Observations in applying Bayesian versus evolutionary approaches and their hybrids in parallel time-constrained optimization

Parallel Surrogate-Based Optimization (PSBO) is an efficient approach to deal with black-box time-consuming objective functions. According to the available computational budget to solve a given problem, three classes of algorithms are investigated and opposed in this paper: Bayesian Optimization Alg...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 137; p. 109075
Main Authors: Gobert, Maxime, Briffoteaux, Guillaume, Gmys, Jan, Melab, Nouredine, Tuyttens, Daniel
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2024
Elsevier
Subjects:
ISSN:0952-1976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Parallel Surrogate-Based Optimization (PSBO) is an efficient approach to deal with black-box time-consuming objective functions. According to the available computational budget to solve a given problem, three classes of algorithms are investigated and opposed in this paper: Bayesian Optimization Algorithms (BOAs), Surrogate-Assisted Evolutionary Algorithms (SAEAs) and Surrogate-free Evolutionary Algorithms (EAs). A large set of benchmark functions and engineering applications are considered with various computational budgets. In this paper, we come up with guidelines for the choice between the three categories. According to the computational expensiveness of the objective functions and the number of processing cores, we identify a threshold from which SAEAs should be preferred to BOAs. Based on this threshold, we derive a new hybrid Bayesian/Evolutionary algorithm that allows one to tackle a wide range of problems without prior knowledge of their characteristics.
AbstractList Parallel Surrogate-Based Optimization (PSBO) is an efficient approach to deal with black-box time-consuming objective functions. According to the available computational budget to solve a given problem, three classes of algorithms are investigated and opposed in this paper: Bayesian Optimization Algorithms (BOAs), Surrogate-Assisted Evolutionary Algorithms (SAEAs) and Surrogate-free Evolutionary Algorithms (EAs). A large set of benchmark functions and engineering applications are considered with various computational budgets. In this paper, we come up with guidelines for the choice between the three categories. According to the computational expensiveness of the objective functions and the number of processing cores, we identify a threshold from which SAEAs should be preferred to BOAs. Based on this threshold, we derive a new hybrid Bayesian/Evolutionary algorithm that allows one to tackle a wide range of problems without prior knowledge of their characteristics.
ArticleNumber 109075
Author Briffoteaux, Guillaume
Tuyttens, Daniel
Gobert, Maxime
Melab, Nouredine
Gmys, Jan
Author_xml – sequence: 1
  givenname: Maxime
  orcidid: 0000-0003-4925-4995
  surname: Gobert
  fullname: Gobert, Maxime
  email: maxime.gobert@umons.ac.be
  organization: University of Mons, Faculty of Engineering, 9 rue de Houdain, Mons, 7000, Belgium
– sequence: 2
  givenname: Guillaume
  orcidid: 0000-0002-4878-2000
  surname: Briffoteaux
  fullname: Briffoteaux, Guillaume
  email: guillaume.briffoteaux@umons.ac.be
  organization: University of Mons, Faculty of Engineering, 9 rue de Houdain, Mons, 7000, Belgium
– sequence: 3
  givenname: Jan
  orcidid: 0000-0001-9635-4396
  surname: Gmys
  fullname: Gmys, Jan
  email: jan.gmys@univ-lille.fr
  organization: University of Lille - CNRS CRIStAL, Cité Scientifique, Villeneuve d’Ascq, 59650, France
– sequence: 4
  givenname: Nouredine
  orcidid: 0000-0003-1526-006X
  surname: Melab
  fullname: Melab, Nouredine
  email: nouredine.melab@univ-lille.fr
  organization: University of Lille - CNRS CRIStAL, Cité Scientifique, Villeneuve d’Ascq, 59650, France
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0002-2567-1324
  surname: Tuyttens
  fullname: Tuyttens, Daniel
  email: daniel.tuyttens@umons.ac.be
  organization: University of Mons, Faculty of Engineering, 9 rue de Houdain, Mons, 7000, Belgium
BackLink https://hal.science/hal-04707543$$DView record in HAL
BookMark eNqFkDtPwzAUhT0UiedfQF4ZUuw8nFZi4CFeUiUWmK0b-6a9VXAiO0Qq4sfjtMDA0snS0fmOdb9jNnGtQ8bOpZhKIdXleopuCV0HNE1FmsdwLspiwo7EvEgTOS_VITsOYS2EyGa5OmJfL1VAP0BPrQucHI9wsyG35LewwUDg-IA-fASOQ9t8jDXwm7HlWzArDByc5f0KyfPVpvJktysdeGgabHhP75iYuN17IIeWt12M6HP74Sk7qKEJePbznrC3h_vXu6dk8fL4fHezSEyqZJ9YWcylKkqwM2uNqiCXmSyqAkxe2DpHgExCaZRFg6nJZmqGlawzU6vKlrUssxN2sdtdQaM7T-_xBN0C6aebhR4zkZdRU54NMnbVrmt8G4LH-g-QQo-O9Vr_OtajY71zHMGrf6ChfnvmeHqzH7_e4RhFDIReB0PoDFryaHptW9o38Q0uiKV2
CitedBy_id crossref_primary_10_1016_j_est_2024_114096
Cites_doi 10.3390/a15120446
10.1016/j.neucom.2015.02.088
10.1007/BF01589116
10.1016/j.paerosci.2005.02.001
10.3390/machines9120341
10.1016/j.swevo.2023.101293
10.1007/s11721-007-0002-0
10.1109/TEVC.2017.2675628
10.1109/JPROC.2015.2494218
10.1007/s00158-016-1432-3
10.1007/s13748-014-0051-8
10.21105/joss.02338
10.1007/s10898-016-0449-x
10.1023/A:1008306431147
10.1007/s10898-012-9892-5
10.1016/j.tcs.2011.02.016
10.1109/4235.985692
10.1016/j.swevo.2020.100693
10.1109/TAP.2004.825102
10.1198/016214508000000689
10.1007/978-3-030-70281-6_10
10.1016/j.swevo.2011.02.002
10.1016/j.swevo.2020.100717
10.1109/MCSE.2021.3083216
10.1007/s11390-020-9487-4
10.3934/mbe.2022512
10.1109/4235.996017
10.1155/2016/9420460
10.1016/j.future.2020.07.005
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2024 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.engappai.2024.109075
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID oai:HAL:hal-04707543v1
10_1016_j_engappai_2024_109075
S0952197624012338
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
ID FETCH-LOGICAL-c261t-d1591657ad8ddc6ba41315b5ac45df4eaa31a7c6dece2c3868eb1f3cf6bd7f173
ISSN 0952-1976
IngestDate Tue Oct 14 21:07:46 EDT 2025
Tue Nov 18 22:41:10 EST 2025
Sat Nov 29 03:41:20 EST 2025
Sat Sep 21 15:58:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Surrogate-based optimization
Parallel computing
68W10
Evolutionary algorithms
Bayesian optimization
65Y05
46N10
g74P99
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-d1591657ad8ddc6ba41315b5ac45df4eaa31a7c6dece2c3868eb1f3cf6bd7f173
ORCID 0000-0003-4925-4995
0000-0002-4878-2000
0000-0003-1526-006X
0000-0001-9635-4396
0000-0002-2567-1324
ParticipantIDs hal_primary_oai_HAL_hal_04707543v1
crossref_primary_10_1016_j_engappai_2024_109075
crossref_citationtrail_10_1016_j_engappai_2024_109075
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_109075
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-11
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Jin, Olhofer, Sendhoff (b42) 2000
Alkan, Kaniappan Chinnathai (b1) 2021; 9
Kushner (b50) 1964; 86
Ginsbourger, Riche, Carraro (b31) 2010
Sun, Jin, Cheng, Ding, Zeng (b65) 2017; 21
Thieu (b68) 2023
Carroll (b13) 2017
Storti, Paschero, Rizzi, Frattale Mascioli (b64) 2015; 170
Gobert, Gmys, Toubeau, Melab, Tuyttens, Vallée (b35) 2022; 15
Balandat, Karrer, Jiang, Daulton, Letham, Wilson, Bakshy (b3) 2020; Vol. 33
Clerc (b18) 1999
Derrac, García, Molina, Herrera (b23) 2011; 1
Cox, John (b20) 1992; Vol. 2
Poli, Kennedy, Blackwell (b57) 1995; 1
Lyu, Yang, Yan, Zhou, Zeng (b53) 2018; vol. 80
Díaz-Manríquez, Toscano, Barron-Zambrano, Tello-Leal (b24) 2016; 2016
Kaveh, Mesgari (b46) 2022
Wang, Bäck, Emmerich (b71) 2015
Chen, Luo, Li, Wang (b15) 2023; 79
Jin, Olhofer, Sendhoff (b43) 2001; Vol. 1
Powell (b58) 1994
Liu, Nocedal (b52) 1989; 45
Briffoteaux, Ragonnet, Mezmaz, Melab, Tuyttens (b11) 2020; 113
Jones, Schonlau, Welch (b44) 1998; 13
Kandasamy, Krishnamurthy, Schneider, Poczos (b45) 2017
Dalcin, Fang (b21) 2021; 23
Shi, Rasheed (b62) 2010
Gramacy, Lee (b38) 2008; 103
Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N., Tuyttens, D., 2021. Evolution Control Ensemble Models for Surrogate-Assisted Evolutionary Algorithms. In: High Performance Computing and Simulation 2020. Barcelona, Spain, URL.
Wang, Clark, Liu, Frazier (b72) 2016
Briffoteaux (b9) 2022
Ath, Everson, Fieldsend, Rahat (b2) 2020
Chen, Tang, Chen, Yao (b16) 2012; 436
Queipo, Haftka, Shyy, Goel, Vaidyanathan, Kevin Tucker (b59) 2005; 41
Rasmussen, Williams (b60) 2005
Haftka, Villanueva, Chaudhuri (b39) 2016; 54
Zhan, Qian, Cheng (b74) 2017; 67
Balouek, Carpen Amarie, Charrier, Desprez, Jeannot, Jeanvoine, Lèbre, Margery, Niclausse, Nussbaum, Richard, Pérez, Quesnel, Rohr, Sarzyniec (b4) 2013; vol. 367
.
Torres-Jiménez, Pavón (b69) 2014; 2
Xiao, Guo, Cui, Wang, Li, Zhang (b73) 2022; 19
Gobert, Gmys, Toubeau, Vallée, Melab, Tuyttens (b36) 2019
Eriksson, Pearce, Gardner, Turner, Poloczek (b26) 2020
Gobert, M., Gmys, J., Melab, N., Tuyttens, D., 2021c. Space Partitioning with multiple models for Parallel Bayesian Optimization. In: OLA 2021 - Optimization and Learning Algorithm. Sicilia / Virtual, Italy, URL.
Holland (b41) 1992
Shahriari, Swersky, Wang, Adams, de Freitas (b61) 2016; 104
Han, Zhang (b40) 2012
Snoek, Larochelle, Adams (b63) 2012
Ginsbourger, Le Riche, Carraro (b30) 2008
Kumar, Wu, Ali, Mallipeddi, Suganthan, Das (b49) 2020; 56
Palma, Mendler-Dünner, Parnell, Anghel, Pozidis (b56) 2019
Liang, J., Qu, B., Suganthan, P., 2013. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Tech. Rep..
Biscani, Izzo (b6) 2020; 5
Kumar, Gupta (b48) 2020; 35
Talbi (b67) 2009
Clerc, Kennedy (b19) 2002; 6
González, Dai, Hennig, Lawrence (b37) 2015
Marmin, Chevalier, Ginsbourger (b54) 2015
Močkus (b55) 1975
Khokhar, M.A., Boudt, K., Wan, C., 2021. Cardinality-Constrained Higher-Order Moment Portfolios Using Particle Swarm Optimization, 169–187
Viana, Haftka, Watson (b70) 2013; 56
Gardner, Pleiss, Bindel, Weinberger, Wilson (b29) 2018
Syberfeldt, Grimm, Ng, John (b66) 2008
Feng, Zhang, Zhang, Tang, Yang, Ma (b27) 2014; 61
Gobert, M., Gmys, J., Melab, N., Tuyttens, D., 2021b. Space Partitioning with multiple models for Parallel Bayesian Optimization. In: OLA 2021 - Optimization and Learning Algorithm. Sicilia / Virtual, Italy, URL.
Frazier (b28) 2018
Briffoteaux (b8) 2021
Chevalier (b17) 2013
Boeringer, Werner (b7) 2004; 52
Deb, Pratap, Agarwal, Meyarivan (b22) 2002; 6
Chen, Liu, Zhang, Liang, Suganthan, Qu (b14) 2015
Briffoteaux, Gobert, Ragonnet, Gmys, Mezmaz, Melab, Tuyttens (b10) 2020; 57
Gobert, M., Gmys, J., Melab, N., Tuyttens, D., 2021a. Adaptive Space Partitioning for Parallel Bayesian Optimization. In: HPCS 2020 - the 18th International Conference on High Performance Computing Simulation. Barcelona / Virtual, Spain, URL.
Eberhart, Shi (b25) 1998
Binois, Collier, Ozik (b5) 2023
Ginsbourger (10.1016/j.engappai.2024.109075_b31) 2010
Sun (10.1016/j.engappai.2024.109075_b65) 2017; 21
Díaz-Manríquez (10.1016/j.engappai.2024.109075_b24) 2016; 2016
González (10.1016/j.engappai.2024.109075_b37) 2015
Syberfeldt (10.1016/j.engappai.2024.109075_b66) 2008
Carroll (10.1016/j.engappai.2024.109075_b13) 2017
Balouek (10.1016/j.engappai.2024.109075_b4) 2013; vol. 367
Briffoteaux (10.1016/j.engappai.2024.109075_b10) 2020; 57
Chen (10.1016/j.engappai.2024.109075_b15) 2023; 79
Lyu (10.1016/j.engappai.2024.109075_b53) 2018; vol. 80
Eberhart (10.1016/j.engappai.2024.109075_b25) 1998
Derrac (10.1016/j.engappai.2024.109075_b23) 2011; 1
Thieu (10.1016/j.engappai.2024.109075_b68) 2023
Holland (10.1016/j.engappai.2024.109075_b41) 1992
Snoek (10.1016/j.engappai.2024.109075_b63) 2012
Eriksson (10.1016/j.engappai.2024.109075_b26) 2020
Binois (10.1016/j.engappai.2024.109075_b5) 2023
Biscani (10.1016/j.engappai.2024.109075_b6) 2020; 5
Chevalier (10.1016/j.engappai.2024.109075_b17) 2013
Viana (10.1016/j.engappai.2024.109075_b70) 2013; 56
Haftka (10.1016/j.engappai.2024.109075_b39) 2016; 54
Boeringer (10.1016/j.engappai.2024.109075_b7) 2004; 52
Powell (10.1016/j.engappai.2024.109075_b58) 1994
Torres-Jiménez (10.1016/j.engappai.2024.109075_b69) 2014; 2
Briffoteaux (10.1016/j.engappai.2024.109075_b11) 2020; 113
Clerc (10.1016/j.engappai.2024.109075_b18) 1999
10.1016/j.engappai.2024.109075_b34
Shahriari (10.1016/j.engappai.2024.109075_b61) 2016; 104
10.1016/j.engappai.2024.109075_b33
Cox (10.1016/j.engappai.2024.109075_b20) 1992; Vol. 2
10.1016/j.engappai.2024.109075_b32
Kaveh (10.1016/j.engappai.2024.109075_b46) 2022
Briffoteaux (10.1016/j.engappai.2024.109075_b8) 2021
Marmin (10.1016/j.engappai.2024.109075_b54) 2015
Močkus (10.1016/j.engappai.2024.109075_b55) 1975
Poli (10.1016/j.engappai.2024.109075_b57) 1995; 1
10.1016/j.engappai.2024.109075_b51
Han (10.1016/j.engappai.2024.109075_b40) 2012
Talbi (10.1016/j.engappai.2024.109075_b67) 2009
Wang (10.1016/j.engappai.2024.109075_b71) 2015
Kumar (10.1016/j.engappai.2024.109075_b49) 2020; 56
Ath (10.1016/j.engappai.2024.109075_b2) 2020
Shi (10.1016/j.engappai.2024.109075_b62) 2010
Chen (10.1016/j.engappai.2024.109075_b14) 2015
Liu (10.1016/j.engappai.2024.109075_b52) 1989; 45
Gardner (10.1016/j.engappai.2024.109075_b29) 2018
Queipo (10.1016/j.engappai.2024.109075_b59) 2005; 41
Deb (10.1016/j.engappai.2024.109075_b22) 2002; 6
10.1016/j.engappai.2024.109075_b47
Jin (10.1016/j.engappai.2024.109075_b43) 2001; Vol. 1
Feng (10.1016/j.engappai.2024.109075_b27) 2014; 61
Jin (10.1016/j.engappai.2024.109075_b42) 2000
Palma (10.1016/j.engappai.2024.109075_b56) 2019
Balandat (10.1016/j.engappai.2024.109075_b3) 2020; Vol. 33
Briffoteaux (10.1016/j.engappai.2024.109075_b9) 2022
Gobert (10.1016/j.engappai.2024.109075_b35) 2022; 15
Frazier (10.1016/j.engappai.2024.109075_b28) 2018
Alkan (10.1016/j.engappai.2024.109075_b1) 2021; 9
Gramacy (10.1016/j.engappai.2024.109075_b38) 2008; 103
Gobert (10.1016/j.engappai.2024.109075_b36) 2019
Kandasamy (10.1016/j.engappai.2024.109075_b45) 2017
Storti (10.1016/j.engappai.2024.109075_b64) 2015; 170
Kumar (10.1016/j.engappai.2024.109075_b48) 2020; 35
Wang (10.1016/j.engappai.2024.109075_b72) 2016
Xiao (10.1016/j.engappai.2024.109075_b73) 2022; 19
Rasmussen (10.1016/j.engappai.2024.109075_b60) 2005
Clerc (10.1016/j.engappai.2024.109075_b19) 2002; 6
Dalcin (10.1016/j.engappai.2024.109075_b21) 2021; 23
Chen (10.1016/j.engappai.2024.109075_b16) 2012; 436
10.1016/j.engappai.2024.109075_b12
Jones (10.1016/j.engappai.2024.109075_b44) 1998; 13
Ginsbourger (10.1016/j.engappai.2024.109075_b30) 2008
Kushner (10.1016/j.engappai.2024.109075_b50) 1964; 86
Zhan (10.1016/j.engappai.2024.109075_b74) 2017; 67
References_xml – year: 2020
  ident: b2
  article-title: -shotgun
  publication-title: Proceedings of the 2020 Genetic and Evolutionary Computation Conference
– year: 2017
  ident: b45
  article-title: Asynchronous parallel Bayesian optimisation via thompson sampling
– year: 1992
  ident: b41
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
– start-page: 3
  year: 2010
  end-page: 28
  ident: b62
  article-title: A survey of fitness approximation methods applied in evolutionary algorithms
  publication-title: Computational Intelligence in Expensive Optimization Problems
– volume: 35
  start-page: 913
  year: 2020
  end-page: 945
  ident: b48
  article-title: Active learning query strategies for classification, regression, and clustering: A survey
  publication-title: J. Comput. Sci. Tech.
– year: 2008
  ident: b30
  article-title: A multi-points criterion for deterministic parallel global optimization based on kriging
– reference: Gobert, M., Gmys, J., Melab, N., Tuyttens, D., 2021a. Adaptive Space Partitioning for Parallel Bayesian Optimization. In: HPCS 2020 - the 18th International Conference on High Performance Computing Simulation. Barcelona / Virtual, Spain, URL.
– year: 2021
  ident: b8
  article-title: pySBO: Python framework for surrogate-based optimization
– year: 2022
  ident: b9
  article-title: Parallel Surrogate-Based Algorithms for Solving Expensive Optimization Problems
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b22
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– reference: Khokhar, M.A., Boudt, K., Wan, C., 2021. Cardinality-Constrained Higher-Order Moment Portfolios Using Particle Swarm Optimization, 169–187,
– year: 2019
  ident: b56
  article-title: Sampling acquisition functions for batch Bayesian optimization
– year: 2018
  ident: b29
  article-title: GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration
  publication-title: Advances in Neural Information Processing Systems
– volume: 19
  start-page: 10963
  year: 2022
  end-page: 11017
  ident: b73
  article-title: IHAOAVOA: An improved hybrid aquila optimizer and african vultures optimization algorithm for global optimization problems
  publication-title: Math. Biosci. Eng.: MBE
– volume: 13
  start-page: 455
  year: 1998
  end-page: 492
  ident: b44
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
– volume: 1
  start-page: 33
  year: 1995
  end-page: 57
  ident: b57
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
– volume: Vol. 1
  start-page: 592
  year: 2001
  end-page: 599
  ident: b43
  article-title: Managing approximate models in evolutionary aerodynamic design optimization
  publication-title: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546)
– year: 2018
  ident: b28
  article-title: A tutorial on bayesian optimization
– volume: 79
  year: 2023
  ident: b15
  article-title: Batch Bayesian optimization with adaptive batch acquisition functions via multi-objective optimization
  publication-title: Swarm Evol. Comput.
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: b61
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
– volume: 170
  start-page: 353
  year: 2015
  end-page: 367
  ident: b64
  article-title: Comparison between time-constrained and time-unconstrained optimization for power losses minimization in smart grids using genetic algorithms
  publication-title: Neurocomputing
– volume: 2
  year: 2014
  ident: b69
  article-title: Applications of metaheuristics in real-life problems
  publication-title: Prog. Artif. Intell.
– volume: 436
  start-page: 54
  year: 2012
  end-page: 70
  ident: b16
  article-title: A large population size can be unhelpful in evolutionary algorithms
  publication-title: Theoret. Comput. Sci.
– volume: 15
  year: 2022
  ident: b35
  article-title: Batch acquisition for parallel Bayesian optimization; application to hydro-energy storage systems scheduling
  publication-title: Algorithms
– start-page: 113
  year: 2019
  end-page: 120
  ident: b36
  article-title: Surrogate-assisted optimization for multi-stage optimal scheduling of virtual power plants
  publication-title: 2019 International Conference on High Performance Computing Simulation
– volume: 56
  start-page: 669
  year: 2013
  end-page: 689
  ident: b70
  article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques
  publication-title: J. Global Optim.
– volume: Vol. 33
  year: 2020
  ident: b3
  article-title: BoTorch: A framework for efficient Monte-Carlo Bayesian optimization
  publication-title: Advances in Neural Information Processing Systems
– reference: Briffoteaux, G., Ragonnet, R., Mezmaz, M., Melab, N., Tuyttens, D., 2021. Evolution Control Ensemble Models for Surrogate-Assisted Evolutionary Algorithms. In: High Performance Computing and Simulation 2020. Barcelona, Spain, URL.
– start-page: 786
  year: 2000
  end-page: 793
  ident: b42
  article-title: On evolutionary optimization with approximate fitness functions
  publication-title: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation
– reference: Liang, J., Qu, B., Suganthan, P., 2013. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Tech. Rep..
– year: 2023
  ident: b5
  article-title: A portfolio approach to massively parallel Bayesian optimization
– volume: 57
  year: 2020
  ident: b10
  article-title: Parallel surrogate-assisted optimization: Batched Bayesian neural network-assisted GA versus q-EGO
  publication-title: Swarm Evol. Comput.
– start-page: 3177
  year: 2008
  end-page: 3184
  ident: b66
  article-title: A parallel surrogate-assisted multi-objective evolutionary algorithm for computationally expensive optimization problems
  publication-title: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)
– volume: 9
  year: 2021
  ident: b1
  article-title: Performance comparison of recent population-based metaheuristic optimisation algorithms in mechanical design problems of machinery components
  publication-title: Machines
– volume: 5
  start-page: 2338
  year: 2020
  ident: b6
  article-title: A parallel global multiobjective framework for optimization: pagmo
  publication-title: J. Open Source Softw.
– start-page: 400
  year: 1975
  end-page: 404
  ident: b55
  article-title: On bayesian methods for seeking the extremum
  publication-title: Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974
– year: 2023
  ident: b68
  article-title: ENOPPY: A python library for engineering optimization problems
– year: 2005
  ident: b60
  article-title: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
– year: 2015
  ident: b14
  article-title: Problem definitions and evaluation criteria for CEC 2015 special session on bound constrained single-objective computationally expensive numerical optimization
– year: 2022
  ident: b46
  article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review
  publication-title: Neural Process. Lett.
– volume: 86
  start-page: 97
  year: 1964
  end-page: 106
  ident: b50
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
  publication-title: J. Fluids Eng.
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b52
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– volume: Vol. 2
  start-page: 1241
  year: 1992
  end-page: 1246
  ident: b20
  article-title: A statistical method for global optimization
  publication-title: [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics
– year: 2015
  ident: b71
  article-title: Multi-point efficient global optimization using niching evolution strategy
  publication-title: A Bridge Between Probability, Set Oriented Numerics and Evolutionary Computation
– start-page: 1957
  year: 1999
  ident: b18
  article-title: The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization
– volume: 56
  year: 2020
  ident: b49
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm Evol. Comput.
– year: 2020
  ident: b26
  article-title: Scalable global optimization via local Bayesian optimization
– year: 2012
  ident: b40
  article-title: Surrogate-based optimization
– volume: 67
  start-page: 873
  year: 2017
  end-page: 892
  ident: b74
  article-title: Balancing global and local search in parallel efficient global optimization algorithms
  publication-title: J. Global Optim.
– start-page: 37
  year: 2015
  end-page: 48
  ident: b54
  article-title: Differentiating the multipoint expected improvement for optimal batch design
– volume: 61
  start-page: 1
  year: 2014
  end-page: 18
  ident: b27
  article-title: A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization
  publication-title: J. Global Optim.
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: b23
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
– volume: 21
  start-page: 644
  year: 2017
  end-page: 660
  ident: b65
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: vol. 80
  start-page: 3306
  year: 2018
  end-page: 3314
  ident: b53
  article-title: Batch Bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design
  publication-title: Proceedings of the 35th International Conference on Machine Learning
– volume: 41
  start-page: 1
  year: 2005
  end-page: 28
  ident: b59
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
– volume: 23
  start-page: 47
  year: 2021
  end-page: 54
  ident: b21
  article-title: Mpi4py: Status update after 12 years of development
  publication-title: Comput. Sci. & Eng.
– year: 2015
  ident: b37
  article-title: Batch Bayesian optimization via local penalization
– reference: Gobert, M., Gmys, J., Melab, N., Tuyttens, D., 2021b. Space Partitioning with multiple models for Parallel Bayesian Optimization. In: OLA 2021 - Optimization and Learning Algorithm. Sicilia / Virtual, Italy, URL.
– year: 2013
  ident: b17
  article-title: Fast computation of the multi-points expected improvement with applications in batch selection
– volume: vol. 367
  start-page: 3
  year: 2013
  end-page: 20
  ident: b4
  article-title: Adding virtualization capabilities to the Grid’5000 testbed
  publication-title: Cloud Computing and Services Science
– year: 2009
  ident: b67
  publication-title: Metaheuristics: From Design to Implementation
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: b19
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: b63
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 103
  start-page: 1119
  year: 2008
  end-page: 1130
  ident: b38
  article-title: Bayesian treed Gaussian process models with an application to computer modeling
  publication-title: J. Amer. Statist. Assoc.
– volume: 54
  start-page: 3
  year: 2016
  end-page: 13
  ident: b39
  article-title: Parallel surrogate-assisted global optimization with expensive functions – a survey
  publication-title: Struct. Multidiscip. Optim.
– reference: .
– reference: Gobert, M., Gmys, J., Melab, N., Tuyttens, D., 2021c. Space Partitioning with multiple models for Parallel Bayesian Optimization. In: OLA 2021 - Optimization and Learning Algorithm. Sicilia / Virtual, Italy, URL.
– year: 2010
  ident: b31
  article-title: Kriging is well-suited to parallelize optimization
– start-page: 51
  year: 1994
  end-page: 67
  ident: b58
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
  publication-title: Advances in Optimization and Numerical Analysis
– volume: 2016
  start-page: 14
  year: 2016
  ident: b24
  article-title: A review of surrogate assisted multiobjective evolutionary algorithms
  publication-title: Comput. Intell. Neurosci.
– year: 2017
  ident: b13
  article-title: Multi-Swarm Adaptive Velocity PSO for Constrained Engineering Problems
– volume: 52
  start-page: 771
  year: 2004
  end-page: 779
  ident: b7
  article-title: Particle swarm optimization versus genetic algorithms for phased array synthesis
  publication-title: IEEE Trans. Antennas and Propagation
– volume: 113
  start-page: 454
  year: 2020
  end-page: 467
  ident: b11
  article-title: Evolution control for parallel ANN-assisted simulation-based optimization application to tuberculosis transmission control
  publication-title: Future Gener. Comput. Syst.
– year: 1998
  ident: b25
  article-title: Comparison between genetic algorithms and particle swarm optimization
  publication-title: Evolutionary Programming
– year: 2016
  ident: b72
  article-title: Parallel Bayesian global optimization of expensive functions
– volume: 15
  issue: 12
  year: 2022
  ident: 10.1016/j.engappai.2024.109075_b35
  article-title: Batch acquisition for parallel Bayesian optimization; application to hydro-energy storage systems scheduling
  publication-title: Algorithms
  doi: 10.3390/a15120446
– year: 2018
  ident: 10.1016/j.engappai.2024.109075_b29
  article-title: GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration
– volume: 170
  start-page: 353
  year: 2015
  ident: 10.1016/j.engappai.2024.109075_b64
  article-title: Comparison between time-constrained and time-unconstrained optimization for power losses minimization in smart grids using genetic algorithms
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.088
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  ident: 10.1016/j.engappai.2024.109075_b52
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 41
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.engappai.2024.109075_b59
  article-title: Surrogate-based analysis and optimization
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2005.02.001
– start-page: 2951
  year: 2012
  ident: 10.1016/j.engappai.2024.109075_b63
  article-title: Practical bayesian optimization of machine learning algorithms
– volume: 9
  issue: 12
  year: 2021
  ident: 10.1016/j.engappai.2024.109075_b1
  article-title: Performance comparison of recent population-based metaheuristic optimisation algorithms in mechanical design problems of machinery components
  publication-title: Machines
  doi: 10.3390/machines9120341
– year: 2017
  ident: 10.1016/j.engappai.2024.109075_b13
– volume: 79
  year: 2023
  ident: 10.1016/j.engappai.2024.109075_b15
  article-title: Batch Bayesian optimization with adaptive batch acquisition functions via multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101293
– year: 2015
  ident: 10.1016/j.engappai.2024.109075_b37
– volume: 1
  start-page: 33
  year: 1995
  ident: 10.1016/j.engappai.2024.109075_b57
  article-title: Particle swarm optimization
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– year: 2005
  ident: 10.1016/j.engappai.2024.109075_b60
– year: 2023
  ident: 10.1016/j.engappai.2024.109075_b5
– year: 2013
  ident: 10.1016/j.engappai.2024.109075_b17
– year: 2018
  ident: 10.1016/j.engappai.2024.109075_b28
– year: 2021
  ident: 10.1016/j.engappai.2024.109075_b8
– year: 2020
  ident: 10.1016/j.engappai.2024.109075_b26
– ident: 10.1016/j.engappai.2024.109075_b34
– volume: 21
  start-page: 644
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2024.109075_b65
  article-title: Surrogate-assisted cooperative swarm optimization of high-dimensional expensive problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2675628
– start-page: 3177
  year: 2008
  ident: 10.1016/j.engappai.2024.109075_b66
  article-title: A parallel surrogate-assisted multi-objective evolutionary algorithm for computationally expensive optimization problems
– volume: Vol. 1
  start-page: 592
  year: 2001
  ident: 10.1016/j.engappai.2024.109075_b43
  article-title: Managing approximate models in evolutionary aerodynamic design optimization
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 10.1016/j.engappai.2024.109075_b61
  article-title: Taking the human out of the loop: A review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– year: 2020
  ident: 10.1016/j.engappai.2024.109075_b2
  article-title: ϵ-shotgun
– volume: 54
  start-page: 3
  year: 2016
  ident: 10.1016/j.engappai.2024.109075_b39
  article-title: Parallel surrogate-assisted global optimization with expensive functions – a survey
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1432-3
– start-page: 37
  year: 2015
  ident: 10.1016/j.engappai.2024.109075_b54
– year: 2015
  ident: 10.1016/j.engappai.2024.109075_b71
  article-title: Multi-point efficient global optimization using niching evolution strategy
– volume: 2
  year: 2014
  ident: 10.1016/j.engappai.2024.109075_b69
  article-title: Applications of metaheuristics in real-life problems
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-014-0051-8
– volume: 5
  start-page: 2338
  issue: 53
  year: 2020
  ident: 10.1016/j.engappai.2024.109075_b6
  article-title: A parallel global multiobjective framework for optimization: pagmo
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.02338
– volume: 67
  start-page: 873
  issue: 4
  year: 2017
  ident: 10.1016/j.engappai.2024.109075_b74
  article-title: Balancing global and local search in parallel efficient global optimization algorithms
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-016-0449-x
– start-page: 400
  year: 1975
  ident: 10.1016/j.engappai.2024.109075_b55
  article-title: On bayesian methods for seeking the extremum
– volume: 13
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.engappai.2024.109075_b44
  article-title: Efficient global optimization of expensive black-box functions
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008306431147
– year: 2022
  ident: 10.1016/j.engappai.2024.109075_b9
– volume: 56
  start-page: 669
  issue: 2
  year: 2013
  ident: 10.1016/j.engappai.2024.109075_b70
  article-title: Efficient global optimization algorithm assisted by multiple surrogate techniques
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9892-5
– year: 2019
  ident: 10.1016/j.engappai.2024.109075_b56
– volume: 436
  start-page: 54
  year: 2012
  ident: 10.1016/j.engappai.2024.109075_b16
  article-title: A large population size can be unhelpful in evolutionary algorithms
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2011.02.016
– year: 2015
  ident: 10.1016/j.engappai.2024.109075_b14
– ident: 10.1016/j.engappai.2024.109075_b51
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.engappai.2024.109075_b19
  article-title: The particle swarm - explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 56
  year: 2020
  ident: 10.1016/j.engappai.2024.109075_b49
  article-title: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100693
– year: 2009
  ident: 10.1016/j.engappai.2024.109075_b67
– volume: 52
  start-page: 771
  issue: 3
  year: 2004
  ident: 10.1016/j.engappai.2024.109075_b7
  article-title: Particle swarm optimization versus genetic algorithms for phased array synthesis
  publication-title: IEEE Trans. Antennas and Propagation
  doi: 10.1109/TAP.2004.825102
– volume: Vol. 2
  start-page: 1241
  year: 1992
  ident: 10.1016/j.engappai.2024.109075_b20
  article-title: A statistical method for global optimization
– year: 2010
  ident: 10.1016/j.engappai.2024.109075_b31
– volume: 103
  start-page: 1119
  issue: 483
  year: 2008
  ident: 10.1016/j.engappai.2024.109075_b38
  article-title: Bayesian treed Gaussian process models with an application to computer modeling
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214508000000689
– year: 1998
  ident: 10.1016/j.engappai.2024.109075_b25
  article-title: Comparison between genetic algorithms and particle swarm optimization
– year: 2008
  ident: 10.1016/j.engappai.2024.109075_b30
– ident: 10.1016/j.engappai.2024.109075_b47
  doi: 10.1007/978-3-030-70281-6_10
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.engappai.2024.109075_b23
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 57
  year: 2020
  ident: 10.1016/j.engappai.2024.109075_b10
  article-title: Parallel surrogate-assisted optimization: Batched Bayesian neural network-assisted GA versus q-EGO
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100717
– start-page: 3
  year: 2010
  ident: 10.1016/j.engappai.2024.109075_b62
  article-title: A survey of fitness approximation methods applied in evolutionary algorithms
– volume: 23
  start-page: 47
  issue: 4
  year: 2021
  ident: 10.1016/j.engappai.2024.109075_b21
  article-title: Mpi4py: Status update after 12 years of development
  publication-title: Comput. Sci. & Eng.
  doi: 10.1109/MCSE.2021.3083216
– volume: 35
  start-page: 913
  year: 2020
  ident: 10.1016/j.engappai.2024.109075_b48
  article-title: Active learning query strategies for classification, regression, and clustering: A survey
  publication-title: J. Comput. Sci. Tech.
  doi: 10.1007/s11390-020-9487-4
– year: 2012
  ident: 10.1016/j.engappai.2024.109075_b40
– year: 1992
  ident: 10.1016/j.engappai.2024.109075_b41
– volume: Vol. 33
  year: 2020
  ident: 10.1016/j.engappai.2024.109075_b3
  article-title: BoTorch: A framework for efficient Monte-Carlo Bayesian optimization
– volume: 86
  start-page: 97
  issue: 1
  year: 1964
  ident: 10.1016/j.engappai.2024.109075_b50
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
  publication-title: J. Fluids Eng.
– ident: 10.1016/j.engappai.2024.109075_b32
– volume: 19
  start-page: 10963
  year: 2022
  ident: 10.1016/j.engappai.2024.109075_b73
  article-title: IHAOAVOA: An improved hybrid aquila optimizer and african vultures optimization algorithm for global optimization problems
  publication-title: Math. Biosci. Eng.: MBE
  doi: 10.3934/mbe.2022512
– year: 2022
  ident: 10.1016/j.engappai.2024.109075_b46
  article-title: Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review
  publication-title: Neural Process. Lett.
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2024.109075_b22
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– year: 2023
  ident: 10.1016/j.engappai.2024.109075_b68
– volume: 2016
  start-page: 14
  year: 2016
  ident: 10.1016/j.engappai.2024.109075_b24
  article-title: A review of surrogate assisted multiobjective evolutionary algorithms
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/9420460
– volume: vol. 367
  start-page: 3
  year: 2013
  ident: 10.1016/j.engappai.2024.109075_b4
  article-title: Adding virtualization capabilities to the Grid’5000 testbed
– start-page: 786
  year: 2000
  ident: 10.1016/j.engappai.2024.109075_b42
  article-title: On evolutionary optimization with approximate fitness functions
– volume: vol. 80
  start-page: 3306
  year: 2018
  ident: 10.1016/j.engappai.2024.109075_b53
  article-title: Batch Bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design
– start-page: 113
  year: 2019
  ident: 10.1016/j.engappai.2024.109075_b36
  article-title: Surrogate-assisted optimization for multi-stage optimal scheduling of virtual power plants
– start-page: 1957
  year: 1999
  ident: 10.1016/j.engappai.2024.109075_b18
– start-page: 51
  year: 1994
  ident: 10.1016/j.engappai.2024.109075_b58
  article-title: A direct search optimization method that models the objective and constraint functions by linear interpolation
– ident: 10.1016/j.engappai.2024.109075_b12
– year: 2017
  ident: 10.1016/j.engappai.2024.109075_b45
– volume: 113
  start-page: 454
  year: 2020
  ident: 10.1016/j.engappai.2024.109075_b11
  article-title: Evolution control for parallel ANN-assisted simulation-based optimization application to tuberculosis transmission control
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.07.005
– year: 2016
  ident: 10.1016/j.engappai.2024.109075_b72
– volume: 61
  start-page: 1
  year: 2014
  ident: 10.1016/j.engappai.2024.109075_b27
  article-title: A multiobjective optimization based framework to balance the global exploration and local exploitation in expensive optimization
  publication-title: J. Global Optim.
– ident: 10.1016/j.engappai.2024.109075_b33
SSID ssj0003846
Score 2.4159782
Snippet Parallel Surrogate-Based Optimization (PSBO) is an efficient approach to deal with black-box time-consuming objective functions. According to the available...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 109075
SubjectTerms Bayesian optimization
Computer Science
Evolutionary algorithms
Operations Research
Parallel computing
Surrogate-based optimization
Title Observations in applying Bayesian versus evolutionary approaches and their hybrids in parallel time-constrained optimization
URI https://dx.doi.org/10.1016/j.engappai.2024.109075
https://hal.science/hal-04707543
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLaydg972X1ad5M17S2iI9hgeMy2tunWZZXWSXlDxpiGKiEVCVEq7f_tb-0Y20B2UbuHvViRwWD4vnCOj88FoTdB6HsJjYjDI487lIvUCUEKODL1mcuyJGNUF5tg43E4mUSnvd4PGwuznrGiCDeb6PK_Qg19ALYKnf0HuJuLQgf8BtChBdihvRHwX5LG0Fr7uqot6jqW6R2_knXIpPLEqJZ9uTbzUI5zNre4XFqfyrzsT69UPJf2NOelqroyq4vRO0Jplaq4BKirC_jozE0055adv8102O9uk9eeB2XtolQXDOnkBG2cgWp3bx1KtMnnnY3_PMsWQMuqFplHlSqZVLXHj-aGli3lP0ugud6gqkolqGXXzuFRE_DXGN-MprBlwfScQaTLxzQfc51C5jfBoG0UF_uyOIdH5vm-uoXKpeXqwi3bmbhHw6_x6YfD-OR4_Gn7aMd9cTQ8gXbKZ45Lgdc-JWtYhu96zI9AQuwOjw8mHxulgIQ6ZszOuROs_udJ_U1PujW1Fv9aAzq7j-6apQseaso9QD1ZPET3zDIGGyGxhC5bKcT2PULfu6TEeYEtKbElJdakxF1S4paUGEiJa1JiQ0p1FUtK_CspcZeUj9G3w4Oz9yPH1P1wBKznV04KKvYg8BlPwzQVQcJB0Rr4ic8F9dOMSs7JgDMRpFJIT5AwCEHhyIjIgiRl2YCRJ2inWBTyKcIZJzIkYcJI4FJACYamJBCM-i6hIpJ7yLdvORYmKb6a6Sy23o8XsUUnVujEGp099LYZd6nTwlw7IrIgxka51UprDBS9duxrQL25kcoID-SLVV9LvWc3Oek5utP-t16gnVVZyZfotliv8mX5ypD2J3Zc3JY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observations+in+applying+Bayesian+versus+evolutionary+approaches+and+their+hybrids+in+parallel+time-constrained+optimization&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Gobert%2C+Maxime&rft.au=Briffoteaux%2C+Guillaume&rft.au=Gmys%2C+Jan&rft.au=Melab%2C+Nouredine&rft.date=2024-11-01&rft.pub=Elsevier&rft.issn=0952-1976&rft.volume=137&rft_id=info:doi/10.1016%2Fj.engappai.2024.109075&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04707543v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon