The construction of higher-order numerical approximation formula for Riesz derivative and its application to nonlinear fractional differential equations (I)

The main goal of this paper is to construct high-order numerical differential formulas approximating the Riesz derivative and apply them to the numerical solution of the nonlinear space fractional Ginzburg–Landau equations. Firstly, we introduce a novel second-order fractional central difference ope...

Full description

Saved in:
Bibliographic Details
Published in:Communications in nonlinear science & numerical simulation Vol. 110; p. 106394
Main Authors: Ding, Hengfei, Yi, Qian
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.07.2022
Elsevier Science Ltd
Subjects:
ISSN:1007-5704, 1878-7274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The main goal of this paper is to construct high-order numerical differential formulas approximating the Riesz derivative and apply them to the numerical solution of the nonlinear space fractional Ginzburg–Landau equations. Firstly, we introduce a novel second-order fractional central difference operator for the approximation of the Riesz derivative with order α∈(1,2]. Moreover, based on the difference operator and the compact technique, a novel fourth-order fractional compact difference operator is also derived. Secondly, using the fourth-order difference operator in space and the Crank–Nicolson method in time, a high-order difference scheme is proposed for the nonlinear space fractional Ginzburg–Landau equations. Thirdly, besides the standard energy method, some new techniques and important lemmas are developed to prove the unique solvability, stability and convergence in the sense of different norms. It is proved that the difference scheme is unconditionally stable and convergent with order Oτ2+h4 for α∈(1,1.5), where τ and h are the temporal step size and spatial step size, respectively. Finally, some numerical examples are given to show the efficiency and accuracy of the numerical differential formulas and finite difference scheme. •A fourth-order fractional compact numerical differential formula is constructed.•Some important inequalities are established.•The important properties of the coefficients are studied.•An implicit difference scheme is established.•The new techniques for analyzing stability and convergenceare proposed.
AbstractList The main goal of this paper is to construct high-order numerical differential formulas approximating the Riesz derivative and apply them to the numerical solution of the nonlinear space fractional Ginzburg–Landau equations. Firstly, we introduce a novel second-order fractional central difference operator for the approximation of the Riesz derivative with order α∊ [1,2]. Moreover, based on the difference operator and the compact technique, a novel fourth-order fractional compact difference operator is also derived. Secondly, using the fourth-order difference operator in space and the Crank–Nicolson method in time, a high-order difference scheme is proposed for the nonlinear space fractional Ginzburg–Landau equations. Thirdly, besides the standard energy method, some new techniques and important lemmas are developed to prove the unique solvability, stability and convergence in the sense of different norms. It is proved that the difference scheme is unconditionally stable and convergent with order ... where τ and h are the temporal step size and spatial step size, respectively. Finally, some numerical examples are given to show the efficiency and accuracy of the numerical differential formulas and finite difference scheme.(ProQuest: ... denotes formulae omitted.)
The main goal of this paper is to construct high-order numerical differential formulas approximating the Riesz derivative and apply them to the numerical solution of the nonlinear space fractional Ginzburg–Landau equations. Firstly, we introduce a novel second-order fractional central difference operator for the approximation of the Riesz derivative with order α∈(1,2]. Moreover, based on the difference operator and the compact technique, a novel fourth-order fractional compact difference operator is also derived. Secondly, using the fourth-order difference operator in space and the Crank–Nicolson method in time, a high-order difference scheme is proposed for the nonlinear space fractional Ginzburg–Landau equations. Thirdly, besides the standard energy method, some new techniques and important lemmas are developed to prove the unique solvability, stability and convergence in the sense of different norms. It is proved that the difference scheme is unconditionally stable and convergent with order Oτ2+h4 for α∈(1,1.5), where τ and h are the temporal step size and spatial step size, respectively. Finally, some numerical examples are given to show the efficiency and accuracy of the numerical differential formulas and finite difference scheme. •A fourth-order fractional compact numerical differential formula is constructed.•Some important inequalities are established.•The important properties of the coefficients are studied.•An implicit difference scheme is established.•The new techniques for analyzing stability and convergenceare proposed.
ArticleNumber 106394
Author Yi, Qian
Ding, Hengfei
Author_xml – sequence: 1
  givenname: Hengfei
  surname: Ding
  fullname: Ding, Hengfei
  email: dinghf05@163.com
  organization: School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001, China
– sequence: 2
  givenname: Qian
  orcidid: 0000-0003-3664-6519
  surname: Yi
  fullname: Yi, Qian
  email: yiqian@i.shu.edu.cn
  organization: School of Mathematics and Statistics, Guangxi Normal University, Guilin 541006, China
BookMark eNqFkc1u3CAUhVGVSk3SPkE3SN2kC08B22AvuoiipI0UqVKVrhHGlw4jD0wueJT0WfqwYTxZdZGuLj_nu9zDOSMnIQYg5CNnK864_LJZ2ZBCWgkmRDmRdd-8Iae8U12lhGpOypoxVbWKNe_IWUobVqi-bU7J3_s1UBtDyjjb7GOg0dG1_70GrCKOgDTMW0BvzUTNbofx0W_NonMRt_NkDpX-9JD-0KL2-3K5B2rCSH1OB2Qq7ALkSMvYkw9gkDo0y3Ol7eidA4SQfdnAw7yoE724_fyevHVmSvDhpZ6TXzfX91ffq7sf326vLu8qKyTPVde5flAWWsHbVkLnlG0djE40fOTW1AJkz4d-YMMoJNQN6wcrBllz3oNydVOfk0_HvsXfwwwp602cscyWtJCyYapjNS-q-qiyGFNCcHqH5TPwSXOmDzHojV5i0IcY9DGGQvX_UNbnxWJG46f_sF-PLBTzew-ok_UQLIwewWY9Rv8q_wzIaasF
CitedBy_id crossref_primary_10_1016_j_camwa_2023_09_029
crossref_primary_10_1109_TGRS_2023_3241150
crossref_primary_10_1016_j_chaos_2023_113445
crossref_primary_10_1002_num_23076
crossref_primary_10_3390_math10111912
crossref_primary_10_1016_j_apnum_2025_02_019
crossref_primary_10_1016_j_cnsns_2023_107272
crossref_primary_10_1016_j_cnsns_2023_107607
crossref_primary_10_1063_5_0276280
crossref_primary_10_1016_j_matcom_2025_05_025
crossref_primary_10_3390_fractalfract7070564
crossref_primary_10_1016_j_matcom_2025_02_023
Cites_doi 10.1016/j.jcp.2016.02.018
10.1007/s11075-017-0466-y
10.1016/j.apm.2009.04.006
10.1002/num.21763
10.1016/j.camwa.2017.12.005
10.1103/RevModPhys.74.99
10.1016/j.jcp.2013.02.037
10.1016/j.jde.2015.06.028
10.1016/j.cnsns.2016.03.008
10.1007/s00220-012-1621-x
10.1002/num.22076
10.1137/S003614299528554X
10.1080/00036811.2018.1469008
10.1063/1.2197167
10.1016/j.ijleo.2018.02.022
10.1016/j.jcp.2014.10.053
10.1137/110833294
10.1016/j.jcp.2014.06.007
10.1137/17M1116222
10.1137/1034003
10.2140/pjm.1977.68.241
10.1007/s10444-021-09862-x
10.4208/cicp.250112.061212a
10.1002/num.20535
10.2478/s13540-013-0014-y
10.1016/j.jcp.2010.10.007
10.1088/0305-4470/39/26/008
10.1140/epjp/i2018-11846-x
10.1007/s10444-005-9004-x
10.1016/j.jcp.2013.03.007
10.1137/140961560
10.1002/mma.5852
10.1016/j.physa.2005.02.047
10.1103/PhysRevLett.79.4047
10.1080/00036811.2018.1466281
10.1016/j.apnum.2017.03.003
10.1016/j.cam.2020.113355
10.1103/PhysRevE.62.3135
10.1080/01630563.2010.510974
10.1016/j.aml.2020.106710
10.1090/S0002-9939-1995-1273525-5
10.1093/imanum/13.1.115
10.1007/s00205-014-0776-3
10.1080/00036811.2011.614601
10.1007/s10543-018-0698-9
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 2022
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2022.106394
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2022_106394
S1007570422000831
GrantInformation_xml – fundername: Guangxi Science Foundation for Youths, China
  grantid: 2020GXNSFBA297121
– fundername: National Natural Science Foundation of China
  grantid: 11961057; 11561060; 62063031
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Fuxi Scientific Research Innovation Team of Tianshui Normal University, China
  grantid: FXD2020-03
  funderid: http://dx.doi.org/10.13039/501100004510
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
SSH
ID FETCH-LOGICAL-c261t-88f9b7ce521556e8f7c5fedf241d1ca32e691b9b0bd26e3409bc2b63119e7f343
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793055600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1007-5704
IngestDate Fri Jul 25 02:55:57 EDT 2025
Sat Nov 29 07:11:41 EST 2025
Tue Nov 18 21:22:13 EST 2025
Fri Feb 23 02:38:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Riesz derivative
Fractional-compact numerical algorithm
Stability
Nonlinear space fractional Ginzburg–Landau equations
Convergence
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-88f9b7ce521556e8f7c5fedf241d1ca32e691b9b0bd26e3409bc2b63119e7f343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3664-6519
PQID 2664078031
PQPubID 2047477
ParticipantIDs proquest_journals_2664078031
crossref_primary_10_1016_j_cnsns_2022_106394
crossref_citationtrail_10_1016_j_cnsns_2022_106394
elsevier_sciencedirect_doi_10_1016_j_cnsns_2022_106394
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Lü, Lu (b36) 2007; 27
Zhang (b23) 2010; 31
Fei, Huang, Wang, Zhang (b32) 2021; 15
Zhang, Sun, Wang (b24) 2013; 29
Aranson, Kramer (b7) 2002; 74
Yang, Liu, Turner (b5) 2010; 34
Gu, Shi, Liu (b17) 2019; 98
Xu, Chang (b22) 2011; 27
Tarasov, Zaslavsky (b11) 2006; 16
Zhang, Li, Wang (b34) 2019; 98
Gradshteyn, Ryzhik (b41) 2007
Li, Cai (b45) 2019
Kincaid, Cheney (b49) 1991
Sjölin (b44) 1995; 123
Laskin (b3) 2000; 62
Zhang, Hesthaven, Sun, Ren (b39) 2021; 47
Kuang (b42) 2012
Wang, Xiao, Yang (b4) 2013; 242
Du, Gunzburger, Lehoucq (b9) 2012; 54
He, Pan (b2) 2018; 79
Ginzburg, Landau (b10) 1950; 20
Hao, Sun, Cao (b27) 2015; 281
Wang (b37) 2021; 112
Gao, Sun (b48) 2011; 230
Lu, Bates, Lü, Zhang (b18) 2015; 259
Tarasov (b13) 2006; 39
Wang, Huang (b26) 2018; 58
Millot, Sire (b16) 2015; 215
Mvogo, Tambue, Ben-Bolie, Kofane (b25) 2016; 39
Kirkpatrick, Lenzmann, Staffilani (b40) 2013; 317
Arshed (b19) 2018; 160
Wang, Huang (b1) 2016; 312
Deng, Li, Tian (b47) 2018; 16
Akhmediev, Ankiewicz, Soto-Crespo (b6) 1997; 79
Zhang, Zhang, Sun (b38) 2021; 389
Ding, Li, Chen (b29) 2015; 293
Du, Gunzburger, Peterson (b46) 1992; 34
Guo, Huo (b15) 2013; 16
Akrivis (b50) 1993; 13
Bao, Tang (b8) 2013; 14
Hao, Sun (b28) 2017; 33
Russo (b43) 1977; 68
Wang, Guo, Xu (b21) 2013; 243
Wang, Huang (b33) 2018; 75
Tarasov, Zaslavsky (b12) 2005; 354
Pu, Guo (b14) 2013; 92
Lord (b20) 1997; 34
Li, Huang, Wang (b31) 2017; 118
Mohebbi (b35) 2018; 133
Zhao, Sun, Hao (b30) 2014; 36
Wang (10.1016/j.cnsns.2022.106394_b26) 2018; 58
Du (10.1016/j.cnsns.2022.106394_b9) 2012; 54
Laskin (10.1016/j.cnsns.2022.106394_b3) 2000; 62
Kirkpatrick (10.1016/j.cnsns.2022.106394_b40) 2013; 317
Zhang (10.1016/j.cnsns.2022.106394_b24) 2013; 29
Akhmediev (10.1016/j.cnsns.2022.106394_b6) 1997; 79
Kincaid (10.1016/j.cnsns.2022.106394_b49) 1991
Li (10.1016/j.cnsns.2022.106394_b31) 2017; 118
Gao (10.1016/j.cnsns.2022.106394_b48) 2011; 230
Mohebbi (10.1016/j.cnsns.2022.106394_b35) 2018; 133
Akrivis (10.1016/j.cnsns.2022.106394_b50) 1993; 13
Tarasov (10.1016/j.cnsns.2022.106394_b13) 2006; 39
Du (10.1016/j.cnsns.2022.106394_b46) 1992; 34
Bao (10.1016/j.cnsns.2022.106394_b8) 2013; 14
Tarasov (10.1016/j.cnsns.2022.106394_b11) 2006; 16
Li (10.1016/j.cnsns.2022.106394_b45) 2019
Wang (10.1016/j.cnsns.2022.106394_b4) 2013; 242
Deng (10.1016/j.cnsns.2022.106394_b47) 2018; 16
Tarasov (10.1016/j.cnsns.2022.106394_b12) 2005; 354
Ding (10.1016/j.cnsns.2022.106394_b29) 2015; 293
Russo (10.1016/j.cnsns.2022.106394_b43) 1977; 68
Zhao (10.1016/j.cnsns.2022.106394_b30) 2014; 36
Xu (10.1016/j.cnsns.2022.106394_b22) 2011; 27
Millot (10.1016/j.cnsns.2022.106394_b16) 2015; 215
Zhang (10.1016/j.cnsns.2022.106394_b34) 2019; 98
Aranson (10.1016/j.cnsns.2022.106394_b7) 2002; 74
Zhang (10.1016/j.cnsns.2022.106394_b39) 2021; 47
Lu (10.1016/j.cnsns.2022.106394_b18) 2015; 259
He (10.1016/j.cnsns.2022.106394_b2) 2018; 79
Wang (10.1016/j.cnsns.2022.106394_b37) 2021; 112
Ginzburg (10.1016/j.cnsns.2022.106394_b10) 1950; 20
Wang (10.1016/j.cnsns.2022.106394_b21) 2013; 243
Hao (10.1016/j.cnsns.2022.106394_b27) 2015; 281
Sjölin (10.1016/j.cnsns.2022.106394_b44) 1995; 123
Wang (10.1016/j.cnsns.2022.106394_b33) 2018; 75
Mvogo (10.1016/j.cnsns.2022.106394_b25) 2016; 39
Pu (10.1016/j.cnsns.2022.106394_b14) 2013; 92
Lü (10.1016/j.cnsns.2022.106394_b36) 2007; 27
Hao (10.1016/j.cnsns.2022.106394_b28) 2017; 33
Fei (10.1016/j.cnsns.2022.106394_b32) 2021; 15
Kuang (10.1016/j.cnsns.2022.106394_b42) 2012
Yang (10.1016/j.cnsns.2022.106394_b5) 2010; 34
Zhang (10.1016/j.cnsns.2022.106394_b38) 2021; 389
Guo (10.1016/j.cnsns.2022.106394_b15) 2013; 16
Arshed (10.1016/j.cnsns.2022.106394_b19) 2018; 160
Lord (10.1016/j.cnsns.2022.106394_b20) 1997; 34
Zhang (10.1016/j.cnsns.2022.106394_b23) 2010; 31
Gu (10.1016/j.cnsns.2022.106394_b17) 2019; 98
Gradshteyn (10.1016/j.cnsns.2022.106394_b41) 2007
Wang (10.1016/j.cnsns.2022.106394_b1) 2016; 312
References_xml – volume: 79
  start-page: 899
  year: 2018
  end-page: 925
  ident: b2
  article-title: An unconditionally stable linearized difference scheme for the fractional Ginzburg–Landau equation
  publication-title: Numer. Algorithms
– volume: 79
  start-page: 4047
  year: 1997
  end-page: 4051
  ident: b6
  article-title: Multisoliton solutions of the complex Ginzburg–Landau equation
  publication-title: Phys Rev Lett
– volume: 259
  start-page: 5276
  year: 2015
  end-page: 5301
  ident: b18
  article-title: Dynamics of the 3-D fractional complex Ginzburg–Landau equation
  publication-title: J. Differ. Equ.
– year: 2007
  ident: b41
  article-title: Table of integrals, series, and products
– volume: 47
  start-page: 1
  year: 2021
  end-page: 36
  ident: b39
  article-title: Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg–Landau equation
  publication-title: Adv Comput Math
– volume: 39
  start-page: 396
  year: 2016
  end-page: 410
  ident: b25
  article-title: Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Landau equation
  publication-title: Commun. Nonlinear Sci.
– year: 2012
  ident: b42
  article-title: Applied inequalities
– volume: 389
  year: 2021
  ident: b38
  article-title: A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations
  publication-title: J Comput Appl Math
– volume: 31
  start-page: 1190
  year: 2010
  end-page: 1211
  ident: b23
  article-title: Long time behavior of difference approximations for the two-dimensional complex Ginzburg–Landau equation
  publication-title: Numer Funct Anal Optim
– volume: 34
  start-page: 1483
  year: 1997
  end-page: 1512
  ident: b20
  article-title: Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg–Landau equation
  publication-title: SIAM J Numer Anal
– volume: 243
  start-page: 382
  year: 2013
  end-page: 399
  ident: b21
  article-title: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions
  publication-title: J Comput Phys
– volume: 75
  start-page: 2223
  year: 2018
  end-page: 2242
  ident: b33
  article-title: An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg–Landau equations
  publication-title: Comput Math Appl
– volume: 20
  start-page: 1064
  year: 1950
  end-page: 1082
  ident: b10
  article-title: On the theory of superconductivity
  publication-title: Zh Eksp Teor Fiz
– volume: 98
  start-page: 2648
  year: 2019
  end-page: 2667
  ident: b34
  article-title: A linearized Crank–Nicolson Galerkin FEMs for the nonlinear fractional Ginzburg–Landau equation
  publication-title: Appl Anal
– volume: 16
  year: 2006
  ident: b11
  article-title: Fractional dynamics of coupled oscillators with long-range interaction
  publication-title: Chaos
– volume: 281
  start-page: 787
  year: 2015
  end-page: 805
  ident: b27
  article-title: A fourth-order approximation of fractional derivatives with its applications
  publication-title: J Comput Phys
– volume: 27
  start-page: 293
  year: 2007
  end-page: 318
  ident: b36
  article-title: Fourier spectral approximation to long-time behavior of three dimensional Ginzburg–Landau type equation
  publication-title: Adv Comput Math
– volume: 33
  start-page: 105
  year: 2017
  end-page: 124
  ident: b28
  article-title: A linearized high-order difference scheme for the fractional Ginzburg–Landau equation
  publication-title: Numer Methods Partial Differential Equations
– volume: 230
  start-page: 586
  year: 2011
  end-page: 595
  ident: b48
  article-title: A compact finite difference scheme for the fractional sub-diffusion equations
  publication-title: J Comput Phys
– volume: 36
  start-page: 2865
  year: 2014
  end-page: 2886
  ident: b30
  article-title: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation
  publication-title: SIAM J Sci Comput
– volume: 160
  start-page: 322
  year: 2018
  end-page: 332
  ident: b19
  article-title: Soliton solutions of fractional complex Ginzburg–Landau equation with Kerr law and non-Kerr law media
  publication-title: Optik
– volume: 293
  start-page: 218
  year: 2015
  end-page: 237
  ident: b29
  article-title: High-order algorithms for Riesz derivative and their applications (II)
  publication-title: J Comput Phys
– volume: 54
  start-page: 667
  year: 2012
  end-page: 696
  ident: b9
  article-title: Analysis and approximation of nonlocal diffusion problems with volume constraints
  publication-title: SIAM Rev
– volume: 16
  start-page: 125
  year: 2018
  end-page: 149
  ident: b47
  article-title: Boundary problems for the fractional and tempered fractional operators
  publication-title: Multiscale Model Simul
– volume: 133
  start-page: 67
  year: 2018
  ident: b35
  article-title: Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg–Landau equation
  publication-title: Eur Phys J Plus
– volume: 312
  start-page: 31
  year: 2016
  end-page: 49
  ident: b1
  article-title: An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation
  publication-title: J Comput Phys
– year: 2019
  ident: b45
  article-title: Theory and numerical approximations of fractional integrals and derivatives
– year: 1991
  ident: b49
  article-title: Numerical analysis
– volume: 27
  start-page: 507
  year: 2011
  end-page: 528
  ident: b22
  article-title: Difference methods for computing the Ginzburg–Landau equation in two dimensions
  publication-title: Numer Methods Partial Differential Equations
– volume: 112
  year: 2021
  ident: b37
  article-title: Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg
  publication-title: Appl Math Lett
– volume: 354
  start-page: 249
  year: 2005
  end-page: 261
  ident: b12
  article-title: Fractional Ginzburg–Landau equation for fractal media
  publication-title: Phys. A
– volume: 68
  start-page: 241
  year: 1977
  end-page: 253
  ident: b43
  article-title: On the Hausdorff–Young theorem for integral operators
  publication-title: Pacific J Math
– volume: 317
  start-page: 563
  year: 2013
  end-page: 591
  ident: b40
  article-title: On the continuum limit for discrete NLS with longrange lattice interactions
  publication-title: Comm Math Phys
– volume: 92
  start-page: 318
  year: 2013
  end-page: 334
  ident: b14
  article-title: Well-posedness and dynamics for the fractional Ginzburg–Landau equation
  publication-title: Appl Anal
– volume: 242
  start-page: 670
  year: 2013
  end-page: 681
  ident: b4
  article-title: Crank-nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative
  publication-title: J Comput Phys
– volume: 14
  start-page: 819
  year: 2013
  end-page: 850
  ident: b8
  article-title: Numerical study of quantized vortex interaction in the Ginzburg–Landau equation on bounded domains
  publication-title: Commun Comput Phys
– volume: 34
  start-page: 54
  year: 1992
  end-page: 81
  ident: b46
  article-title: Analysis and approximation of the Ginzburg–Landau model of superconductivity
  publication-title: SIAM Rev
– volume: 74
  start-page: 99
  year: 2002
  end-page: 143
  ident: b7
  article-title: The world of the complex Ginzburg–Landau equation
  publication-title: Rev. Modern Phys.
– volume: 34
  start-page: 200
  year: 2010
  end-page: 218
  ident: b5
  article-title: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
  publication-title: Appl Math Model
– volume: 39
  start-page: 8395
  year: 2006
  end-page: 8407
  ident: b13
  article-title: Psi-series solution of fractional Ginzburg–Landau equation
  publication-title: J Phys A: Math Gen
– volume: 123
  start-page: 3085
  year: 1995
  end-page: 3088
  ident: b44
  article-title: A remark on the Hausdorff–Young inequality
  publication-title: Proc Amer Math Soc
– volume: 58
  start-page: 783
  year: 2018
  end-page: 805
  ident: b26
  article-title: An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg–Landau equation
  publication-title: BIT
– volume: 215
  start-page: 125
  year: 2015
  end-page: 210
  ident: b16
  article-title: On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres
  publication-title: Arch. Ration. Mech. Anal.
– volume: 15
  start-page: 2711
  year: 2021
  end-page: 2730
  ident: b32
  article-title: Galerkin-Legendre spectral method for the nonlinear Ginzburg–Landau equation with the Riesz fractional derivative
  publication-title: Math Methods Appl Sci
– volume: 98
  start-page: 2545
  year: 2019
  end-page: 2558
  ident: b17
  article-title: Well-posedness of the fractional Ginzburg–Landau equation
  publication-title: Appl Anal
– volume: 29
  start-page: 1487
  year: 2013
  end-page: 1503
  ident: b24
  article-title: Convergence analysis of a linearized Crank–Nicolson scheme for the two-dimensional complex Ginzburg–Landau equation
  publication-title: Numer Methods Partial Differential Equations
– volume: 62
  start-page: 3135
  year: 2000
  ident: b3
  article-title: Fractional quantum mechanics
  publication-title: Phys. Rev. E.
– volume: 13
  start-page: 115
  year: 1993
  end-page: 124
  ident: b50
  article-title: Finite difference discretization of the cubic Schrödinger equation
  publication-title: IMA J Numer Anal
– volume: 16
  start-page: 226
  year: 2013
  end-page: 242
  ident: b15
  article-title: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation
  publication-title: Fract Calc Appl Anal
– volume: 118
  start-page: 131
  year: 2017
  end-page: 149
  ident: b31
  article-title: Galerkin element method for the nonlinear fractional Ginzburg–Landau equation
  publication-title: Appl Numer Math
– volume: 312
  start-page: 31
  year: 2016
  ident: 10.1016/j.cnsns.2022.106394_b1
  article-title: An implicit midpoint difference scheme for the fractional Ginzburg–Landau equation
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.02.018
– volume: 79
  start-page: 899
  issue: 3
  year: 2018
  ident: 10.1016/j.cnsns.2022.106394_b2
  article-title: An unconditionally stable linearized difference scheme for the fractional Ginzburg–Landau equation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0466-y
– year: 2019
  ident: 10.1016/j.cnsns.2022.106394_b45
– volume: 34
  start-page: 200
  year: 2010
  ident: 10.1016/j.cnsns.2022.106394_b5
  article-title: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2009.04.006
– volume: 29
  start-page: 1487
  year: 2013
  ident: 10.1016/j.cnsns.2022.106394_b24
  article-title: Convergence analysis of a linearized Crank–Nicolson scheme for the two-dimensional complex Ginzburg–Landau equation
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.21763
– volume: 75
  start-page: 2223
  year: 2018
  ident: 10.1016/j.cnsns.2022.106394_b33
  article-title: An efficient split-step quasi-compact finite difference method for the nonlinear fractional Ginzburg–Landau equations
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2017.12.005
– volume: 74
  start-page: 99
  year: 2002
  ident: 10.1016/j.cnsns.2022.106394_b7
  article-title: The world of the complex Ginzburg–Landau equation
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.74.99
– volume: 242
  start-page: 670
  year: 2013
  ident: 10.1016/j.cnsns.2022.106394_b4
  article-title: Crank-nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2013.02.037
– year: 1991
  ident: 10.1016/j.cnsns.2022.106394_b49
– volume: 259
  start-page: 5276
  year: 2015
  ident: 10.1016/j.cnsns.2022.106394_b18
  article-title: Dynamics of the 3-D fractional complex Ginzburg–Landau equation
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2015.06.028
– volume: 39
  start-page: 396
  year: 2016
  ident: 10.1016/j.cnsns.2022.106394_b25
  article-title: Localized numerical impulse solutions in diffuse neural networks modeled by the complex fractional Ginzburg–Landau equation
  publication-title: Commun. Nonlinear Sci.
  doi: 10.1016/j.cnsns.2016.03.008
– volume: 317
  start-page: 563
  year: 2013
  ident: 10.1016/j.cnsns.2022.106394_b40
  article-title: On the continuum limit for discrete NLS with longrange lattice interactions
  publication-title: Comm Math Phys
  doi: 10.1007/s00220-012-1621-x
– volume: 33
  start-page: 105
  year: 2017
  ident: 10.1016/j.cnsns.2022.106394_b28
  article-title: A linearized high-order difference scheme for the fractional Ginzburg–Landau equation
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.22076
– volume: 34
  start-page: 1483
  year: 1997
  ident: 10.1016/j.cnsns.2022.106394_b20
  article-title: Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg–Landau equation
  publication-title: SIAM J Numer Anal
  doi: 10.1137/S003614299528554X
– volume: 98
  start-page: 2648
  issue: 15
  year: 2019
  ident: 10.1016/j.cnsns.2022.106394_b34
  article-title: A linearized Crank–Nicolson Galerkin FEMs for the nonlinear fractional Ginzburg–Landau equation
  publication-title: Appl Anal
  doi: 10.1080/00036811.2018.1469008
– volume: 20
  start-page: 1064
  year: 1950
  ident: 10.1016/j.cnsns.2022.106394_b10
  article-title: On the theory of superconductivity
  publication-title: Zh Eksp Teor Fiz
– volume: 16
  year: 2006
  ident: 10.1016/j.cnsns.2022.106394_b11
  article-title: Fractional dynamics of coupled oscillators with long-range interaction
  publication-title: Chaos
  doi: 10.1063/1.2197167
– volume: 160
  start-page: 322
  year: 2018
  ident: 10.1016/j.cnsns.2022.106394_b19
  article-title: Soliton solutions of fractional complex Ginzburg–Landau equation with Kerr law and non-Kerr law media
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.02.022
– volume: 281
  start-page: 787
  year: 2015
  ident: 10.1016/j.cnsns.2022.106394_b27
  article-title: A fourth-order approximation of fractional derivatives with its applications
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.10.053
– volume: 54
  start-page: 667
  year: 2012
  ident: 10.1016/j.cnsns.2022.106394_b9
  article-title: Analysis and approximation of nonlocal diffusion problems with volume constraints
  publication-title: SIAM Rev
  doi: 10.1137/110833294
– volume: 293
  start-page: 218
  year: 2015
  ident: 10.1016/j.cnsns.2022.106394_b29
  article-title: High-order algorithms for Riesz derivative and their applications (II)
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2014.06.007
– volume: 16
  start-page: 125
  year: 2018
  ident: 10.1016/j.cnsns.2022.106394_b47
  article-title: Boundary problems for the fractional and tempered fractional operators
  publication-title: Multiscale Model Simul
  doi: 10.1137/17M1116222
– volume: 34
  start-page: 54
  issue: 1
  year: 1992
  ident: 10.1016/j.cnsns.2022.106394_b46
  article-title: Analysis and approximation of the Ginzburg–Landau model of superconductivity
  publication-title: SIAM Rev
  doi: 10.1137/1034003
– volume: 68
  start-page: 241
  year: 1977
  ident: 10.1016/j.cnsns.2022.106394_b43
  article-title: On the Hausdorff–Young theorem for integral operators
  publication-title: Pacific J Math
  doi: 10.2140/pjm.1977.68.241
– volume: 47
  start-page: 1
  year: 2021
  ident: 10.1016/j.cnsns.2022.106394_b39
  article-title: Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg–Landau equation
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-021-09862-x
– volume: 14
  start-page: 819
  issue: 3
  year: 2013
  ident: 10.1016/j.cnsns.2022.106394_b8
  article-title: Numerical study of quantized vortex interaction in the Ginzburg–Landau equation on bounded domains
  publication-title: Commun Comput Phys
  doi: 10.4208/cicp.250112.061212a
– volume: 27
  start-page: 507
  year: 2011
  ident: 10.1016/j.cnsns.2022.106394_b22
  article-title: Difference methods for computing the Ginzburg–Landau equation in two dimensions
  publication-title: Numer Methods Partial Differential Equations
  doi: 10.1002/num.20535
– volume: 16
  start-page: 226
  year: 2013
  ident: 10.1016/j.cnsns.2022.106394_b15
  article-title: Well-posedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional Ginzburg–Landau equation
  publication-title: Fract Calc Appl Anal
  doi: 10.2478/s13540-013-0014-y
– volume: 230
  start-page: 586
  year: 2011
  ident: 10.1016/j.cnsns.2022.106394_b48
  article-title: A compact finite difference scheme for the fractional sub-diffusion equations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2010.10.007
– volume: 39
  start-page: 8395
  year: 2006
  ident: 10.1016/j.cnsns.2022.106394_b13
  article-title: Psi-series solution of fractional Ginzburg–Landau equation
  publication-title: J Phys A: Math Gen
  doi: 10.1088/0305-4470/39/26/008
– volume: 133
  start-page: 67
  issue: 2
  year: 2018
  ident: 10.1016/j.cnsns.2022.106394_b35
  article-title: Fast and high-order numerical algorithms for the solution of multidimensional nonlinear fractional Ginzburg–Landau equation
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2018-11846-x
– volume: 27
  start-page: 293
  year: 2007
  ident: 10.1016/j.cnsns.2022.106394_b36
  article-title: Fourier spectral approximation to long-time behavior of three dimensional Ginzburg–Landau type equation
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-005-9004-x
– volume: 243
  start-page: 382
  year: 2013
  ident: 10.1016/j.cnsns.2022.106394_b21
  article-title: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2013.03.007
– volume: 36
  start-page: 2865
  issue: 6
  year: 2014
  ident: 10.1016/j.cnsns.2022.106394_b30
  article-title: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation
  publication-title: SIAM J Sci Comput
  doi: 10.1137/140961560
– volume: 15
  start-page: 2711
  year: 2021
  ident: 10.1016/j.cnsns.2022.106394_b32
  article-title: Galerkin-Legendre spectral method for the nonlinear Ginzburg–Landau equation with the Riesz fractional derivative
  publication-title: Math Methods Appl Sci
  doi: 10.1002/mma.5852
– year: 2012
  ident: 10.1016/j.cnsns.2022.106394_b42
– volume: 354
  start-page: 249
  year: 2005
  ident: 10.1016/j.cnsns.2022.106394_b12
  article-title: Fractional Ginzburg–Landau equation for fractal media
  publication-title: Phys. A
  doi: 10.1016/j.physa.2005.02.047
– volume: 79
  start-page: 4047
  issue: 21
  year: 1997
  ident: 10.1016/j.cnsns.2022.106394_b6
  article-title: Multisoliton solutions of the complex Ginzburg–Landau equation
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.79.4047
– volume: 98
  start-page: 2545
  issue: 14
  year: 2019
  ident: 10.1016/j.cnsns.2022.106394_b17
  article-title: Well-posedness of the fractional Ginzburg–Landau equation
  publication-title: Appl Anal
  doi: 10.1080/00036811.2018.1466281
– volume: 118
  start-page: 131
  year: 2017
  ident: 10.1016/j.cnsns.2022.106394_b31
  article-title: Galerkin element method for the nonlinear fractional Ginzburg–Landau equation
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2017.03.003
– volume: 389
  year: 2021
  ident: 10.1016/j.cnsns.2022.106394_b38
  article-title: A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2020.113355
– volume: 62
  start-page: 3135
  issue: 3
  year: 2000
  ident: 10.1016/j.cnsns.2022.106394_b3
  article-title: Fractional quantum mechanics
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.62.3135
– volume: 31
  start-page: 1190
  year: 2010
  ident: 10.1016/j.cnsns.2022.106394_b23
  article-title: Long time behavior of difference approximations for the two-dimensional complex Ginzburg–Landau equation
  publication-title: Numer Funct Anal Optim
  doi: 10.1080/01630563.2010.510974
– volume: 112
  year: 2021
  ident: 10.1016/j.cnsns.2022.106394_b37
  article-title: Fast exponential time differencing/spectral-Galerkin method for the nonlinear fractional Ginzburg
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2020.106710
– volume: 123
  start-page: 3085
  year: 1995
  ident: 10.1016/j.cnsns.2022.106394_b44
  article-title: A remark on the Hausdorff–Young inequality
  publication-title: Proc Amer Math Soc
  doi: 10.1090/S0002-9939-1995-1273525-5
– year: 2007
  ident: 10.1016/j.cnsns.2022.106394_b41
– volume: 13
  start-page: 115
  year: 1993
  ident: 10.1016/j.cnsns.2022.106394_b50
  article-title: Finite difference discretization of the cubic Schrödinger equation
  publication-title: IMA J Numer Anal
  doi: 10.1093/imanum/13.1.115
– volume: 215
  start-page: 125
  year: 2015
  ident: 10.1016/j.cnsns.2022.106394_b16
  article-title: On a fractional Ginzburg–Landau equation and 1/2-harmonic maps into spheres
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-014-0776-3
– volume: 92
  start-page: 318
  year: 2013
  ident: 10.1016/j.cnsns.2022.106394_b14
  article-title: Well-posedness and dynamics for the fractional Ginzburg–Landau equation
  publication-title: Appl Anal
  doi: 10.1080/00036811.2011.614601
– volume: 58
  start-page: 783
  issue: 3
  year: 2018
  ident: 10.1016/j.cnsns.2022.106394_b26
  article-title: An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg–Landau equation
  publication-title: BIT
  doi: 10.1007/s10543-018-0698-9
SSID ssj0016954
Score 2.4128623
Snippet The main goal of this paper is to construct high-order numerical differential formulas approximating the Riesz derivative and apply them to the numerical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106394
SubjectTerms Approximation
Convergence
Differential equations
Energy methods
Finite difference method
Finite differences
Fractional calculus
Fractional-compact numerical algorithm
Fractions
Landau-Ginzburg equations
Mathematical analysis
Nonlinear space fractional Ginzburg–Landau equations
Norms
Operators (mathematics)
Riesz derivative
Stability
Title The construction of higher-order numerical approximation formula for Riesz derivative and its application to nonlinear fractional differential equations (I)
URI https://dx.doi.org/10.1016/j.cnsns.2022.106394
https://www.proquest.com/docview/2664078031
Volume 110
WOSCitedRecordID wos000793055600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JbxMxFLailAMXdkShoHfgAApTZTybfaxQUcuhYilSbqOx40GpkkmbTRG_hTO_k-d1pkRUgMRlEjkztpX3jf35rYS8pCrh2bCOozwdVlEqlYgEpwKJXMYK3O9qxipTbKI4O2OjEf_Q6_3wsTCbadE0bLvll_9V1NiGwtahs38h7tApNuB3FDpeUex4_WPBy3mbGNbQQePNEZk8m4Nmba00U5tQfDuZBYfD2XpaGcfDT3iA_jbAu03xs01rY-gYvDVtbWymjWoxqBc2RMIYfWzRlZXWxqurtfO201zWKx58boRueIrxzG079AFHGpvtlJeTmSs4Fii4q8pyopqvtZqEZcy4KXz06HeKDdo6wTpt207EjVmgtWo1K2zJ4kNl2xBVEfKw9Nqqbr1ld3YIq6y4OJTNstHp2inFNqRpabshBjfFz3o0PRilhqviKXuPFhlnfbJ3dHo8eh_sVTk39fbC7Hx-K-NJuDPU7zjQL2zAUJzze-SOO5vAkcXUfdJTzQNy151TwO0Cy4fkO0IMuhCDeQ1diEGQF1yDGDiI6U8wEIMWYoAQA4QYdCAGqzkEREALMehCDALE4NXp60fky7vj87cnkavyEUk8va8ixmouCqmQR2ZZrlhdaAfIcY3UchzLKqEq57HgYijGNFdJOuRCUpEnccxVUSdp8pj0cSbqCYFYFz_QSfrqtEpllgihBFdMUCnysUzifUL9_15KlwJfV2KZlt7X8aI0wiq1sEorrH3yJjx0aTPA3Hx77gVauhfFktMSEXjzgwde_KVbTvD33Bjaced9-q_9PiO327frgPQRGuo5uSU3q8ly8cIB-ScjU9VC
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+construction+of+higher-order+numerical+approximation+formula+for+Riesz+derivative+and+its+application+to+nonlinear+fractional+differential+equations+%28I%29&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Ding%2C+Hengfei&rft.au=Yi%2C+Qian&rft.date=2022-07-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=110&rft_id=info:doi/10.1016%2Fj.cnsns.2022.106394&rft.externalDocID=S1007570422000831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon