Energy management system scheduling optimization based on an improved generative adversarial network deep reinforcement learning algorithm

Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides technical support for the efficient integration and distribution of renewable energy, gradually extending to household users. This has led to h...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 161; p. 112129
Main Authors: Chao, Weipeng, Shi, Yuanbo, Li, Yushuai, Liu, Meng, Leng, Xiaoling
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2025
Subjects:
ISSN:0952-1976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides technical support for the efficient integration and distribution of renewable energy, gradually extending to household users. This has led to higher demands for the stability of electricity supply to address the growing electricity demand and the uncertainties associated with renewable energy. To address this, this paper proposes an improved generative adversarial network and an enhanced deep reinforcement learning algorithm to improve the scheduling capability of the energy management system. First, we introduce an improved wasserstein generative adversarial network that combines stochastic differential equations and autocorrelation penalty terms with the generator. The experimental results demonstrate that the proposed method can generate high-quality time series data. The generated data were used to train our scheduling model, effectively enhancing its generalization capability. Secondly, We introduced the Minmax mechanism to address Q-value estimation bias by utilizing multiple Q-networks. This mechanism first divides the target Q-values into several groups, selects the maximum value from each group, and then takes the minimum among these maxima as the final target Q-value. We applied this mechanism to improve deep reinforcement learning algorithms based on multi-Q-value evaluation. Comparison experiments show that this improvement significantly enhances the algorithm’s performance, outperforming traditional algorithms in terms of convergence, volatility, and final rewards. The energy management system demonstrates stronger adaptability when handling uncertainties arising from renewable energy variations, ensuring reliable power supply and achieving balanced energy management. •Proposed an enhanced GAN capturing data nonlinearity and randomness.•Mitigated deep RL bias and optimized energy scheduling.•Proposed a new evaluation method to stabilize learning and improve reliability.•Proposed a scheduling optimization to enhance system stability under renewable energy.•Extensive experiments demonstrated the improvement’s superiority.
AbstractList Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides technical support for the efficient integration and distribution of renewable energy, gradually extending to household users. This has led to higher demands for the stability of electricity supply to address the growing electricity demand and the uncertainties associated with renewable energy. To address this, this paper proposes an improved generative adversarial network and an enhanced deep reinforcement learning algorithm to improve the scheduling capability of the energy management system. First, we introduce an improved wasserstein generative adversarial network that combines stochastic differential equations and autocorrelation penalty terms with the generator. The experimental results demonstrate that the proposed method can generate high-quality time series data. The generated data were used to train our scheduling model, effectively enhancing its generalization capability. Secondly, We introduced the Minmax mechanism to address Q-value estimation bias by utilizing multiple Q-networks. This mechanism first divides the target Q-values into several groups, selects the maximum value from each group, and then takes the minimum among these maxima as the final target Q-value. We applied this mechanism to improve deep reinforcement learning algorithms based on multi-Q-value evaluation. Comparison experiments show that this improvement significantly enhances the algorithm’s performance, outperforming traditional algorithms in terms of convergence, volatility, and final rewards. The energy management system demonstrates stronger adaptability when handling uncertainties arising from renewable energy variations, ensuring reliable power supply and achieving balanced energy management. •Proposed an enhanced GAN capturing data nonlinearity and randomness.•Mitigated deep RL bias and optimized energy scheduling.•Proposed a new evaluation method to stabilize learning and improve reliability.•Proposed a scheduling optimization to enhance system stability under renewable energy.•Extensive experiments demonstrated the improvement’s superiority.
ArticleNumber 112129
Author Chao, Weipeng
Shi, Yuanbo
Leng, Xiaoling
Li, Yushuai
Liu, Meng
Author_xml – sequence: 1
  givenname: Weipeng
  surname: Chao
  fullname: Chao, Weipeng
  organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China
– sequence: 2
  givenname: Yuanbo
  orcidid: 0000-0001-8696-2996
  surname: Shi
  fullname: Shi, Yuanbo
  email: syb2011@yeah.net
  organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China
– sequence: 3
  givenname: Yushuai
  orcidid: 0000-0002-3043-3777
  surname: Li
  fullname: Li, Yushuai
  organization: Department of Computer Science, Aalborg University, 9220, Aalborg, Denmark
– sequence: 4
  givenname: Meng
  surname: Liu
  fullname: Liu, Meng
  organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China
– sequence: 5
  givenname: Xiaoling
  surname: Leng
  fullname: Leng, Xiaoling
  organization: Department of Artificial Intelligence and Software Engineering, LiaoNing Petrochemical University, 113001, Fushun, China
BookMark eNqFkE1OwzAQRr0oEm3hCsgXSLGdxGl2oKr8SJXYwNpy7XHqktiRbYLKETg1qQJrVjOj0fdm9BZo5rwDhG4oWVFC-e1xBa6RfS_tihFWrihllNUzNCd1yTJaV_wSLWI8EkLydcHn6HvrIDQn3EknG-jAJRxPMUGHozqA_mita7Dvk-3sl0zWO7yXETQeG-mw7frgh3FsYMSM-wGw1AOEKIOVLXaQPn14xxqgxwGsMz6o6UoLMrgzXLaNDzYduit0YWQb4fq3LtHbw_Z185TtXh6fN_e7TDFOUwbVnpaariXlpiLScMZqUnGmC1LoynBlSqgJM4QoY2pd7FXBi6osVK5zWpd5vkR84qrgYwxgRB9sJ8NJUCLOFsVR_FkUZ4tisjgG76YgjN8NFoKIyoJToG0AlYT29j_ED6uEhyA
Cites_doi 10.1016/j.solener.2024.113031
10.1109/TNNLS.2019.2959129
10.1016/j.renene.2019.07.081
10.1016/j.energy.2024.133805
10.1016/j.cja.2024.03.008
10.1109/TII.2024.3431009
10.1016/j.enbuild.2025.115489
10.1109/TSG.2023.3310947
10.1016/j.enbuild.2014.03.057
10.1109/TSTE.2024.3390808
10.1016/j.enconman.2014.03.041
10.1109/TSTE.2019.2918269
10.3389/fenrg.2022.967220
10.3390/su152215988
10.1016/j.apenergy.2025.125568
10.1016/j.apenergy.2023.122258
10.1016/j.energy.2024.132757
10.1016/j.engappai.2024.108831
10.1016/j.apenergy.2022.118528
10.1049/iet-gtd.2013.0710
10.1109/TSG.2023.3288824
10.1016/j.energy.2021.120118
10.1109/TSG.2023.3339541
10.1016/j.ijepes.2025.110635
10.1016/j.neucom.2020.12.114
10.1016/j.engappai.2023.107230
10.1109/TSC.2023.3347741
10.1016/j.jclepro.2024.143771
10.1109/TSG.2020.2976771
10.3390/s23031450
10.1016/j.eswa.2023.120943
10.1016/j.gsf.2023.101757
10.1109/JPROC.2023.3303358
10.1016/j.ijhydene.2025.01.185
10.1016/j.energy.2022.126399
10.1016/j.esr.2024.101299
10.1016/j.apenergy.2024.124155
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.112129
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_112129
S0952197625021372
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c261t-e7b15d18a16f70af62290762d404d7f6cf5e902f00cff9d4bc464754c3d319533
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001568725800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:09:03 EST 2025
Sat Nov 15 16:53:22 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning algorithm
Energy system efficiency improvement
Renewable energy
Energy management system
Energy uncertainty management
Generative adversarial network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-e7b15d18a16f70af62290762d404d7f6cf5e902f00cff9d4bc464754c3d319533
ORCID 0000-0001-8696-2996
0000-0002-3043-3777
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_112129
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_112129
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abbasi, Seifi (b2) 2014; 83
Xia, Xu, Feng (b37) 2024
Zakaria, Ismail, Lipu, Hannan (b42) 2020; 145
Jin, Zhang, Huang, Yan, Yu, Gao, Jia, Wang (b13) 2023; 15
Yang, Sun, Han, Yin (b40) 2022; 10
Gandhi, Zhang, Kumar, Rodriguez-Gallegos, Yagli, Yang, Reindl, Srinivasan (b9) 2024; 189
Lu, Ding, Qin, Ma, Fang, Dong (b22) 2020; 11
Wang, Azam (b33) 2024; 15
HUANG, HE, ZHANG, DENG, JIANG (b12) 2024; 37
Zheng, Lu, Zhang, Wu, Hou, Zhu (b45) 2024; 15
Abbasi, Khoramini, Dehghan, Abbasi, Karimi (b1) 2015; 29
Fujimoto, van Hoof, Meger (b8) 2018
Fan, Yuan, Miao, Sun, Mei, Zhou (b7) 2022; 71
Li, Yu, Shahidehpour, Yang, Zeng, Chai (b19) 2023; 111
Shengren, Salazar, Vergara, Palensky (b29) 2022
Dong, Zhang, Wang, Zhou (b6) 2024; 127
Chang, Hu, Xu, Mao, Zhao, Huang (b4) 2023; 23
Li, Wang, Zhang, Hu, Ouyang (b17) 2021; 435
Lin, Liu (b20) 2024; 313
Ge, Xie, Chang, Feng (b10) 2025; 167
Su, Zhang, Deng, Wang (b30) 2024; 284
Ye, Qiu, Wu, Strbac, Ward (b41) 2020; 11
Kidger, Foster, Li, Oberhauser, Lyons (b16) 2021
Chen, He, Jing, Xie, Ye (b5) 2024; 307
Wang, Zheng, Zhao, Zhang (b35) 2024; 476
Kavousi-Fard, Abbasi, Baziar (b14) 2014; 26
Zhang, Hao, Fu, Feng, Li, Wang, Pan, Han, Xu (b43) 2025; 387
Mu, Shi, Xu, Wang, Tang, Jia, Geng (b25) 2024; 15
Wu, Dong, Shen, Hoi (b36) 2020; 31
Yang, Feng, Sun, Li, Zhou, Li, Wang (b39) 2023; 17
Mi, Ma, Zheng, Zhang, Li, Wang (b24) 2023; 233
Razghandi, Zhou, Erol-Kantarci, Turgut (b27) 2023; 15
Zhou, Xue, Xue, Liao, Liu, Zhao (b46) 2021; 224
Liu, Meng, Wu (b21) 2025; 103
Ge, Xie, Chang, Feng (b11) 2025; 167
Abbasi, Seifi (b3) 2014; 8
Zhang, Lin, Mei, Lyu, Jiang, Xue, Zhang, Gao (b44) 2024; 376
Xu, Zhang, Meng, Liu, Wang, Qiao, Zhao, Zhu, Wang (b38) 2024
Tan, Peng, Liu (b31) 2024; 376
Maasoumy, Razmara, Shahbakhti, Vincentelli (b23) 2014; 77
Ouyang, Zhang, Wu, Zhao, Xu (b26) 2023; 267
Wang, Dong, Yang (b34) 2022; 310
Ren, Liu, Wu, Liu, Nie, Xu (b28) 2024; 355
Verma, Sandys, Matthews, Goel (b32) 2024; 135
Li, Xi, Li, Wu, Qiao (b18) 2025; 333
Khalid (b15) 2024; 51
Liu (10.1016/j.engappai.2025.112129_b21) 2025; 103
Shengren (10.1016/j.engappai.2025.112129_b29) 2022
Yang (10.1016/j.engappai.2025.112129_b39) 2023; 17
Abbasi (10.1016/j.engappai.2025.112129_b3) 2014; 8
Jin (10.1016/j.engappai.2025.112129_b13) 2023; 15
Ouyang (10.1016/j.engappai.2025.112129_b26) 2023; 267
Chang (10.1016/j.engappai.2025.112129_b4) 2023; 23
Su (10.1016/j.engappai.2025.112129_b30) 2024; 284
Yang (10.1016/j.engappai.2025.112129_b40) 2022; 10
Verma (10.1016/j.engappai.2025.112129_b32) 2024; 135
Ge (10.1016/j.engappai.2025.112129_b11) 2025; 167
Ren (10.1016/j.engappai.2025.112129_b28) 2024; 355
Fan (10.1016/j.engappai.2025.112129_b7) 2022; 71
Gandhi (10.1016/j.engappai.2025.112129_b9) 2024; 189
Lu (10.1016/j.engappai.2025.112129_b22) 2020; 11
Maasoumy (10.1016/j.engappai.2025.112129_b23) 2014; 77
Wang (10.1016/j.engappai.2025.112129_b35) 2024; 476
Xu (10.1016/j.engappai.2025.112129_b38) 2024
Abbasi (10.1016/j.engappai.2025.112129_b1) 2015; 29
Wang (10.1016/j.engappai.2025.112129_b34) 2022; 310
Tan (10.1016/j.engappai.2025.112129_b31) 2024; 376
Zhang (10.1016/j.engappai.2025.112129_b44) 2024; 376
Kavousi-Fard (10.1016/j.engappai.2025.112129_b14) 2014; 26
Abbasi (10.1016/j.engappai.2025.112129_b2) 2014; 83
Wu (10.1016/j.engappai.2025.112129_b36) 2020; 31
Fujimoto (10.1016/j.engappai.2025.112129_b8) 2018
Lin (10.1016/j.engappai.2025.112129_b20) 2024; 313
Li (10.1016/j.engappai.2025.112129_b18) 2025; 333
Xia (10.1016/j.engappai.2025.112129_b37) 2024
Ge (10.1016/j.engappai.2025.112129_b10) 2025; 167
Wang (10.1016/j.engappai.2025.112129_b33) 2024; 15
Zakaria (10.1016/j.engappai.2025.112129_b42) 2020; 145
Zheng (10.1016/j.engappai.2025.112129_b45) 2024; 15
Chen (10.1016/j.engappai.2025.112129_b5) 2024; 307
Li (10.1016/j.engappai.2025.112129_b19) 2023; 111
Kidger (10.1016/j.engappai.2025.112129_b16) 2021
Ye (10.1016/j.engappai.2025.112129_b41) 2020; 11
HUANG (10.1016/j.engappai.2025.112129_b12) 2024; 37
Razghandi (10.1016/j.engappai.2025.112129_b27) 2023; 15
Zhang (10.1016/j.engappai.2025.112129_b43) 2025; 387
Zhou (10.1016/j.engappai.2025.112129_b46) 2021; 224
Dong (10.1016/j.engappai.2025.112129_b6) 2024; 127
Mi (10.1016/j.engappai.2025.112129_b24) 2023; 233
Li (10.1016/j.engappai.2025.112129_b17) 2021; 435
Mu (10.1016/j.engappai.2025.112129_b25) 2024; 15
Khalid (10.1016/j.engappai.2025.112129_b15) 2024; 51
References_xml – volume: 15
  year: 2023
  ident: b13
  article-title: Solar energy utilization potential in urban residential blocks: A case study of Wuhan, China
  publication-title: Sustainability
– volume: 376
  year: 2024
  ident: b31
  article-title: Spatio-temporal distribution and peak prediction of energy consumption and carbon emissions of residential buildings in China
  publication-title: Appl. Energy
– year: 2024
  ident: b37
  article-title: Hierarchical coordination of networked-microgrids towards decentralized operation: A safe deep reinforcement learning method
  publication-title: IEEE Trans. Sustain. Energy
– volume: 37
  start-page: 406
  year: 2024
  end-page: 417
  ident: b12
  article-title: Controlling underestimation bias in reinforcement learning via minmax operation
  publication-title: Chin. J. Aeronaut.
– year: 2018
  ident: b8
  article-title: Addressing function approximation error in actor-critic methods
– volume: 111
  start-page: 1055
  year: 2023
  end-page: 1096
  ident: b19
  article-title: Deep reinforcement learning for smart grid operations: Algorithms, applications, and prospects
  publication-title: Proc. IEEE
– volume: 387
  year: 2025
  ident: b43
  article-title: GAN-MAML strategy for biomass energy production: Overcoming small dataset limitations
  publication-title: Appl. Energy
– volume: 29
  start-page: 1881
  year: 2015
  end-page: 1888
  ident: b1
  article-title: A new intelligent method for optimal allocation of D-STATCOM with uncertainty
  publication-title: J. Intell. Fuzzy Systems
– volume: 23
  year: 2023
  ident: b4
  article-title: Towards generating realistic wrist pulse signals using enhanced one dimensional Wasserstein GAN
  publication-title: Sensors
– year: 2024
  ident: b38
  article-title: SeqESR-GAN-based sparse data augmentation for distribution networks
  publication-title: IEEE Trans. Ind. Inform.
– volume: 51
  year: 2024
  ident: b15
  article-title: Smart grids and renewable energy systems: Perspectives and grid integration challenges
  publication-title: Energy Strategy Rev.
– volume: 103
  start-page: 147
  year: 2025
  end-page: 165
  ident: b21
  article-title: Data-driven optimal scheduling for integrated electricity-heat-gas-hydrogen energy system considering demand-side management: A deep reinforcement learning approach
  publication-title: Int. J. Hydrog. Energy
– volume: 8
  start-page: 1017
  year: 2014
  end-page: 1027
  ident: b3
  article-title: Simultaneous integrated stochastic electrical and thermal energy expansion planning
  publication-title: IET Gener. Transm. Distrib.
– volume: 11
  start-page: 3068
  year: 2020
  end-page: 3082
  ident: b41
  article-title: Model-free real-time autonomous control for a residential multi-energy system using deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
– volume: 31
  start-page: 4933
  year: 2020
  end-page: 4945
  ident: b36
  article-title: Reducing estimation bias via triplet-average deep deterministic policy gradient
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 127
  year: 2024
  ident: b6
  article-title: Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy
  publication-title: Eng. Appl. Artif. Intell.
– volume: 83
  start-page: 9
  year: 2014
  end-page: 18
  ident: b2
  article-title: Energy expansion planning by considering electrical and thermal expansion simultaneously
  publication-title: Energy Convers. Manage.
– volume: 167
  year: 2025
  ident: b11
  article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 135
  year: 2024
  ident: b32
  article-title: Readiness of artificial intelligence technology for managing energy demands from renewable sources
  publication-title: Eng. Appl. Artif. Intell.
– volume: 15
  start-page: 1544
  year: 2024
  end-page: 1561
  ident: b45
  article-title: Distributed energy management of multi-entity integrated electricity and heat systems: A review of architectures, optimization algorithms, and prospects
  publication-title: IEEE Trans. Smart Grid
– volume: 17
  start-page: 291
  year: 2023
  end-page: 305
  ident: b39
  article-title: Decentralized cooperative caching and offloading for virtual reality task based on GAN-powered multi-agent reinforcement learning
  publication-title: IEEE Trans. Serv. Comput.
– volume: 307
  year: 2024
  ident: b5
  article-title: Energy management in integrated energy system with electric vehicles as mobile energy storage: An approach using bi-level deep reinforcement learning
  publication-title: Energy
– volume: 167
  year: 2025
  ident: b10
  article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 435
  start-page: 26
  year: 2021
  end-page: 41
  ident: b17
  article-title: The theoretical research of generative adversarial networks: an overview
  publication-title: Neurocomputing
– start-page: 1
  year: 2022
  end-page: 6
  ident: b29
  article-title: Performance comparison of deep RL algorithms for energy systems optimal scheduling
  publication-title: 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe
– volume: 145
  start-page: 1543
  year: 2020
  end-page: 1571
  ident: b42
  article-title: Uncertainty models for stochastic optimization in renewable energy applications
  publication-title: Renew. energy
– volume: 26
  start-page: 2817
  year: 2014
  end-page: 2823
  ident: b14
  article-title: A novel adaptive modified harmony search algorithm to solve multi-objective environmental/economic dispatch
  publication-title: J. Intell. Fuzzy Systems
– volume: 376
  year: 2024
  ident: b44
  article-title: Interior-point policy optimization based multi-agent deep reinforcement learning method for secure home energy management under various uncertainties
  publication-title: Appl. Energy
– volume: 77
  start-page: 377
  year: 2014
  end-page: 392
  ident: b23
  article-title: Handling model uncertainty in model predictive control for energy efficient buildings
  publication-title: Energy Build.
– volume: 11
  start-page: 1140
  year: 2020
  end-page: 1151
  ident: b22
  article-title: Multi-stage stochastic programming to joint economic dispatch for energy and reserve with uncertain renewable energy
  publication-title: IEEE Trans. Sustain. Energy
– volume: 233
  year: 2023
  ident: b24
  article-title: WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation
  publication-title: Expert Syst. Appl.
– volume: 10
  year: 2022
  ident: b40
  article-title: Research on power system flexibility considering uncertainties
  publication-title: Front. Energy Res.
– volume: 267
  year: 2023
  ident: b26
  article-title: A day-ahead planning for multi-energy system in building community
  publication-title: Energy
– volume: 15
  start-page: 1562
  year: 2023
  end-page: 1573
  ident: b27
  article-title: Smart home energy management: VAE-GAN synthetic dataset generator and Q-learning
  publication-title: IEEE Trans. Smart Grid
– volume: 355
  year: 2024
  ident: b28
  article-title: A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters
  publication-title: Appl. Energy
– volume: 476
  year: 2024
  ident: b35
  article-title: Energy-aware remanufacturing process planning and scheduling problem using reinforcement learning-based particle swarm optimization algorithm
  publication-title: J. Clean. Prod.
– year: 2021
  ident: b16
  article-title: Neural SDEs as infinite-dimensional GANs
– volume: 15
  start-page: 2957
  year: 2024
  end-page: 2970
  ident: b25
  article-title: Multi-objective interval optimization dispatch of microgrid via deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
– volume: 15
  year: 2024
  ident: b33
  article-title: Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries
  publication-title: Geosci. Front.
– volume: 224
  year: 2021
  ident: b46
  article-title: A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning
  publication-title: Energy
– volume: 189
  year: 2024
  ident: b9
  article-title: The value of solar forecasts and the cost of their errors: A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 313
  year: 2024
  ident: b20
  article-title: Assessment of flexible coal power and battery energy storage system in supporting renewable energy
  publication-title: Energy
– volume: 284
  year: 2024
  ident: b30
  article-title: An intra-hour photovoltaic power generation prediction method for flexible building energy systems and its application in operation scheduling strategy
  publication-title: Sol. Energy
– volume: 71
  start-page: 1
  year: 2022
  end-page: 16
  ident: b7
  article-title: Full attention wasserstein GAN with gradient normalization for fault diagnosis under imbalanced data
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 333
  year: 2025
  ident: b18
  article-title: DPP-GAN: A decentralized and privacy-preserving GAN system for collaborative smart meter data generation
  publication-title: Energy Build.
– volume: 310
  year: 2022
  ident: b34
  article-title: Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets
  publication-title: Appl. Energy
– volume: 284
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b30
  article-title: An intra-hour photovoltaic power generation prediction method for flexible building energy systems and its application in operation scheduling strategy
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2024.113031
– volume: 31
  start-page: 4933
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2025.112129_b36
  article-title: Reducing estimation bias via triplet-average deep deterministic policy gradient
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2959129
– volume: 145
  start-page: 1543
  year: 2020
  ident: 10.1016/j.engappai.2025.112129_b42
  article-title: Uncertainty models for stochastic optimization in renewable energy applications
  publication-title: Renew. energy
  doi: 10.1016/j.renene.2019.07.081
– volume: 313
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b20
  article-title: Assessment of flexible coal power and battery energy storage system in supporting renewable energy
  publication-title: Energy
  doi: 10.1016/j.energy.2024.133805
– volume: 37
  start-page: 406
  issue: 7
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b12
  article-title: Controlling underestimation bias in reinforcement learning via minmax operation
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2024.03.008
– year: 2024
  ident: 10.1016/j.engappai.2025.112129_b38
  article-title: SeqESR-GAN-based sparse data augmentation for distribution networks
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3431009
– volume: 333
  year: 2025
  ident: 10.1016/j.engappai.2025.112129_b18
  article-title: DPP-GAN: A decentralized and privacy-preserving GAN system for collaborative smart meter data generation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2025.115489
– volume: 15
  start-page: 1544
  issue: 2
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b45
  article-title: Distributed energy management of multi-entity integrated electricity and heat systems: A review of architectures, optimization algorithms, and prospects
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3310947
– volume: 77
  start-page: 377
  year: 2014
  ident: 10.1016/j.engappai.2025.112129_b23
  article-title: Handling model uncertainty in model predictive control for energy efficient buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.03.057
– volume: 376
  issue: B
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b31
  article-title: Spatio-temporal distribution and peak prediction of energy consumption and carbon emissions of residential buildings in China
  publication-title: Appl. Energy
– year: 2018
  ident: 10.1016/j.engappai.2025.112129_b8
– start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2025.112129_b29
  article-title: Performance comparison of deep RL algorithms for energy systems optimal scheduling
– year: 2024
  ident: 10.1016/j.engappai.2025.112129_b37
  article-title: Hierarchical coordination of networked-microgrids towards decentralized operation: A safe deep reinforcement learning method
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2024.3390808
– volume: 83
  start-page: 9
  year: 2014
  ident: 10.1016/j.engappai.2025.112129_b2
  article-title: Energy expansion planning by considering electrical and thermal expansion simultaneously
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2014.03.041
– volume: 11
  start-page: 1140
  issue: 3
  year: 2020
  ident: 10.1016/j.engappai.2025.112129_b22
  article-title: Multi-stage stochastic programming to joint economic dispatch for energy and reserve with uncertain renewable energy
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2019.2918269
– volume: 10
  year: 2022
  ident: 10.1016/j.engappai.2025.112129_b40
  article-title: Research on power system flexibility considering uncertainties
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.967220
– volume: 15
  issue: 22
  year: 2023
  ident: 10.1016/j.engappai.2025.112129_b13
  article-title: Solar energy utilization potential in urban residential blocks: A case study of Wuhan, China
  publication-title: Sustainability
  doi: 10.3390/su152215988
– volume: 387
  year: 2025
  ident: 10.1016/j.engappai.2025.112129_b43
  article-title: GAN-MAML strategy for biomass energy production: Overcoming small dataset limitations
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2025.125568
– volume: 355
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b28
  article-title: A data-driven DRL-based home energy management system optimization framework considering uncertain household parameters
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122258
– volume: 307
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b5
  article-title: Energy management in integrated energy system with electric vehicles as mobile energy storage: An approach using bi-level deep reinforcement learning
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132757
– volume: 135
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b32
  article-title: Readiness of artificial intelligence technology for managing energy demands from renewable sources
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108831
– volume: 310
  year: 2022
  ident: 10.1016/j.engappai.2025.112129_b34
  article-title: Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118528
– volume: 8
  start-page: 1017
  issue: 6
  year: 2014
  ident: 10.1016/j.engappai.2025.112129_b3
  article-title: Simultaneous integrated stochastic electrical and thermal energy expansion planning
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2013.0710
– volume: 15
  start-page: 1562
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2025.112129_b27
  article-title: Smart home energy management: VAE-GAN synthetic dataset generator and Q-learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3288824
– volume: 224
  year: 2021
  ident: 10.1016/j.engappai.2025.112129_b46
  article-title: A novel energy management strategy of hybrid electric vehicle via an improved TD3 deep reinforcement learning
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120118
– volume: 189
  issue: B
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b9
  article-title: The value of solar forecasts and the cost of their errors: A review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 15
  start-page: 2957
  issue: 3
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b25
  article-title: Multi-objective interval optimization dispatch of microgrid via deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2023.3339541
– volume: 167
  year: 2025
  ident: 10.1016/j.engappai.2025.112129_b11
  article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2025.110635
– volume: 26
  start-page: 2817
  issue: 6
  year: 2014
  ident: 10.1016/j.engappai.2025.112129_b14
  article-title: A novel adaptive modified harmony search algorithm to solve multi-objective environmental/economic dispatch
  publication-title: J. Intell. Fuzzy Systems
– volume: 435
  start-page: 26
  year: 2021
  ident: 10.1016/j.engappai.2025.112129_b17
  article-title: The theoretical research of generative adversarial networks: an overview
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.12.114
– volume: 127
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b6
  article-title: Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107230
– volume: 17
  start-page: 291
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2025.112129_b39
  article-title: Decentralized cooperative caching and offloading for virtual reality task based on GAN-powered multi-agent reinforcement learning
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2023.3347741
– volume: 476
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b35
  article-title: Energy-aware remanufacturing process planning and scheduling problem using reinforcement learning-based particle swarm optimization algorithm
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.143771
– volume: 29
  start-page: 1881
  issue: 5
  year: 2015
  ident: 10.1016/j.engappai.2025.112129_b1
  article-title: A new intelligent method for optimal allocation of D-STATCOM with uncertainty
  publication-title: J. Intell. Fuzzy Systems
– volume: 11
  start-page: 3068
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2025.112129_b41
  article-title: Model-free real-time autonomous control for a residential multi-energy system using deep reinforcement learning
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2976771
– volume: 23
  issue: 3
  year: 2023
  ident: 10.1016/j.engappai.2025.112129_b4
  article-title: Towards generating realistic wrist pulse signals using enhanced one dimensional Wasserstein GAN
  publication-title: Sensors
  doi: 10.3390/s23031450
– volume: 233
  year: 2023
  ident: 10.1016/j.engappai.2025.112129_b24
  article-title: WGAN-CL: A Wasserstein GAN with confidence loss for small-sample augmentation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120943
– volume: 15
  issue: 2
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b33
  article-title: Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2023.101757
– volume: 111
  start-page: 1055
  issue: 9
  year: 2023
  ident: 10.1016/j.engappai.2025.112129_b19
  article-title: Deep reinforcement learning for smart grid operations: Algorithms, applications, and prospects
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2023.3303358
– volume: 167
  year: 2025
  ident: 10.1016/j.engappai.2025.112129_b10
  article-title: A multi-objective deep reinforcement learning method for intelligent scheduling of wind-solar-hydro-battery complementary generation systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2025.110635
– volume: 103
  start-page: 147
  year: 2025
  ident: 10.1016/j.engappai.2025.112129_b21
  article-title: Data-driven optimal scheduling for integrated electricity-heat-gas-hydrogen energy system considering demand-side management: A deep reinforcement learning approach
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2025.01.185
– volume: 267
  year: 2023
  ident: 10.1016/j.engappai.2025.112129_b26
  article-title: A day-ahead planning for multi-energy system in building community
  publication-title: Energy
  doi: 10.1016/j.energy.2022.126399
– volume: 51
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b15
  article-title: Smart grids and renewable energy systems: Perspectives and grid integration challenges
  publication-title: Energy Strategy Rev.
  doi: 10.1016/j.esr.2024.101299
– volume: 376
  year: 2024
  ident: 10.1016/j.engappai.2025.112129_b44
  article-title: Interior-point policy optimization based multi-agent deep reinforcement learning method for secure home energy management under various uncertainties
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.124155
– year: 2021
  ident: 10.1016/j.engappai.2025.112129_b16
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2025.112129_b7
  article-title: Full attention wasserstein GAN with gradient normalization for fault diagnosis under imbalanced data
  publication-title: IEEE Trans. Instrum. Meas.
SSID ssj0003846
Score 2.448072
Snippet Households, as electricity consumers, play a critical role in achieving the carbon peak and carbon neutrality goals. The development of smart grids provides...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112129
SubjectTerms Deep reinforcement learning algorithm
Energy management system
Energy system efficiency improvement
Energy uncertainty management
Generative adversarial network
Renewable energy
Title Energy management system scheduling optimization based on an improved generative adversarial network deep reinforcement learning algorithm
URI https://dx.doi.org/10.1016/j.engappai.2025.112129
Volume 161
WOSCitedRecordID wos001568725800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMX3ojykg_coix5OHFyrNAiQKjiUMRyihzHblPtJqvsQ_0N_Kv-s45fSRYqoAcuUXYk28nOtx7P7DczCL2NVWvRtEx9QdLKJ7kMfUbLzI9FSaMy4iIzmv5CT06y-Tz_OplcuVyY3YI2TXZ5ma_-q6pBBspWqbO3UHc_KQjgHpQOV1A7XP9J8TOTzbfseS22WrMHfizYFZ1-3sJGsbQZmJ4yZJWnWckqabJrd_DxTJej1rwipno2r5lu79EY1rhXCbHyOqHLrnKzysIFWdjirO3qzflyL-o_1D30xn-aax5CpwlLun3IqELoiHmg47nfRb0S1tDqopKaiPBjy5qy7XlFVrY-37J6EG513NcNtkGOKBkRRly0MvLD3LSK6TduU8bdbr1wcAxN8OQ3q2ACFBdTWAbekNVTtcR0GLBfhvsX89iTFh0f7qJw8xRqnsLMcwcdRjTJwTYcHn-azT_3x4E4M9li7g1Gaeo3P9HNJ6TRqef0Ibpv3RV8bGD2CE1E8xg9sK4LtoZhDSLXHcTJnqCfBoh4ACI2QMQDEPEYiFgDEcMNa7ADIh6AiEdAxBaIWAER7wEROyDiHohP0bcPs9P3H33b-cPn4NFvfEHLMKnCjIWppAGTqepKAGa7IgGpqEy5TEQeRDIIuJR5RUpOUkITwuNKbT5x_AwdNG0jniOsPBouA5bAlknKPCppXoqYCxJGVIK7dITeuW-7WJkCL8WfNX2EcqeUwh5TzfGzALz9ZeyLW6_2Et0bfhCv0MGm24rX6C7fbep198aC7RqsR8Hp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+management+system+scheduling+optimization+based+on+an+improved+generative+adversarial+network+deep+reinforcement+learning+algorithm&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Chao%2C+Weipeng&rft.au=Shi%2C+Yuanbo&rft.au=Li%2C+Yushuai&rft.au=Liu%2C+Meng&rft.date=2025-12-01&rft.issn=0952-1976&rft.volume=161&rft.spage=112129&rft_id=info:doi/10.1016%2Fj.engappai.2025.112129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_112129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon