enconman.2014.03.041 10.1109/TSTE.2019.2918269 10.3389/fenrg.2022.967220 10.3390/su152215988 10.1016/j.apenergy.2025.125568 10.1016/j.apenergy.2023.122258 10.1016/j.energy.2024.132757 10.1016/j.engappai.2024.108831 10.1016/j.apenergy.2022.118528 10.1049/iet-gtd.2013.0710 10.1109/TSG.2023.3288824 10.1016/j.energy.2021.120118 10.1109/TSG.2023.3339541 10.1016/j.ijepes.2025.110635 10.1016/j.neucom.2020.12.114 10.1016/j.engappai.2023.107230 10.1109/TSC.2023.3347741 10.1016/j.jclepro.2024.143771 10.1109/TSG.2020.2976771 10.3390/s23031450 10.1016/j.eswa.2023.120943 10.1016/j.gsf.2023.101757 10.1109/JPROC.2023.3303358 10.1016/j.ijhydene.2025.01.185 10.1016/j.energy.2022.126399 10.1016/j.esr.2024.101299 10.1016/j.apenergy.2024.124155 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.112129 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_112129 S0952197625021372 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- SBC SET UHS WUQ ZMT |
| ID | FETCH-LOGICAL-c261t-e7b15d18a16f70af62290762d404d7f6cf5e902f00cff9d4bc464754c3d319533 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568725800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:09:03 EST 2025 Sat Nov 15 16:53:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep reinforcement learning algorithm Energy system efficiency improvement Renewable energy Energy management system Energy uncertainty management Generative adversarial network |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-e7b15d18a16f70af62290762d404d7f6cf5e902f00cff9d4bc464754c3d319533 |
| ORCID | 0000-0001-8696-2996 0000-0002-3043-3777 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_112129 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_112129 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 2025-12-00 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Abbasi, Seifi (b2) 2014; 83 Xia, Xu, Feng (b37) 2024 Zakaria, Ismail, Lipu, Hannan (b42) 2020; 145 Jin, Zhang, Huang, Yan, Yu, Gao, Jia, Wang (b13) 2023; 15 Yang, Sun, Han, Yin (b40) 2022; 10 Gandhi, Zhang, Kumar, Rodriguez-Gallegos, Yagli, Yang, Reindl, Srinivasan (b9) 2024; 189 Lu, Ding, Qin, Ma, Fang, Dong (b22) 2020; 11 Wang, Azam (b33) 2024; 15 HUANG, HE, ZHANG, DENG, JIANG (b12) 2024; 37 Zheng, Lu, Zhang, Wu, Hou, Zhu (b45) 2024; 15 Abbasi, Khoramini, Dehghan, Abbasi, Karimi (b1) 2015; 29 Fujimoto, van Hoof, Meger (b8) 2018 Fan, Yuan, Miao, Sun, Mei, Zhou (b7) 2022; 71 Li, Yu, Shahidehpour, Yang, Zeng, Chai (b19) 2023; 111 Shengren, Salazar, Vergara, Palensky (b29) 2022 Dong, Zhang, Wang, Zhou (b6) 2024; 127 Chang, Hu, Xu, Mao, Zhao, Huang (b4) 2023; 23 Li, Wang, Zhang, Hu, Ouyang (b17) 2021; 435 Lin, Liu (b20) 2024; 313 Ge, Xie, Chang, Feng (b10) 2025; 167 Su, Zhang, Deng, Wang (b30) 2024; 284 Ye, Qiu, Wu, Strbac, Ward (b41) 2020; 11 Kidger, Foster, Li, Oberhauser, Lyons (b16) 2021 Chen, He, Jing, Xie, Ye (b5) 2024; 307 Wang, Zheng, Zhao, Zhang (b35) 2024; 476 Kavousi-Fard, Abbasi, Baziar (b14) 2014; 26 Zhang, Hao, Fu, Feng, Li, Wang, Pan, Han, Xu (b43) 2025; 387 Mu, Shi, Xu, Wang, Tang, Jia, Geng (b25) 2024; 15 Wu, Dong, Shen, Hoi (b36) 2020; 31 Yang, Feng, Sun, Li, Zhou, Li, Wang (b39) 2023; 17 Mi, Ma, Zheng, Zhang, Li, Wang (b24) 2023; 233 Razghandi, Zhou, Erol-Kantarci, Turgut (b27) 2023; 15 Zhou, Xue, Xue, Liao, Liu, Zhao (b46) 2021; 224 Liu, Meng, Wu (b21) 2025; 103 Ge, Xie, Chang, Feng (b11) 2025; 167 Abbasi, Seifi (b3) 2014; 8 Zhang, Lin, Mei, Lyu, Jiang, Xue, Zhang, Gao (b44) 2024; 376 Xu, Zhang, Meng, Liu, Wang, Qiao, Zhao, Zhu, Wang (b38) 2024 Tan, Peng, Liu (b31) 2024; 376 Maasoumy, Razmara, Shahbakhti, Vincentelli (b23) 2014; 77 Ouyang, Zhang, Wu, Zhao, Xu (b26) 2023; 267 Wang, Dong, Yang (b34) 2022; 310 Ren, Liu, Wu, Liu, Nie, Xu (b28) 2024; 355 Verma, Sandys, Matthews, Goel (b32) 2024; 135 Li, Xi, Li, Wu, Qiao (b18) 2025; 333 Khalid (b15) 2024; 51 Liu (10.1016/j.engappai.2025.112129_b21) 2025; 103 Shengren (10.1016/j.engappai.2025.112129_b29) 2022 Yang (10.1016/j.engappai.2025.112129_b39) 2023; 17 Abbasi (10.1016/j.engappai.2025.112129_b3) 2014; 8 Jin (10.1016/j.engappai.2025.112129_b13) 2023; 15 Ouyang (10.1016/j.engappai.2025.112129_b26) 2023; 267 Chang (10.1016/j.engappai.2025.112129_b4) 2023; 23 Su (10.1016/j.engappai.2025.112129_b30) 2024; 284 Yang (10.1016/j.engappai.2025.112129_b40) 2022; 10 Verma (10.1016/j.engappai.2025.112129_b32) 2024; 135 Ge (10.1016/j.engappai.2025.112129_b11) 2025; 167 Ren (10.1016/j.engappai.2025.112129_b28) 2024; 355 Fan (10.1016/j.engappai.2025.112129_b7) 2022; 71 Gandhi (10.1016/j.engappai.2025.112129_b9) 2024; 189 Lu (10.1016/j.engappai.2025.112129_b22) 2020; 11 Maasoumy (10.1016/j.engappai.2025.112129_b23) 2014; 77 Wang (10.1016/j.engappai.2025.112129_b35) 2024; 476 Xu (10.1016/j.engappai.2025.112129_b38) 2024 Abbasi (10.1016/j.engappai.2025.112129_b1) 2015; 29 Wang (10.1016/j.engappai.2025.112129_b34) 2022; 310 Tan (10.1016/j.engappai.2025.112129_b31) 2024; 376 Zhang (10.1016/j.engappai.2025.112129_b44) 2024; 376 Kavousi-Fard (10.1016/j.engappai.2025.112129_b14) 2014; 26 Abbasi (10.1016/j.engappai.2025.112129_b2) 2014; 83 Wu (10.1016/j.engappai.2025.112129_b36) 2020; 31 Fujimoto (10.1016/j.engappai.2025.112129_b8) 2018 Lin (10.1016/j.engappai.2025.112129_b20) 2024; 313 Li (10.1016/j.engappai.2025.112129_b18) 2025; 333 Xia (10.1016/j.engappai.2025.112129_b37) 2024 Ge (10.1016/j.engappai.2025.112129_b10) 2025; 167 Wang (10.1016/j.engappai.2025.112129_b33) 2024; 15 Zakaria (10.1016/j.engappai.2025.112129_b42) 2020; 145 Zheng (10.1016/j.engappai.2025.112129_b45) 2024; 15 Chen (10.1016/j.engappai.2025.112129_b5) 2024; 307 Li (10.1016/j.engappai.2025.112129_b19) 2023; 111 Kidger (10.1016/j.engappai.2025.112129_b16) 2021 Ye (10.1016/j.engappai.2025.112129_b41) 2020; 11 HUANG (10.1016/j.engappai.2025.112129_b12) 2024; 37 Razghandi (10.1016/j.engappai.2025.112129_b27) 2023; 15 Zhang (10.1016/j.engappai.2025.112129_b43) 2025; 387 Zhou (10.1016/j.engappai.2025.112129_b46) 2021; 224 Dong (10.1016/j.engappai.2025.112129_b6) 2024; 127 Mi (10.1016/j.engappai.2025.112129_b24) 2023; 233 Li (10.1016/j.engappai.2025.112129_b17) 2021; 435 Mu (10.1016/j.engappai.2025.112129_b25) 2024; 15 Khalid (10.1016/j.engappai.2025.112129_b15) 2024; 51 |
| References_xml | – volume: 15 year: 2023 ident: b13 article-title: Solar energy utilization potential in urban residential blocks: A case study of Wuhan, China publication-title: Sustainability – volume: 376 year: 2024 ident: b31 article-title: Spatio-temporal distribution and peak prediction of energy consumption and carbon emissions of residential buildings in China publication-title: Appl. Energy – year: 2024 ident: b37 article-title: Hierarchical coordination of networked-microgrids towards decentralized operation: A safe deep reinforcement learning method publication-title: IEEE Trans. Sustain. Energy – volume: 37 start-page: 406 year: 2024 end-page: 417 ident: b12 article-title: Controlling underestimation bias in reinforcement learning via minmax operation publication-title: Chin. J. Aeronaut. – year: 2018 ident: b8 article-title: Addressing function approximation error in actor-critic methods – volume: 111 start-page: 1055 year: 2023 end-page: 1096 ident: b19 article-title: Deep reinforcement learning for smart grid operations: Algorithms, applications, and prospects publication-title: Proc. IEEE – volume: 387 year: 2025 ident: b43 article-title: GAN-MAML strategy for biomass energy production: Overcoming small dataset limitations publication-title: Appl. Energy – volume: 29 start-page: 1881 year: 2015 end-page: 1888 ident: b1 article-title: A new intelligent method for optimal allocation of D-STATCOM with uncertainty publication-title: J. Intell. Fuzzy Systems – volume: 23 year: 2023 ident: b4 article-title: Towards generating realistic wrist pulse signals using enhanced one dimensional Wasserstein GAN publication-title: Sensors – year: 2024 ident: b38 article-title: SeqESR-GAN-based sparse data augmentation for distribution networks publication-title: IEEE Trans. Ind. Inform. – volume: 51 year: 2024 ident: b15 article-title: Smart grids and renewable energy systems: Perspectives and grid integration challenges publication-title: Energy Strategy Rev. – volume: 103 start-page: 147 year: 2025 end-page: 165 ident: b21 article-title: Data-driven optimal scheduling for integrated electricity-heat-gas-hydrogen energy system considering demand-side management: A deep reinforcement learning approach publication-title: Int. J. Hydrog. Energy – volume: 8 start-page: 1017 year: 2014 end-page: 1027 ident: b3 article-title: Simultaneous integrated stochastic electrical and thermal energy expansion planning publication-title: IET Gener. Transm. Distrib. – volume: 11 start-page: 3068 year: 2020 end-page: 3082 ident: b41 article-title: Model-free real-time autonomous control for a residential multi-energy system using deep reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 31 start-page: 4933 year: 2020 end-page: 4945 ident: b36 article-title: Reducing estimation bias via triplet-average deep deterministic policy gradient publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 127 year: 2024 ident: b6 article-title: Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy publication-title: Eng. Appl. Artif. Intell. – volume: 83 start-page: 9 year: 2014 end-page: 18 ident: b2 article-title: Energy expansion planning by considering electrical and thermal expansion simultaneously publication-title: Energy Convers. Manage. – volume: 167 year: 2025 ident: b11 article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 135 year: 2024 ident: b32 article-title: Readiness of artificial intelligence technology for managing energy demands from renewable sources publication-title: Eng. Appl. Artif. Intell. – volume: 15 start-page: 1544 year: 2024 end-page: 1561 ident: b45 article-title: Distributed energy management of multi-entity integrated electricity and heat systems: A review of architectures, optimization algorithms, and prospects publication-title: IEEE Trans. Smart Grid – volume: 17 start-page: 291 year: 2023 end-page: 305 ident: b39 article-title: Decentralized cooperative caching and offloading for virtual reality task based on GAN-powered multi-agent reinforcement learning publication-title: IEEE Trans. Serv. Comput. – volume: 307 year: 2024 ident: b5 article-title: Energy management in integrated energy system with electric vehicles as mobile energy storage: An approach using bi-level deep reinforcement learning publication-title: Energy – volume: 167 year: 2025 ident: b10 article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 435 start-page: 26 year: 2021 end-page: 41 ident: b17 article-title: The theoretical research of generative adversarial networks: an overview publication-title: Neurocomputing – start-page: 1 year: 2022 end-page: 6 ident: b29 article-title: Performance comparison of deep RL algorithms for energy systems optimal scheduling publication-title: 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe – volume: 145 start-page: 1543 year: 2020 end-page: 1571 ident: b42 article-title: Uncertainty models for stochastic optimization in renewable energy applications publication-title: Renew. energy – volume: 26 start-page: 2817 year: 2014 end-page: 2823 ident: b14 article-title: A novel adaptive modified harmony search algorithm to solve multi-objective environmental/economic dispatch publication-title: J. Intell. Fuzzy Systems – volume: 376 year: 2024 ident: b44 article-title: Interior-point policy optimization based multi-agent deep reinforcement learning method for secure home energy management under various uncertainties publication-title: Appl. Energy – volume: 77 start-page: 377 year: 2014 end-page: 392 ident: b23 article-title: Handling model uncertainty in model predictive control for energy efficient buildings publication-title: Energy Build. – volume: 11 start-page: 1140 year: 2020 end-page: 1151 ident: b22 article-title: Multi-stage stochastic programming to joint economic dispatch for energy and reserve with uncertain renewable energy publication-title: IEEE Trans. Sustain. Energy – volume: 233 year: 2023 ident: b24 article-title: WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation publication-title: Expert Syst. Appl. – volume: 10 year: 2022 ident: b40 article-title: Research on power system flexibility considering uncertainties publication-title: Front. Energy Res. – volume: 267 year: 2023 ident: b26 article-title: A day-ahead planning for multi-energy system in building community publication-title: Energy – volume: 15 start-page: 1562 year: 2023 end-page: 1573 ident: b27 article-title: Smart home energy management: VAE-GAN synthetic dataset generator and Q-learning publication-title: IEEE Trans. Smart Grid – volume: 355 year: 2024 ident: b28 article-title: A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters publication-title: Appl. Energy – volume: 476 year: 2024 ident: b35 article-title: Energy-aware remanufacturing process planning and scheduling problem using reinforcement learning-based particle swarm optimization algorithm publication-title: J. Clean. Prod. – year: 2021 ident: b16 article-title: Neural SDEs as infinite-dimensional GANs – volume: 15 start-page: 2957 year: 2024 end-page: 2970 ident: b25 article-title: Multi-objective interval optimization dispatch of microgrid via deep reinforcement learning publication-title: IEEE Trans. Smart Grid – volume: 15 year: 2024 ident: b33 article-title: Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries publication-title: Geosci. Front. – volume: 224 year: 2021 ident: b46 article-title: A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning publication-title: Energy – volume: 189 year: 2024 ident: b9 article-title: The value of solar forecasts and the cost of their errors: A review publication-title: Renew. Sustain. Energy Rev. – volume: 313 year: 2024 ident: b20 article-title: Assessment of flexible coal power and battery energy storage system in supporting renewable energy publication-title: Energy – volume: 284 year: 2024 ident: b30 article-title: An intra-hour photovoltaic power generation prediction method for flexible building energy systems and its application in operation scheduling strategy publication-title: Sol. Energy – volume: 71 start-page: 1 year: 2022 end-page: 16 ident: b7 article-title: Full attention wasserstein GAN with gradient normalization for fault diagnosis under imbalanced data publication-title: IEEE Trans. Instrum. Meas. – volume: 333 year: 2025 ident: b18 article-title: DPP-GAN: A decentralized and privacy-preserving GAN system for collaborative smart meter data generation publication-title: Energy Build. – volume: 310 year: 2022 ident: b34 article-title: Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets publication-title: Appl. Energy – volume: 284 year: 2024 ident: 10.1016/j.engappai.2025.112129_b30 article-title: An intra-hour photovoltaic power generation prediction method for flexible building energy systems and its application in operation scheduling strategy publication-title: Sol. Energy doi: 10.1016/j.solener.2024.113031 – volume: 31 start-page: 4933 issue: 11 year: 2020 ident: 10.1016/j.engappai.2025.112129_b36 article-title: Reducing estimation bias via triplet-average deep deterministic policy gradient publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2019.2959129 – volume: 145 start-page: 1543 year: 2020 ident: 10.1016/j.engappai.2025.112129_b42 article-title: Uncertainty models for stochastic optimization in renewable energy applications publication-title: Renew. energy doi: 10.1016/j.renene.2019.07.081 – volume: 313 year: 2024 ident: 10.1016/j.engappai.2025.112129_b20 article-title: Assessment of flexible coal power and battery energy storage system in supporting renewable energy publication-title: Energy doi: 10.1016/j.energy.2024.133805 – volume: 37 start-page: 406 issue: 7 year: 2024 ident: 10.1016/j.engappai.2025.112129_b12 article-title: Controlling underestimation bias in reinforcement learning via minmax operation publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2024.03.008 – year: 2024 ident: 10.1016/j.engappai.2025.112129_b38 article-title: SeqESR-GAN-based sparse data augmentation for distribution networks publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3431009 – volume: 333 year: 2025 ident: 10.1016/j.engappai.2025.112129_b18 article-title: DPP-GAN: A decentralized and privacy-preserving GAN system for collaborative smart meter data generation publication-title: Energy Build. doi: 10.1016/j.enbuild.2025.115489 – volume: 15 start-page: 1544 issue: 2 year: 2024 ident: 10.1016/j.engappai.2025.112129_b45 article-title: Distributed energy management of multi-entity integrated electricity and heat systems: A review of architectures, optimization algorithms, and prospects publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2023.3310947 – volume: 77 start-page: 377 year: 2014 ident: 10.1016/j.engappai.2025.112129_b23 article-title: Handling model uncertainty in model predictive control for energy efficient buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.03.057 – volume: 376 issue: B year: 2024 ident: 10.1016/j.engappai.2025.112129_b31 article-title: Spatio-temporal distribution and peak prediction of energy consumption and carbon emissions of residential buildings in China publication-title: Appl. Energy – year: 2018 ident: 10.1016/j.engappai.2025.112129_b8 – start-page: 1 year: 2022 ident: 10.1016/j.engappai.2025.112129_b29 article-title: Performance comparison of deep RL algorithms for energy systems optimal scheduling – year: 2024 ident: 10.1016/j.engappai.2025.112129_b37 article-title: Hierarchical coordination of networked-microgrids towards decentralized operation: A safe deep reinforcement learning method publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2024.3390808 – volume: 83 start-page: 9 year: 2014 ident: 10.1016/j.engappai.2025.112129_b2 article-title: Energy expansion planning by considering electrical and thermal expansion simultaneously publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.03.041 – volume: 11 start-page: 1140 issue: 3 year: 2020 ident: 10.1016/j.engappai.2025.112129_b22 article-title: Multi-stage stochastic programming to joint economic dispatch for energy and reserve with uncertain renewable energy publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2019.2918269 – volume: 10 year: 2022 ident: 10.1016/j.engappai.2025.112129_b40 article-title: Research on power system flexibility considering uncertainties publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.967220 – volume: 15 issue: 22 year: 2023 ident: 10.1016/j.engappai.2025.112129_b13 article-title: Solar energy utilization potential in urban residential blocks: A case study of Wuhan, China publication-title: Sustainability doi: 10.3390/su152215988 – volume: 387 year: 2025 ident: 10.1016/j.engappai.2025.112129_b43 article-title: GAN-MAML strategy for biomass energy production: Overcoming small dataset limitations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2025.125568 – volume: 355 year: 2024 ident: 10.1016/j.engappai.2025.112129_b28 article-title: A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122258 – volume: 307 year: 2024 ident: 10.1016/j.engappai.2025.112129_b5 article-title: Energy management in integrated energy system with electric vehicles as mobile energy storage: An approach using bi-level deep reinforcement learning publication-title: Energy doi: 10.1016/j.energy.2024.132757 – volume: 135 year: 2024 ident: 10.1016/j.engappai.2025.112129_b32 article-title: Readiness of artificial intelligence technology for managing energy demands from renewable sources publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108831 – volume: 310 year: 2022 ident: 10.1016/j.engappai.2025.112129_b34 article-title: Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.118528 – volume: 8 start-page: 1017 issue: 6 year: 2014 ident: 10.1016/j.engappai.2025.112129_b3 article-title: Simultaneous integrated stochastic electrical and thermal energy expansion planning publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2013.0710 – volume: 15 start-page: 1562 issue: 2 year: 2023 ident: 10.1016/j.engappai.2025.112129_b27 article-title: Smart home energy management: VAE-GAN synthetic dataset generator and Q-learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2023.3288824 – volume: 224 year: 2021 ident: 10.1016/j.engappai.2025.112129_b46 article-title: A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning publication-title: Energy doi: 10.1016/j.energy.2021.120118 – volume: 189 issue: B year: 2024 ident: 10.1016/j.engappai.2025.112129_b9 article-title: The value of solar forecasts and the cost of their errors: A review publication-title: Renew. Sustain. Energy Rev. – volume: 15 start-page: 2957 issue: 3 year: 2024 ident: 10.1016/j.engappai.2025.112129_b25 article-title: Multi-objective interval optimization dispatch of microgrid via deep reinforcement learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2023.3339541 – volume: 167 year: 2025 ident: 10.1016/j.engappai.2025.112129_b11 article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2025.110635 – volume: 26 start-page: 2817 issue: 6 year: 2014 ident: 10.1016/j.engappai.2025.112129_b14 article-title: A novel adaptive modified harmony search algorithm to solve multi-objective environmental/economic dispatch publication-title: J. Intell. Fuzzy Systems – volume: 435 start-page: 26 year: 2021 ident: 10.1016/j.engappai.2025.112129_b17 article-title: The theoretical research of generative adversarial networks: an overview publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.12.114 – volume: 127 year: 2024 ident: 10.1016/j.engappai.2025.112129_b6 article-title: Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107230 – volume: 17 start-page: 291 issue: 1 year: 2023 ident: 10.1016/j.engappai.2025.112129_b39 article-title: Decentralized cooperative caching and offloading for virtual reality task based on GAN-powered multi-agent reinforcement learning publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2023.3347741 – volume: 476 year: 2024 ident: 10.1016/j.engappai.2025.112129_b35 article-title: Energy-aware remanufacturing process planning and scheduling problem using reinforcement learning-based particle swarm optimization algorithm publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.143771 – volume: 29 start-page: 1881 issue: 5 year: 2015 ident: 10.1016/j.engappai.2025.112129_b1 article-title: A new intelligent method for optimal allocation of D-STATCOM with uncertainty publication-title: J. Intell. Fuzzy Systems – volume: 11 start-page: 3068 issue: 4 year: 2020 ident: 10.1016/j.engappai.2025.112129_b41 article-title: Model-free real-time autonomous control for a residential multi-energy system using deep reinforcement learning publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.2976771 – volume: 23 issue: 3 year: 2023 ident: 10.1016/j.engappai.2025.112129_b4 article-title: Towards generating realistic wrist pulse signals using enhanced one dimensional Wasserstein GAN publication-title: Sensors doi: 10.3390/s23031450 – volume: 233 year: 2023 ident: 10.1016/j.engappai.2025.112129_b24 article-title: WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120943 – volume: 15 issue: 2 year: 2024 ident: 10.1016/j.engappai.2025.112129_b33 article-title: Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries publication-title: Geosci. Front. doi: 10.1016/j.gsf.2023.101757 – volume: 111 start-page: 1055 issue: 9 year: 2023 ident: 10.1016/j.engappai.2025.112129_b19 article-title: Deep reinforcement learning for smart grid operations: Algorithms, applications, and prospects publication-title: Proc. IEEE doi: 10.1109/JPROC.2023.3303358 – volume: 167 year: 2025 ident: 10.1016/j.engappai.2025.112129_b10 article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2025.110635 – volume: 103 start-page: 147 year: 2025 ident: 10.1016/j.engappai.2025.112129_b21 article-title: Data-driven optimal scheduling for integrated electricity-heat-gas-hydrogen energy system considering demand-side management: A deep reinforcement learning approach publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2025.01.185 – volume: 267 year: 2023 ident: 10.1016/j.engappai.2025.112129_b26 article-title: A day-ahead planning for multi-energy system in building community publication-title: Energy doi: 10.1016/j.energy.2022.126399 – volume: 51 year: 2024 ident: 10.1016/j.engappai.2025.112129_b15 article-title: Smart grids and renewable energy systems: Perspectives and grid integration challenges publication-title: Energy Strategy Rev. doi: 10.1016/j.esr.2024.101299 – volume: 376 year: 2024 ident: 10.1016/j.engappai.2025.112129_b44 article-title: Interior-point policy optimization based multi-agent deep reinforcement learning method for secure home energy management under various uncertainties publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.124155 – year: 2021 ident: 10.1016/j.engappai.2025.112129_b16 – volume: 71 start-page: 1 year: 2022 ident: 10.1016/j.engappai.2025.112129_b7 article-title: Full attention wasserstein GAN with gradient normalization for fault diagnosis under imbalanced data publication-title: IEEE Trans. Instrum. Meas. |
| SSID | ssj0003846 |
| Score | 2.448072 |
| Snippet | Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 112129 |
| SubjectTerms | Deep reinforcement learning algorithm Energy management system Energy system efficiency improvement Energy uncertainty management Generative adversarial network Renewable energy |
| Title | Energy management system scheduling optimization based on an improved generative adversarial network deep reinforcement learning algorithm |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.112129 |
| Volume | 161 |
| WOSCitedRecordID | wos001568725800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_coix5OHFyrNAiQKjiUMRyihzHblPtJqvsQ_0N_Kv-s45fSRYqoAcuUXYk28nOtx7P7DczCL2NVWvRtEx9QdLKJ7kMfUbLzI9FSaMy4iIzmv5CT06y-Tz_OplcuVyY3YI2TXZ5ma_-q6pBBspWqbO3UHc_KQjgHpQOV1A7XP9J8TOTzbfseS22WrMHfizYFZ1-3sJGsbQZmJ4yZJWnWckqabJrd_DxTJej1rwipno2r5lu79EY1rhXCbHyOqHLrnKzysIFWdjirO3qzflyL-o_1D30xn-aax5CpwlLun3IqELoiHmg47nfRb0S1tDqopKaiPBjy5qy7XlFVrY-37J6EG513NcNtkGOKBkRRly0MvLD3LSK6TduU8bdbr1wcAxN8OQ3q2ACFBdTWAbekNVTtcR0GLBfhvsX89iTFh0f7qJw8xRqnsLMcwcdRjTJwTYcHn-azT_3x4E4M9li7g1Gaeo3P9HNJ6TRqef0Ibpv3RV8bGD2CE1E8xg9sK4LtoZhDSLXHcTJnqCfBoh4ACI2QMQDEPEYiFgDEcMNa7ADIh6AiEdAxBaIWAER7wEROyDiHohP0bcPs9P3H33b-cPn4NFvfEHLMKnCjIWppAGTqepKAGa7IgGpqEy5TEQeRDIIuJR5RUpOUkITwuNKbT5x_AwdNG0jniOsPBouA5bAlknKPCppXoqYCxJGVIK7dITeuW-7WJkCL8WfNX2EcqeUwh5TzfGzALz9ZeyLW6_2Et0bfhCv0MGm24rX6C7fbep198aC7RqsR8Hp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+management+system+scheduling+optimization+based+on+an+improved+generative+adversarial+network+deep+reinforcement+learning+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chao%2C+Weipeng&rft.au=Shi%2C+Yuanbo&rft.au=Li%2C+Yushuai&rft.au=Liu%2C+Meng&rft.date=2025-12-01&rft.issn=0952-1976&rft.volume=161&rft.spage=112129&rft_id=info:doi/10.1016%2Fj.engappai.2025.112129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_112129 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |