Numerical evaluation of iterative algorithm for plasticity effect correction in residual stress measurements using radial DSPI and the hole-drilling method

•Correction of the plasticity effects for residual stress measurements in the Hole-drilling method.•Expansion of the applicability of the optical Hole-drilling technique.•Mapping the inclination of the displacements around the hole.•Optimizing the residual stress measurement by coupling an iterative...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Optics and lasers in engineering Ročník 186; s. 108790
Hlavní autori: Wilvert, Thiago, Viotti, Matias R., Jr, Armando Albertazzi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2025
Predmet:
ISSN:0143-8166
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Correction of the plasticity effects for residual stress measurements in the Hole-drilling method.•Expansion of the applicability of the optical Hole-drilling technique.•Mapping the inclination of the displacements around the hole.•Optimizing the residual stress measurement by coupling an iterative algorithm with full-field displacement data.•In this article, the applicability of the optical Hole-drilling method is expanded by coupling an iterative algorithm with full-field displacement data to perform the correction of high residual stress measurements. The standard ASTM E837-20 states that considerable deviations are generated when measuring high levels of residual stresses above 80% of the yield stress with the Hole-drilling Method (HDM). The elastic assumption overestimates the stress levels when elastoplastic strains take place during the experimental measurement procedure. Researchers have long highlighted the potential applications of optical techniques to approach the plasticity effects in the HDM, but no information has been found on the subject. This work numerically evaluates an iterative algorithm that enables the measurement of high levels of residual stresses using optical techniques. First, the residual stress measurement is simulated by obtaining the full field data from a finite element model. The elastically evaluated stresses are obtained with the aid of the optical strain gauge formalism. Then, the partial derivative of the radial displacement with respect to the radius as a function of theta is evaluated for a pre-determined annular region around the hole. These values are used as input for the iterative algorithm, which compares it with the ones computed with the elastoplastic model. The existing iterative algorithm was modified to receive and process the available data. In this way, the deviations generated by the plasticity effects are obviated and the final user receives a corrected evaluation for the residual stress measurement. Besides, the access to the strain profiles provides engineers with a better evaluation capacity. The convergence capacity of the iterative algorithm is assessed. This extends the applicability of the optical Hole-drilling technique to measure residual stresses near the yield stress considering the full-field displacement around the hole, accessing it directly until convergence occurs.
AbstractList •Correction of the plasticity effects for residual stress measurements in the Hole-drilling method.•Expansion of the applicability of the optical Hole-drilling technique.•Mapping the inclination of the displacements around the hole.•Optimizing the residual stress measurement by coupling an iterative algorithm with full-field displacement data.•In this article, the applicability of the optical Hole-drilling method is expanded by coupling an iterative algorithm with full-field displacement data to perform the correction of high residual stress measurements. The standard ASTM E837-20 states that considerable deviations are generated when measuring high levels of residual stresses above 80% of the yield stress with the Hole-drilling Method (HDM). The elastic assumption overestimates the stress levels when elastoplastic strains take place during the experimental measurement procedure. Researchers have long highlighted the potential applications of optical techniques to approach the plasticity effects in the HDM, but no information has been found on the subject. This work numerically evaluates an iterative algorithm that enables the measurement of high levels of residual stresses using optical techniques. First, the residual stress measurement is simulated by obtaining the full field data from a finite element model. The elastically evaluated stresses are obtained with the aid of the optical strain gauge formalism. Then, the partial derivative of the radial displacement with respect to the radius as a function of theta is evaluated for a pre-determined annular region around the hole. These values are used as input for the iterative algorithm, which compares it with the ones computed with the elastoplastic model. The existing iterative algorithm was modified to receive and process the available data. In this way, the deviations generated by the plasticity effects are obviated and the final user receives a corrected evaluation for the residual stress measurement. Besides, the access to the strain profiles provides engineers with a better evaluation capacity. The convergence capacity of the iterative algorithm is assessed. This extends the applicability of the optical Hole-drilling technique to measure residual stresses near the yield stress considering the full-field displacement around the hole, accessing it directly until convergence occurs.
ArticleNumber 108790
Author Wilvert, Thiago
Viotti, Matias R.
Jr, Armando Albertazzi
Author_xml – sequence: 1
  givenname: Thiago
  surname: Wilvert
  fullname: Wilvert, Thiago
  email: thiagowilvert@hotmail.com
– sequence: 2
  givenname: Matias R.
  surname: Viotti
  fullname: Viotti, Matias R.
– sequence: 3
  givenname: Armando Albertazzi
  surname: Jr
  fullname: Jr, Armando Albertazzi
BookMark eNqFkE1OwzAQhb0oEqVwBnyBFDtN7HRZ8VupAiRgbTn2uHWV2JXtVOpZuCyOitiyejOj955G3xWaOO8AoVtK5pRQdref-0PqZAS3nZekrPK14UsyQVNCq0XRUMYu0VWMe5LdFaVT9P069BCskh2Go-wGmax32BtsE4S8HAHLbuuDTbseGx_wIdcnq2w6YTAGVMLKh5B1zFmHA0Srh1wXUx4j7kHGIUAPLkU8ROu2OEhts-Hh432NpdM47QDvfAeFDrbrRkcPaef1Nbowsotw86sz9PX0-Hn_Umzentf3q02hSkZTAYwDr2UDsq65ohUzBFrNmqXhLdeqoboxRNG25WXLFmXeF3Xd8Lpa0iXlrFrMED_3quBjDGDEIdhehpOgRIxcxV78cRUjV3HmmpOrcxLye0cLQURlwSnQdkQitLf_dvwAQKiOEA
Cites_doi 10.1016/j.cja.2019.10.010
10.1243/03093247JSA579
10.1115/1.3224988
10.1007/s11340-016-0219-1
10.1520/JTE11856J
10.1115/1.3184030
10.1016/j.ijpvp.2017.05.008
10.3390/ma13153396
10.1007/s11340-022-00869-z
10.1177/0309324717738377
10.1177/0309324717696400
10.1007/s11340-016-0214-6
10.3390/met7050158
10.1007/s11340-022-00881-3
10.1007/s11340-017-0352-5
10.1007/s11340-021-00740-7
10.1515/mt-2020-0030
10.1016/j.optlaseng.2008.05.020
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlaseng.2024.108790
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_optlaseng_2024_108790
S014381662400770X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABDPE
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c261t-e67e75a8ea557c146f0ebd689f7b7dc81d8f0c1bb72b63281d355875491917643
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001410001300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Sat Nov 29 08:11:12 EST 2025
Sat Mar 08 15:47:27 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Full-field measurement
High residual stress
Optical technique
Hole-drilling method
Plasticity correction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-e67e75a8ea557c146f0ebd689f7b7dc81d8f0c1bb72b63281d355875491917643
ParticipantIDs crossref_primary_10_1016_j_optlaseng_2024_108790
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2024_108790
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Optics and lasers in engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gao, Du, Wu, Song (bib0018) 2017; 7
Nobre, Kornmeier, Scholtes (bib0021) 2018; 58
Schajer (bib0019) 2022
Popov, Alexandrov, Kozintsev (bib0003) 2018; 53
GUO, FU, PAN, KANG (bib0002) 2021; 34
(bib0001) 2020
Halabuk, Návrat (bib0008) 2022
Lothhammer, Viotti, Veiga, Albertazzi (bib0016) 2017; 57
Viotti, Albertazzi, Kapp (bib0014) 2008; 46
Li, Liu, Wu (bib0020) 2024; 10
Lothhammer, Viotti, Albertazzi, Veiga (bib0015) 2017; 152
Gu, Ren, Kong, Gu (bib0011) 2021; 63
Schajer (bib0012) 2021; 61
Beghini, Bertini, Santus (bib0005) 2010; 45
Návrat, Halabuk, Vosynek (bib0006) 2020; 13
Chupakhin, Kashaev, Klusemann, Huber (bib0009) 2017; 52
Armando Albertazzi, Viotti (bib0013) 2021; 3
Schajer (bib0022) 1981; 103
Beghini, Bertini, Raffaelli (bib0004) 1994; 22
Vangi, Tellini (bib0010) 2010; 132
Schajer, Whitehead (bib0007) 2018
Viotti, Lothammer (bib0017) 2017; 57
Popov (10.1016/j.optlaseng.2024.108790_bib0003) 2018; 53
Beghini (10.1016/j.optlaseng.2024.108790_bib0005) 2010; 45
Schajer (10.1016/j.optlaseng.2024.108790_bib0019) 2022
Chupakhin (10.1016/j.optlaseng.2024.108790_bib0009) 2017; 52
Halabuk (10.1016/j.optlaseng.2024.108790_bib0008) 2022
Nobre (10.1016/j.optlaseng.2024.108790_bib0021) 2018; 58
Návrat (10.1016/j.optlaseng.2024.108790_bib0006) 2020; 13
Viotti (10.1016/j.optlaseng.2024.108790_bib0017) 2017; 57
(10.1016/j.optlaseng.2024.108790_bib0001) 2020
Beghini (10.1016/j.optlaseng.2024.108790_bib0004) 1994; 22
Schajer (10.1016/j.optlaseng.2024.108790_bib0012) 2021; 61
Schajer (10.1016/j.optlaseng.2024.108790_bib0007) 2018
Gu (10.1016/j.optlaseng.2024.108790_bib0011) 2021; 63
Vangi (10.1016/j.optlaseng.2024.108790_bib0010) 2010; 132
Armando Albertazzi (10.1016/j.optlaseng.2024.108790_bib0013) 2021; 3
Viotti (10.1016/j.optlaseng.2024.108790_bib0014) 2008; 46
Lothhammer (10.1016/j.optlaseng.2024.108790_bib0016) 2017; 57
Li (10.1016/j.optlaseng.2024.108790_bib0020) 2024; 10
Schajer (10.1016/j.optlaseng.2024.108790_bib0022) 1981; 103
GUO (10.1016/j.optlaseng.2024.108790_bib0002) 2021; 34
Lothhammer (10.1016/j.optlaseng.2024.108790_bib0015) 2017; 152
Gao (10.1016/j.optlaseng.2024.108790_bib0018) 2017; 7
References_xml – volume: 45
  start-page: 301
  year: 2010
  end-page: 318
  ident: bib0005
  article-title: A procedure for evaluating high residual stresses using the blind hole drilling method, including the effect of plasticity
  publication-title: J Strain Anal Eng Des
– volume: 132
  start-page: 0110031
  year: 2010
  end-page: 0110037
  ident: bib0010
  article-title: Hole-drilling strain-gauge method: residual stress measurement with plasticity effects
  publication-title: J Eng Mater Technol Trans ASME
– volume: 58
  start-page: 369
  year: 2018
  end-page: 380
  ident: bib0021
  article-title: Plasticity effects in the hole-drilling residual stress measurement in peened surfaces
  publication-title: Exp Mech
– volume: 13
  start-page: 3396
  year: 2020
  ident: bib0006
  article-title: Efficiency of plasticity correction in the hole-drilling residual stress measurement
  publication-title: Materials
– volume: 61
  start-page: 1369
  year: 2021
  end-page: 1380
  ident: bib0012
  article-title: Optical hole-drilling residual stress calculations using strain gauge formalism
  publication-title: Exp Mech
– volume: 34
  start-page: 54
  year: 2021
  end-page: 78
  ident: bib0002
  article-title: Recent progress of residual stress measurement methods: a review
  publication-title: Chinese J Aeronaut
– volume: 10
  year: 2024
  ident: bib0020
  article-title: Research progress of residual stress measurement methods
  publication-title: Heliyon
– volume: 63
  start-page: 219
  year: 2021
  end-page: 225
  ident: bib0011
  article-title: Eliminating plasticity effects in the measurement of residual stress by using the hole-drilling method
  publication-title: Materialpruef Mater Test
– volume: 57
  start-page: 341
  year: 2017
  end-page: 352
  ident: bib0017
  article-title: Computation of bending stress in pipes using weighted hole-drilling and DSPI measurements
  publication-title: Exp Mech
– volume: 103
  start-page: 157
  year: 1981
  ident: bib0022
  article-title: Application of finite element calculations to residual stress measurements
  publication-title: J Eng Mater Technol
– start-page: 1603
  year: 2022
  end-page: 1613
  ident: bib0019
  article-title: Hole eccentricity correction for hole-drilling residual stress measurements
  publication-title: Exp Mech
– year: 2022
  ident: bib0008
  article-title: Universal procedure for correction of plasticity effect in hole-drilling uniform residual stress measurement
  publication-title: Exp Mech
– volume: 52
  start-page: 137
  year: 2017
  end-page: 151
  ident: bib0009
  article-title: Artificial neural network for correction of effects of plasticity in equibiaxial residual stress profiles measured by hole drilling
  publication-title: J Stra Anal Eng Des
– year: 2018
  ident: bib0007
  article-title: Hole-drilling method for measuring residual stresses
  publication-title: Morgan Claypool
– volume: 46
  start-page: 835
  year: 2008
  end-page: 841
  ident: bib0014
  article-title: Experimental comparison between a portable DSPI device with diffractive optical element and a hole drilling strain gage combined system
  publication-title: Opt Lasers Eng
– volume: 3
  year: 2021
  ident: bib0013
  article-title: Full-field optical metrology in polar and cylindrical coordinates
  publication-title: J Phys Photon
– volume: 152
  start-page: 46
  year: 2017
  end-page: 55
  ident: bib0015
  article-title: Residual stress measurements in steel pipes using DSPI and the hole-drilling technique
  publication-title: Int J Pressure Vessels Pip
– volume: 57
  start-page: 287
  year: 2017
  end-page: 296
  ident: bib0016
  article-title: Experimental evaluation of residual stresses in pipes manufactured by UOE and ERW processes
  publication-title: Exp Mech
– volume: 7
  year: 2017
  ident: bib0018
  article-title: Experimental investigation on the fatigue life of Ti-6Al-4V treated by vibratory stress relief
  publication-title: Metals
– volume: 22
  start-page: 522
  year: 1994
  ident: bib0004
  article-title: Numerical analysis of plasticity effects in the hole-drilling residual stress measurement
  publication-title: J Test Eval
– start-page: 1
  year: 2020
  end-page: 16
  ident: bib0001
  article-title: Standard test method for determining residual stresses by the hole-drilling strain-gage method
  publication-title: Stand Test Method
– volume: 53
  start-page: 3
  year: 2018
  end-page: 14
  ident: bib0003
  article-title: Effect of plasticity at out-of-plane electronic speckle pattern interferometry diagnostics of axisymmetric stresses by the hole-drilling method
  publication-title: J Strain Anal Eng Des
– start-page: 1
  year: 2020
  ident: 10.1016/j.optlaseng.2024.108790_bib0001
  article-title: Standard test method for determining residual stresses by the hole-drilling strain-gage method
  publication-title: Stand Test Method
– volume: 34
  start-page: 54
  year: 2021
  ident: 10.1016/j.optlaseng.2024.108790_bib0002
  article-title: Recent progress of residual stress measurement methods: a review
  publication-title: Chinese J Aeronaut
  doi: 10.1016/j.cja.2019.10.010
– volume: 45
  start-page: 301
  year: 2010
  ident: 10.1016/j.optlaseng.2024.108790_bib0005
  article-title: A procedure for evaluating high residual stresses using the blind hole drilling method, including the effect of plasticity
  publication-title: J Strain Anal Eng Des
  doi: 10.1243/03093247JSA579
– volume: 103
  start-page: 157
  year: 1981
  ident: 10.1016/j.optlaseng.2024.108790_bib0022
  article-title: Application of finite element calculations to residual stress measurements
  publication-title: J Eng Mater Technol
  doi: 10.1115/1.3224988
– volume: 57
  start-page: 287
  year: 2017
  ident: 10.1016/j.optlaseng.2024.108790_bib0016
  article-title: Experimental evaluation of residual stresses in pipes manufactured by UOE and ERW processes
  publication-title: Exp Mech
  doi: 10.1007/s11340-016-0219-1
– volume: 3
  year: 2021
  ident: 10.1016/j.optlaseng.2024.108790_bib0013
  article-title: Full-field optical metrology in polar and cylindrical coordinates
  publication-title: J Phys Photon
– volume: 22
  start-page: 522
  year: 1994
  ident: 10.1016/j.optlaseng.2024.108790_bib0004
  article-title: Numerical analysis of plasticity effects in the hole-drilling residual stress measurement
  publication-title: J Test Eval
  doi: 10.1520/JTE11856J
– volume: 132
  start-page: 0110031
  year: 2010
  ident: 10.1016/j.optlaseng.2024.108790_bib0010
  article-title: Hole-drilling strain-gauge method: residual stress measurement with plasticity effects
  publication-title: J Eng Mater Technol Trans ASME
  doi: 10.1115/1.3184030
– volume: 152
  start-page: 46
  year: 2017
  ident: 10.1016/j.optlaseng.2024.108790_bib0015
  article-title: Residual stress measurements in steel pipes using DSPI and the hole-drilling technique
  publication-title: Int J Pressure Vessels Pip
  doi: 10.1016/j.ijpvp.2017.05.008
– volume: 13
  start-page: 3396
  year: 2020
  ident: 10.1016/j.optlaseng.2024.108790_bib0006
  article-title: Efficiency of plasticity correction in the hole-drilling residual stress measurement
  publication-title: Materials
  doi: 10.3390/ma13153396
– year: 2022
  ident: 10.1016/j.optlaseng.2024.108790_bib0008
  article-title: Universal procedure for correction of plasticity effect in hole-drilling uniform residual stress measurement
  publication-title: Exp Mech
  doi: 10.1007/s11340-022-00869-z
– volume: 53
  start-page: 3
  year: 2018
  ident: 10.1016/j.optlaseng.2024.108790_bib0003
  article-title: Effect of plasticity at out-of-plane electronic speckle pattern interferometry diagnostics of axisymmetric stresses by the hole-drilling method
  publication-title: J Strain Anal Eng Des
  doi: 10.1177/0309324717738377
– volume: 52
  start-page: 137
  year: 2017
  ident: 10.1016/j.optlaseng.2024.108790_bib0009
  article-title: Artificial neural network for correction of effects of plasticity in equibiaxial residual stress profiles measured by hole drilling
  publication-title: J Stra Anal Eng Des
  doi: 10.1177/0309324717696400
– volume: 57
  start-page: 341
  year: 2017
  ident: 10.1016/j.optlaseng.2024.108790_bib0017
  article-title: Computation of bending stress in pipes using weighted hole-drilling and DSPI measurements
  publication-title: Exp Mech
  doi: 10.1007/s11340-016-0214-6
– volume: 7
  year: 2017
  ident: 10.1016/j.optlaseng.2024.108790_bib0018
  article-title: Experimental investigation on the fatigue life of Ti-6Al-4V treated by vibratory stress relief
  publication-title: Metals
  doi: 10.3390/met7050158
– start-page: 1603
  year: 2022
  ident: 10.1016/j.optlaseng.2024.108790_bib0019
  article-title: Hole eccentricity correction for hole-drilling residual stress measurements
  publication-title: Exp Mech
  doi: 10.1007/s11340-022-00881-3
– volume: 58
  start-page: 369
  year: 2018
  ident: 10.1016/j.optlaseng.2024.108790_bib0021
  article-title: Plasticity effects in the hole-drilling residual stress measurement in peened surfaces
  publication-title: Exp Mech
  doi: 10.1007/s11340-017-0352-5
– volume: 61
  start-page: 1369
  year: 2021
  ident: 10.1016/j.optlaseng.2024.108790_bib0012
  article-title: Optical hole-drilling residual stress calculations using strain gauge formalism
  publication-title: Exp Mech
  doi: 10.1007/s11340-021-00740-7
– volume: 63
  start-page: 219
  year: 2021
  ident: 10.1016/j.optlaseng.2024.108790_bib0011
  article-title: Eliminating plasticity effects in the measurement of residual stress by using the hole-drilling method
  publication-title: Materialpruef Mater Test
  doi: 10.1515/mt-2020-0030
– volume: 46
  start-page: 835
  year: 2008
  ident: 10.1016/j.optlaseng.2024.108790_bib0014
  article-title: Experimental comparison between a portable DSPI device with diffractive optical element and a hole drilling strain gage combined system
  publication-title: Opt Lasers Eng
  doi: 10.1016/j.optlaseng.2008.05.020
– year: 2018
  ident: 10.1016/j.optlaseng.2024.108790_bib0007
  article-title: Hole-drilling method for measuring residual stresses
  publication-title: Morgan Claypool
– volume: 10
  year: 2024
  ident: 10.1016/j.optlaseng.2024.108790_bib0020
  article-title: Research progress of residual stress measurement methods
  publication-title: Heliyon
SSID ssj0016411
Score 2.4129143
Snippet •Correction of the plasticity effects for residual stress measurements in the Hole-drilling method.•Expansion of the applicability of the optical Hole-drilling...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108790
SubjectTerms Full-field measurement
High residual stress
Hole-drilling method
Optical technique
Plasticity correction
Title Numerical evaluation of iterative algorithm for plasticity effect correction in residual stress measurements using radial DSPI and the hole-drilling method
URI https://dx.doi.org/10.1016/j.optlaseng.2024.108790
Volume 186
WOSCitedRecordID wos001410001300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016411
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FFiQ4ICggSgHNgVvkyN9rc6toq5ZDqCCg3Kz1ep26Sm3LcaKqf4Vfwz9j1muvHahUeuBiOY68_pjn3dnZN28I-WBxx_eE6RhuYLuGG-JebPmpITzGzSBN8ftKmmITdDoN5vPwfDT61eXCbJY0z4Pr67D8r6bGY2hsmTp7D3PrRvEA7qPRcYtmx-0_GX66Voswy4GSt9KVFa3KN1suiiqrL64ajmGJ_rOkVqM3rsgdYy4rdvCOBYnzcZWw1aaVXPVRxdV43YQaKtaknxx9Oz_TjExZd9dIqkxpfqtC1UNP-EupBaLxBmQasRQv6dURBwGhTZtXNLvI2KLo_vghuSaZyjfCbmo1_jrRdCBVoVvmQySFXIWQjIObm2wY4rC9nuOlo56OIRc4t7vtYcdrmQFVdUf_GhNUeOJyUpS1fJ58McFruJP-jG0V7j9GR81Z7Ohwl5FuKJINRaqhB2TXpl6IY8Pu4dnx_LNeyvJdSxXFbJ9hi2R46z3d7iIN3J7ZM_K0na_AocLZczIS-R55MlCx3COPGhYxX70gPzX2oMceFClo7IHGHiD2oMceKOxBjz3IcuiwBwp7MMQeNNgDhT2Q2AM0NyD2YAt7oLD3knw_OZ59OjXa6h8Gx1l9bQifCuqxQDDPoxwH9NQUceIHYUpjmnCcZwWpya04pnbsOzb-lpUCqOeGMgSBjvYrspMXuXhNgLsmt10Wx3ZqucJxYpZagic-dkUsTJizT8zuhUelEnmJ7jD3PvnYGSZqfVXlg0YIu7tOfnP_6x2Qx_2X8Zbs1NVavCMP-abOVtX7FnO_AUihxPY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+evaluation+of+iterative+algorithm+for+plasticity+effect+correction+in+residual+stress+measurements+using+radial+DSPI+and+the+hole-drilling+method&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Wilvert%2C+Thiago&rft.au=Viotti%2C+Matias+R.&rft.au=Jr%2C+Armando+Albertazzi&rft.date=2025-03-01&rft.issn=0143-8166&rft.volume=186&rft.spage=108790&rft_id=info:doi/10.1016%2Fj.optlaseng.2024.108790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlaseng_2024_108790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon