Implementation of the operational guidance as a part of the second generation intact stability criteria to the deterministic ship weather routing
The paper presents an innovative approach to ship route planning, with a Decision Support System (DSS) at its core. DSS integrates deterministic algorithms with safety constraints based on the Second Generation Intact Stability Criteria (SGISC), particularly the Operational Guidance (OG) implementin...
Uložené v:
| Vydané v: | Ocean engineering Ročník 333; s. 121455 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
30.07.2025
|
| Predmet: | |
| ISSN: | 0029-8018 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The paper presents an innovative approach to ship route planning, with a Decision Support System (DSS) at its core. DSS integrates deterministic algorithms with safety constraints based on the Second Generation Intact Stability Criteria (SGISC), particularly the Operational Guidance (OG) implementing the SGSIC Level 2 assessment. A distinctive feature of the proposed method is the use of machine learning to create a surrogate model capable of supporting the identification of hazardous conditions and enhance adaptive decision-making. Combined with graph-based algorithms, this allows DSS to generate optimal routes that comply with the most modern stability standards. The system not only plans safe and efficient routes but also supports operational decisions by linking weather forecasts with the ship's dynamic stability. The methodology was tested using a computer model of the training vessel Horyzont II, covering failure modes such as surf-riding, parametric rolling, pure loss of stability, excessive acceleration, and synchronous rolling. The results demonstrate the system's effectiveness under various sea conditions and its potential to reduce accident risks. By integrating machine learning with route optimization and stability assessment, the proposed solution contributes to the development of intelligent navigation tools for both conventional and future autonomous vessels.
•Ship weather routing combines deterministic algorithms with SGISC constraints.•DSS uses machine learning, and graph-based algorithms for route optimization.•Case study integrates a dynamic stability model for various failure modes.•Various routing scenarios confirm DSS reliability under diverse sea conditions.•Integrating stability constraints in routing enhances safety and decision-making. |
|---|---|
| AbstractList | The paper presents an innovative approach to ship route planning, with a Decision Support System (DSS) at its core. DSS integrates deterministic algorithms with safety constraints based on the Second Generation Intact Stability Criteria (SGISC), particularly the Operational Guidance (OG) implementing the SGSIC Level 2 assessment. A distinctive feature of the proposed method is the use of machine learning to create a surrogate model capable of supporting the identification of hazardous conditions and enhance adaptive decision-making. Combined with graph-based algorithms, this allows DSS to generate optimal routes that comply with the most modern stability standards. The system not only plans safe and efficient routes but also supports operational decisions by linking weather forecasts with the ship's dynamic stability. The methodology was tested using a computer model of the training vessel Horyzont II, covering failure modes such as surf-riding, parametric rolling, pure loss of stability, excessive acceleration, and synchronous rolling. The results demonstrate the system's effectiveness under various sea conditions and its potential to reduce accident risks. By integrating machine learning with route optimization and stability assessment, the proposed solution contributes to the development of intelligent navigation tools for both conventional and future autonomous vessels.
•Ship weather routing combines deterministic algorithms with SGISC constraints.•DSS uses machine learning, and graph-based algorithms for route optimization.•Case study integrates a dynamic stability model for various failure modes.•Various routing scenarios confirm DSS reliability under diverse sea conditions.•Integrating stability constraints in routing enhances safety and decision-making. |
| ArticleNumber | 121455 |
| Author | Zyczkowski, Marcin Krata, Przemyslaw Szozda, Zbigniew |
| Author_xml | – sequence: 1 givenname: Marcin orcidid: 0000-0002-4454-6756 surname: Zyczkowski fullname: Zyczkowski, Marcin email: marcin.zyczkowski@pg.edu.pl organization: Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Poland – sequence: 2 givenname: Przemyslaw orcidid: 0000-0003-0460-5704 surname: Krata fullname: Krata, Przemyslaw organization: Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, Poland – sequence: 3 givenname: Zbigniew orcidid: 0000-0002-8467-244X surname: Szozda fullname: Szozda, Zbigniew organization: Faculty of Navigation, Maritime University of Szczecin, Poland |
| BookMark | eNqFkM1OQjEQhbvAREBfwfQFwLbc1stOQ_whIXGj66ZM58IQaG_aouExfGMvAmtXk5k55-TkG7BeiAEZu5NiLIU095txBHQBw2qshNJjqWSldY_1hVDTUS1kfc0GOW-EEMaISZ_9zHftFncYiisUA48NL2vkscX0d3BbvtqTdwGQu8wdb10qF1VGiMHzFYazmlOXA4Xn4pa0pXLgkKhgIsdL_LN47NYdBcqFgOc1tfwbXfdJPMV9obC6YVeN22a8Pc8h-3x5_pi9jRbvr_PZ02IEysgyqk01NXIqqxr0UgjtFfhlLfVSC63BoYHmweu6kk1loAI1UcJgpWo_NQ0aDZMhM6dcSDHnhI1tE-1cOlgp7BGm3dgLTHuEaU8wO-PjyYhduy_CZDMQdoA8JYRifaT_In4BQSyIZg |
| Cites_doi | 10.1016/j.apor.2018.07.005 10.1080/17445302.2024.2329011 10.1007/978-3-031-16329-6_8 10.1016/j.oceaneng.2021.110449 10.1016/j.oceaneng.2021.108800 10.1109/ACCESS.2023.3303282 10.2478/pomr-2018-0001 10.2478/pomr-2013-0041 10.2478/pomr-2022-0020 10.1016/j.oceaneng.2022.110796 10.1016/j.oceaneng.2017.12.049 10.1016/j.oceaneng.2020.107697 10.1016/j.asoc.2023.110142 10.2478/pomr-2020-0056 10.15632/jtam-pl.54.4.1329 10.1016/j.oceaneng.2022.113583 10.12716/1001.13.04.03 10.1029/TR039i006p01064 10.1017/S0373463314000691 10.1016/j.ress.2017.03.029 10.3390/jmse8070494 10.1016/j.ress.2021.108024 10.1016/j.asoc.2019.105742 10.1016/j.oceaneng.2022.111427 10.1016/j.oceaneng.2020.107170 10.1016/j.ress.2024.110232 10.1016/j.ssci.2021.105336 10.1016/j.oceaneng.2016.08.026 10.1016/j.oceaneng.2016.06.035 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2025.121455 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2025_121455 S0029801825011680 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c261t-8649619148c5b005d2cdb815b5055cae6cf7d5841f46c4c23206e428d96fe65c3 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001496481200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:50:37 EST 2025 Sat Jul 05 17:11:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Decision-making for ship navigation Weather routing Machine learning Proactive ship stability assessment Second generation intact stability criteria Operational guidance Deterministic algorithm Decision support system prototyping |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-8649619148c5b005d2cdb815b5055cae6cf7d5841f46c4c23206e428d96fe65c3 |
| ORCID | 0000-0003-0460-5704 0000-0002-8467-244X 0000-0002-4454-6756 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2025_121455 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_121455 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-30 |
| PublicationDateYYYYMMDD | 2025-07-30 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Baldauf, Kitada, Mehdi, Dalaklis (bib2) 2018 Krata, Vettor, Guedes Soares (bib30) 2020 Belenky, Bassler, Spyrou (bib7) 2011 Wróbel, Krata, Montewka (bib55) 2019; 13 Rawson, Brito, Sabeur, Tran-Thanh (bib41) 2021; 141 Peters, Belenky, Bassler, Spyrou, Umeda, Bulian, Altmayer (bib39) 2011 (bib17) 2020 Spyrou (bib44) 2011 Francescutto (bib13) 2023 Szlapczynska, Szlapczynski (bib46) 2019; 84 Szozda, Krata (bib50) 2022; 248 Acanfora, Krata, Montewka, Kujala (bib1) 2018 (bib19) 2007 Begović, Rinauro, Cakici (bib6) 2020 (bib24) 1978 Vettor, Soares (bib53) 2016; 123 Chen, Tian, Mao (bib11) 2024 Szłapczyński, Szłapczyńska, Gil, Życzkowski, Montewka (bib48) 2024; 250 Brooks, Jasper, James (bib8) 1958; 39 Begovic, Bertorello, Rinauro, Rosano (bib5) 2023 Zyczkowski, Krata, Szłapczyński (bib61) 2018; 25 Petacco, Gualeni (bib38) 2020 Kobylinski (bib26) 2008 (bib23) 2020 (bib21) 2017 Zis, Psaraftis, Ding (bib58) 2020; 213 Barrass, Derrett (bib3) 2012 (bib12) 2019 Szlapczynska (bib45) 2015; 68 Chen, Mao, Zhang (bib10) 2023; 2023 Krata, Szlapczynska (bib29) 2011 Perera, Rodrigues, Pascoal, Soares (bib37) 2011 Krata, Wawrzyński (bib32) 2016; 126 Życzkowski, Szłapczyński (bib62) 2017; 24 Zyczkowski (bib59) 2017; 11 Bulian, Francescutto (bib9) 2013 Zyczkowski, Szlapczynski, Orzechowski, Krawczyk (bib63) 2023; 11 (bib22) 2023 Wawrzyński, Krata (bib54) 2016; 54 Umeda (bib51) 2013 Peters, Office, Standards (bib40) 2016 Vassalos, Jasionowski, Cichowicz (bib52) 2003 Bassam, Phillips, Turnock, Wilson (bib4) 2022; 245 Ma, Ma, Jin, Ma (bib33) 2020; 202 Szlapczynski, Szlapczynska, Vettor (bib49) 2023; 138 Sasa, Chen, Fujimatsu, Shoji, Maki (bib42) 2021; 228 NOAA grib data [WWW Document], n.d. URL (accessed 3.4.22). Zhang, Huang (bib57) 2007; 2007 Francescutto (bib15) 2004 (bib18) 2008 Krata, Wawrzynski (bib31) 2017 Wróbel, Montewka, Kujala (bib56) 2017 Szlapczynska, Vettor, Szlapczynski, Lacki, Zyczkowski, Hinostroza, Santos, Tycholiz, Soares (bib47) 2022; 29 Mazurek, Lu, Krata, Montewka, Krata, Kujala (bib35) 2022 Życzkowski (bib60) 2020; 27 Shigunov, Moctar, Rathje (bib43) 2010; 57 (bib20) 1995; vol. 707 Francescutto (bib14) 2020 Krata, Szlapczynska (bib28) 2018; 150 Grifoll, Borén, Castells-Sanabra (bib16) 2022; 255 Perera (10.1016/j.oceaneng.2025.121455_bib37) 2011 Wróbel (10.1016/j.oceaneng.2025.121455_bib56) 2017 Zyczkowski (10.1016/j.oceaneng.2025.121455_bib59) 2017; 11 (10.1016/j.oceaneng.2025.121455_bib17) 2020 Krata (10.1016/j.oceaneng.2025.121455_bib28) 2018; 150 Chen (10.1016/j.oceaneng.2025.121455_bib10) 2023; 2023 Peters (10.1016/j.oceaneng.2025.121455_bib40) 2016 Belenky (10.1016/j.oceaneng.2025.121455_bib7) 2011 Krata (10.1016/j.oceaneng.2025.121455_bib30) 2020 10.1016/j.oceaneng.2025.121455_bib36 Rawson (10.1016/j.oceaneng.2025.121455_bib41) 2021; 141 Vettor (10.1016/j.oceaneng.2025.121455_bib53) 2016; 123 Sasa (10.1016/j.oceaneng.2025.121455_bib42) 2021; 228 Szozda (10.1016/j.oceaneng.2025.121455_bib50) 2022; 248 Francescutto (10.1016/j.oceaneng.2025.121455_bib14) 2020 (10.1016/j.oceaneng.2025.121455_bib23) 2020 (10.1016/j.oceaneng.2025.121455_bib19) 2007 (10.1016/j.oceaneng.2025.121455_bib24) 1978 Petacco (10.1016/j.oceaneng.2025.121455_bib38) 2020 Szlapczynska (10.1016/j.oceaneng.2025.121455_bib46) 2019; 84 (10.1016/j.oceaneng.2025.121455_bib18) 2008 Krata (10.1016/j.oceaneng.2025.121455_bib29) 2011 Wróbel (10.1016/j.oceaneng.2025.121455_bib55) 2019; 13 Begovic (10.1016/j.oceaneng.2025.121455_bib5) 2023 Vassalos (10.1016/j.oceaneng.2025.121455_bib52) 2003 Francescutto (10.1016/j.oceaneng.2025.121455_bib13) 2023 Spyrou (10.1016/j.oceaneng.2025.121455_bib44) 2011 Begović (10.1016/j.oceaneng.2025.121455_bib6) 2020 Peters (10.1016/j.oceaneng.2025.121455_bib39) 2011 Życzkowski (10.1016/j.oceaneng.2025.121455_bib62) 2017; 24 Szłapczyński (10.1016/j.oceaneng.2025.121455_bib48) 2024; 250 Bulian (10.1016/j.oceaneng.2025.121455_bib9) 2013 Francescutto (10.1016/j.oceaneng.2025.121455_bib15) 2004 (10.1016/j.oceaneng.2025.121455_bib22) 2023 Zyczkowski (10.1016/j.oceaneng.2025.121455_bib63) 2023; 11 Krata (10.1016/j.oceaneng.2025.121455_bib31) 2017 Bassam (10.1016/j.oceaneng.2025.121455_bib4) 2022; 245 Mazurek (10.1016/j.oceaneng.2025.121455_bib35) 2022 Szlapczynski (10.1016/j.oceaneng.2025.121455_bib49) 2023; 138 (10.1016/j.oceaneng.2025.121455_bib21) 2017 (10.1016/j.oceaneng.2025.121455_bib20) 1995; vol. 707 Zhang (10.1016/j.oceaneng.2025.121455_bib57) 2007; 2007 Krata (10.1016/j.oceaneng.2025.121455_bib32) 2016; 126 Acanfora (10.1016/j.oceaneng.2025.121455_bib1) 2018 Życzkowski (10.1016/j.oceaneng.2025.121455_bib60) 2020; 27 Umeda (10.1016/j.oceaneng.2025.121455_bib51) 2013 Wawrzyński (10.1016/j.oceaneng.2025.121455_bib54) 2016; 54 Kobylinski (10.1016/j.oceaneng.2025.121455_bib26) 2008 Brooks (10.1016/j.oceaneng.2025.121455_bib8) 1958; 39 Zis (10.1016/j.oceaneng.2025.121455_bib58) 2020; 213 Chen (10.1016/j.oceaneng.2025.121455_bib11) 2024 Shigunov (10.1016/j.oceaneng.2025.121455_bib43) 2010; 57 (10.1016/j.oceaneng.2025.121455_bib12) 2019 Szlapczynska (10.1016/j.oceaneng.2025.121455_bib45) 2015; 68 Ma (10.1016/j.oceaneng.2025.121455_bib33) 2020; 202 Barrass (10.1016/j.oceaneng.2025.121455_bib3) 2012 Zyczkowski (10.1016/j.oceaneng.2025.121455_bib61) 2018; 25 Grifoll (10.1016/j.oceaneng.2025.121455_bib16) 2022; 255 Szlapczynska (10.1016/j.oceaneng.2025.121455_bib47) 2022; 29 Baldauf (10.1016/j.oceaneng.2025.121455_bib2) 2018 |
| References_xml | – volume: 250 year: 2024 ident: bib48 article-title: Holistic collision avoidance decision support system for watchkeeping deck officers publication-title: Reliab. Eng. Syst. Saf. – volume: 202 year: 2020 ident: bib33 article-title: Method for simultaneously optimizing ship route and speed with emission control areas publication-title: Ocean Eng – year: 1978 ident: bib24 article-title: International convention on standards of training publication-title: Certification and Watchkeeping for Seafarers – volume: 255 year: 2022 ident: bib16 article-title: A comprehensive ship weather routing system using CMEMS products and A∗ algorithm publication-title: Ocean Eng – start-page: 225 year: 2011 end-page: 264 ident: bib39 article-title: The Second Generation Intact Stability Criteria: an Overview of Development – volume: 68 start-page: 338 year: 2015 end-page: 354 ident: bib45 article-title: Multi-objective weather routing with customised criteria and constraints publication-title: J. Navig. – start-page: 9525 year: 2018 end-page: 9530 ident: bib2 article-title: E-navigation, digitalization and unmanned ships: challenges for future maritime education and training publication-title: Proceedings of INTED2018 Conference. Valencia – volume: 2023 start-page: 53 year: 2023 end-page: 61 ident: bib10 article-title: Different strategies to improve isochrone voyage optimization algorithm publication-title: Adv. Anal. Des. Mar. Struct. - Proc. 9th Int. Conf. Mar. Struct. MARSTRUCT – year: 2017 ident: bib56 article-title: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety publication-title: Reliab. Eng. Syst. Saf. – volume: 11 start-page: 49 year: 2017 end-page: 54 ident: bib59 article-title: Sailing vessel routing considering safety zone and penalty time for altering course publication-title: TransNav, Int. J. Mar. Navig. Saf. Sea Transp. – volume: 141 year: 2021 ident: bib41 article-title: A machine learning approach for monitoring ship safety in extreme weather events publication-title: Saf. Sci. – volume: 29 start-page: 87 year: 2022 end-page: 95 ident: bib47 article-title: Weather routing system architecture using onboard data collection and route optimisation publication-title: Polish Marit. Res. – year: 2019 ident: bib12 article-title: Accident Investigation - Annual Overview - EMSA - European Maritime Safety Agency – volume: 25 start-page: 4 year: 2018 end-page: 12 ident: bib61 article-title: Multi-objective weather routing of sailboats considering wave resistance publication-title: Polish Marit. Res. – volume: 248 year: 2022 ident: bib50 article-title: Towards evaluation of the second generation intact stability criteria - examination of a fishing vessel vulnerability to surf-riding, based on historical capsizing publication-title: Ocean Eng – year: 2023 ident: bib22 article-title: Explanatory Notes to the Interim Guidelines on the Second Generation Intact Stability Criteria – year: 2022 ident: bib35 article-title: An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland publication-title: Reliab. Eng. Syst. Saf. – year: 2012 ident: bib3 article-title: Ship stability for masters and mates publication-title: Ship Stability for Masters and Mates – year: 2011 ident: bib29 article-title: Weather hazard avoidance in modeling safety of motor-driven ship for multicriteria weather routing publication-title: Methods and Algorithms in Navigation – year: 2011 ident: bib37 article-title: Development of an onboard decision support system for ship navigation under rough weather conditions publication-title: Sustainable Maritime Transportation and Exploitation of Sea Resources – reference: NOAA grib data [WWW Document], n.d. URL – year: 2024 ident: bib11 article-title: Strategies to improve the isochrone algorithm for ship voyage optimisation publication-title: Ships Offshore Struct. – volume: 123 start-page: 1 year: 2016 end-page: 14 ident: bib53 article-title: Development of a ship weather routing system publication-title: Ocean Eng – year: 2020 ident: bib6 article-title: Application of the second generation intact stability criteria for fast semi displacement ships publication-title: Sustainable Development and Innovations in Marine Technologies - Proceedings of the 18th International Congress of the International Maritime Association of the Mediterranean, IMAM 2019 – year: 2011 ident: bib7 article-title: Development of Second Generation Intact Stability – volume: 150 start-page: 124 year: 2018 end-page: 137 ident: bib28 article-title: Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction publication-title: Ocean Eng – year: 2020 ident: bib38 article-title: IMO second generation intact stability criteria: general overview and focus on operational measures publication-title: J. Mar. Sci. Eng. – year: 2018 ident: bib1 article-title: Towards a method for detecting large roll motions suitable for oceangoing ships publication-title: Appl. Ocean Res. – year: 2011 ident: bib44 article-title: A basis for developing a rational alternative to the weather criterion: problems and capabilities publication-title: Fluid Mech. – year: 2023 ident: bib5 article-title: Simplified operational guidance for second generation intact stability criteria publication-title: Ocean Eng – volume: 27 start-page: 149 year: 2020 end-page: 158 ident: bib60 article-title: Sailing route planning method considering various user categories publication-title: Polish Marit. Res. – start-page: 384 year: 2020 end-page: 390 ident: bib30 article-title: Bayesian approach to ship speed prediction based on operational data publication-title: Dev. Collis. Grounding Ships Offshore Struct. - Proc. 8th Int. Conf. Collis. Grounding Ships Offshore Struct – volume: 13 year: 2019 ident: bib55 article-title: Preliminary results of a system-theoretic assessment of maritime autonomous surface ships' safety publication-title: TransNav – year: 2017 ident: bib21 article-title: Maritime Autonomous Surface Ships - Proposal for a Regulatory Scoping Exercise – reference: (accessed 3.4.22). – year: 2020 ident: bib23 article-title: SOLAS Consolidated Edition 2020 – year: 2023 ident: bib13 article-title: Rahola criterion and the development of the intact stability code publication-title: Fluid Mechanics and its Applications – volume: 57 start-page: 6 year: 2010 end-page: 23 ident: bib43 article-title: Operational guidance for prevention of cargo loss and damage on container ships publication-title: Sh. Technol. Res. – volume: 24 year: 2017 ident: bib62 article-title: Multi-objective weather routing of sailing vessels publication-title: Polish Marit. Res. – year: 2020 ident: bib17 article-title: Interim Guidelines on the Second Generation Intact Stability Criteria – volume: 54 start-page: 1329 year: 2016 end-page: 1343 ident: bib54 article-title: Method for ship's rolling period prediction with regard to non-linearity of gz curve publication-title: J. Theor. Appl. Mech. – volume: 126 start-page: 92 year: 2016 end-page: 114 ident: bib32 article-title: On ship roll resonance frequency publication-title: Ocean Eng – year: 2013 ident: bib51 article-title: Current status of second generation intact stability criteria development and some recent efforts publication-title: Proc. 13th Int. Sh. Stab. Work – volume: 138 year: 2023 ident: bib49 article-title: Ship weather routing featuring w-MOEA/D and uncertainty handling publication-title: Appl. Soft Comput. – year: 2016 ident: bib40 article-title: Regulatory aspects of implementation of IMO second generation intact stability criteria publication-title: Proc. 15th Int. Sh. Stab. Work – year: 2003 ident: bib52 article-title: Weather criterion - questions and answers publication-title: 8th Int. Conf. Stab. Ships Ocean Veh. – volume: 245 year: 2022 ident: bib4 article-title: Ship speed prediction based on machine learning for efficient shipping operation publication-title: Ocean Eng – volume: 84 year: 2019 ident: bib46 article-title: Preference-based evolutionary multi-objective optimization in ship weather routing publication-title: Appl. Soft Comput. – year: 2013 ident: bib9 article-title: Second generation intact stability criteria: on the validation of codes for direct stability assessment in the framework of an example application publication-title: Polish Marit. Res – year: 2004 ident: bib15 article-title: Intact ship stability: the way ahead publication-title: Marine Technology and SNAME News – year: 2017 ident: bib31 article-title: Prediction of ship resonant rolling - related dangerous zones with regard to the equivalent metacentric height governing natural frequency of roll publication-title: TransNav, Int. J. Mar. Navig. Saf. Sea Transp. – year: 2020 ident: bib14 article-title: The development of second generation intact stability criteria publication-title: Sustainable Development and Innovations in Marine Technologies - Proceedings of the 18th International Congress of the International Maritime Association of the Mediterranean, IMAM 2019 – year: 2008 ident: bib26 article-title: Stability and safety of ships: holistic and risk approach publication-title: Reliability & Risk Analysis: Theory & Applications – volume: 39 start-page: 1064 year: 1958 ident: bib8 article-title: Statistics on wave heights and periods for the north Atlantic Ocean publication-title: Trans. Am. Geophys. Union – volume: vol. 707 year: 1995 ident: bib20 publication-title: Guidance to the Master for Avoiding Dangerous Situations in Following and Quartering Seas – volume: 228 year: 2021 ident: bib42 article-title: Speed loss analysis and rough wave avoidance algorithms for optimal ship routing simulation of 28,000-DWT bulk carrier publication-title: Ocean Eng – volume: 2007 start-page: 2650 year: 2007 end-page: 2655 ident: bib57 article-title: Optimal ship weather routing using isochrone method on the basis of weather changes publication-title: Int. Conf. Transp. Eng. 2007, ICTE – year: 2008 ident: bib18 article-title: International Code on Intact Stability – year: 2007 ident: bib19 article-title: Revised Guidance to the Master for Avoiding Dangerous Situations in Adverse Weather and Sea Conditions – volume: 213 year: 2020 ident: bib58 article-title: Ship weather routing: a taxonomy and survey publication-title: Ocean Eng – volume: 11 start-page: 83896 year: 2023 end-page: 83904 ident: bib63 article-title: Parallel implementation of a sailing assistance application in a cloud environment publication-title: IEEE Access – year: 2017 ident: 10.1016/j.oceaneng.2025.121455_bib21 – year: 2018 ident: 10.1016/j.oceaneng.2025.121455_bib1 article-title: Towards a method for detecting large roll motions suitable for oceangoing ships publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.07.005 – year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib23 – year: 2011 ident: 10.1016/j.oceaneng.2025.121455_bib7 – year: 2008 ident: 10.1016/j.oceaneng.2025.121455_bib26 article-title: Stability and safety of ships: holistic and risk approach – year: 1978 ident: 10.1016/j.oceaneng.2025.121455_bib24 article-title: International convention on standards of training – year: 2024 ident: 10.1016/j.oceaneng.2025.121455_bib11 article-title: Strategies to improve the isochrone algorithm for ship voyage optimisation publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2024.2329011 – year: 2023 ident: 10.1016/j.oceaneng.2025.121455_bib13 article-title: Rahola criterion and the development of the intact stability code doi: 10.1007/978-3-031-16329-6_8 – volume: 2023 start-page: 53 year: 2023 ident: 10.1016/j.oceaneng.2025.121455_bib10 article-title: Different strategies to improve isochrone voyage optimization algorithm publication-title: Adv. Anal. Des. Mar. Struct. - Proc. 9th Int. Conf. Mar. Struct. MARSTRUCT – year: 2011 ident: 10.1016/j.oceaneng.2025.121455_bib44 article-title: A basis for developing a rational alternative to the weather criterion: problems and capabilities publication-title: Fluid Mech. – volume: 245 year: 2022 ident: 10.1016/j.oceaneng.2025.121455_bib4 article-title: Ship speed prediction based on machine learning for efficient shipping operation publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.110449 – volume: 228 year: 2021 ident: 10.1016/j.oceaneng.2025.121455_bib42 article-title: Speed loss analysis and rough wave avoidance algorithms for optimal ship routing simulation of 28,000-DWT bulk carrier publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2021.108800 – volume: 11 start-page: 83896 year: 2023 ident: 10.1016/j.oceaneng.2025.121455_bib63 article-title: Parallel implementation of a sailing assistance application in a cloud environment publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3303282 – start-page: 384 year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib30 article-title: Bayesian approach to ship speed prediction based on operational data publication-title: Dev. Collis. Grounding Ships Offshore Struct. - Proc. 8th Int. Conf. Collis. Grounding Ships Offshore Struct – year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib6 article-title: Application of the second generation intact stability criteria for fast semi displacement ships – volume: 25 start-page: 4 year: 2018 ident: 10.1016/j.oceaneng.2025.121455_bib61 article-title: Multi-objective weather routing of sailboats considering wave resistance publication-title: Polish Marit. Res. doi: 10.2478/pomr-2018-0001 – volume: 24 year: 2017 ident: 10.1016/j.oceaneng.2025.121455_bib62 article-title: Multi-objective weather routing of sailing vessels publication-title: Polish Marit. Res. – year: 2013 ident: 10.1016/j.oceaneng.2025.121455_bib9 article-title: Second generation intact stability criteria: on the validation of codes for direct stability assessment in the framework of an example application publication-title: Polish Marit. Res doi: 10.2478/pomr-2013-0041 – year: 2017 ident: 10.1016/j.oceaneng.2025.121455_bib31 article-title: Prediction of ship resonant rolling - related dangerous zones with regard to the equivalent metacentric height governing natural frequency of roll publication-title: TransNav, Int. J. Mar. Navig. Saf. Sea Transp. – volume: 29 start-page: 87 year: 2022 ident: 10.1016/j.oceaneng.2025.121455_bib47 article-title: Weather routing system architecture using onboard data collection and route optimisation publication-title: Polish Marit. Res. doi: 10.2478/pomr-2022-0020 – volume: 248 year: 2022 ident: 10.1016/j.oceaneng.2025.121455_bib50 article-title: Towards evaluation of the second generation intact stability criteria - examination of a fishing vessel vulnerability to surf-riding, based on historical capsizing publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.110796 – volume: 150 start-page: 124 year: 2018 ident: 10.1016/j.oceaneng.2025.121455_bib28 article-title: Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.12.049 – year: 2016 ident: 10.1016/j.oceaneng.2025.121455_bib40 article-title: Regulatory aspects of implementation of IMO second generation intact stability criteria publication-title: Proc. 15th Int. Sh. Stab. Work – volume: 213 year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib58 article-title: Ship weather routing: a taxonomy and survey publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107697 – volume: 138 year: 2023 ident: 10.1016/j.oceaneng.2025.121455_bib49 article-title: Ship weather routing featuring w-MOEA/D and uncertainty handling publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110142 – volume: 27 start-page: 149 year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib60 article-title: Sailing route planning method considering various user categories publication-title: Polish Marit. Res. doi: 10.2478/pomr-2020-0056 – volume: 54 start-page: 1329 year: 2016 ident: 10.1016/j.oceaneng.2025.121455_bib54 article-title: Method for ship's rolling period prediction with regard to non-linearity of gz curve publication-title: J. Theor. Appl. Mech. doi: 10.15632/jtam-pl.54.4.1329 – year: 2011 ident: 10.1016/j.oceaneng.2025.121455_bib29 article-title: Weather hazard avoidance in modeling safety of motor-driven ship for multicriteria weather routing – start-page: 225 year: 2011 ident: 10.1016/j.oceaneng.2025.121455_bib39 – year: 2012 ident: 10.1016/j.oceaneng.2025.121455_bib3 article-title: Ship stability for masters and mates publication-title: Ship Stability for Masters and Mates – volume: vol. 707 year: 1995 ident: 10.1016/j.oceaneng.2025.121455_bib20 – year: 2003 ident: 10.1016/j.oceaneng.2025.121455_bib52 article-title: Weather criterion - questions and answers publication-title: 8th Int. Conf. Stab. Ships Ocean Veh. – year: 2023 ident: 10.1016/j.oceaneng.2025.121455_bib5 article-title: Simplified operational guidance for second generation intact stability criteria publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113583 – volume: 13 year: 2019 ident: 10.1016/j.oceaneng.2025.121455_bib55 article-title: Preliminary results of a system-theoretic assessment of maritime autonomous surface ships' safety publication-title: TransNav doi: 10.12716/1001.13.04.03 – year: 2023 ident: 10.1016/j.oceaneng.2025.121455_bib22 – volume: 39 start-page: 1064 year: 1958 ident: 10.1016/j.oceaneng.2025.121455_bib8 article-title: Statistics on wave heights and periods for the north Atlantic Ocean publication-title: Trans. Am. Geophys. Union doi: 10.1029/TR039i006p01064 – year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib14 article-title: The development of second generation intact stability criteria – volume: 68 start-page: 338 year: 2015 ident: 10.1016/j.oceaneng.2025.121455_bib45 article-title: Multi-objective weather routing with customised criteria and constraints publication-title: J. Navig. doi: 10.1017/S0373463314000691 – volume: 57 start-page: 6 year: 2010 ident: 10.1016/j.oceaneng.2025.121455_bib43 article-title: Operational guidance for prevention of cargo loss and damage on container ships publication-title: Sh. Technol. Res. – year: 2017 ident: 10.1016/j.oceaneng.2025.121455_bib56 article-title: Towards the assessment of potential impact of unmanned vessels on maritime transportation safety publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.03.029 – year: 2008 ident: 10.1016/j.oceaneng.2025.121455_bib18 – year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib38 article-title: IMO second generation intact stability criteria: general overview and focus on operational measures publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse8070494 – year: 2022 ident: 10.1016/j.oceaneng.2025.121455_bib35 article-title: An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2021.108024 – year: 2019 ident: 10.1016/j.oceaneng.2025.121455_bib12 – volume: 84 year: 2019 ident: 10.1016/j.oceaneng.2025.121455_bib46 article-title: Preference-based evolutionary multi-objective optimization in ship weather routing publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105742 – volume: 255 year: 2022 ident: 10.1016/j.oceaneng.2025.121455_bib16 article-title: A comprehensive ship weather routing system using CMEMS products and A∗ algorithm publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.111427 – year: 2007 ident: 10.1016/j.oceaneng.2025.121455_bib19 – volume: 202 year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib33 article-title: Method for simultaneously optimizing ship route and speed with emission control areas publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2020.107170 – year: 2013 ident: 10.1016/j.oceaneng.2025.121455_bib51 article-title: Current status of second generation intact stability criteria development and some recent efforts publication-title: Proc. 13th Int. Sh. Stab. Work – volume: 250 year: 2024 ident: 10.1016/j.oceaneng.2025.121455_bib48 article-title: Holistic collision avoidance decision support system for watchkeeping deck officers publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2024.110232 – volume: 11 start-page: 49 year: 2017 ident: 10.1016/j.oceaneng.2025.121455_bib59 article-title: Sailing vessel routing considering safety zone and penalty time for altering course publication-title: TransNav, Int. J. Mar. Navig. Saf. Sea Transp. – year: 2004 ident: 10.1016/j.oceaneng.2025.121455_bib15 article-title: Intact ship stability: the way ahead – ident: 10.1016/j.oceaneng.2025.121455_bib36 – volume: 2007 start-page: 2650 year: 2007 ident: 10.1016/j.oceaneng.2025.121455_bib57 article-title: Optimal ship weather routing using isochrone method on the basis of weather changes publication-title: Int. Conf. Transp. Eng. 2007, ICTE – year: 2011 ident: 10.1016/j.oceaneng.2025.121455_bib37 article-title: Development of an onboard decision support system for ship navigation under rough weather conditions – volume: 141 year: 2021 ident: 10.1016/j.oceaneng.2025.121455_bib41 article-title: A machine learning approach for monitoring ship safety in extreme weather events publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105336 – start-page: 9525 year: 2018 ident: 10.1016/j.oceaneng.2025.121455_bib2 article-title: E-navigation, digitalization and unmanned ships: challenges for future maritime education and training – year: 2020 ident: 10.1016/j.oceaneng.2025.121455_bib17 – volume: 126 start-page: 92 year: 2016 ident: 10.1016/j.oceaneng.2025.121455_bib32 article-title: On ship roll resonance frequency publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2016.08.026 – volume: 123 start-page: 1 year: 2016 ident: 10.1016/j.oceaneng.2025.121455_bib53 article-title: Development of a ship weather routing system publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2016.06.035 |
| SSID | ssj0006603 |
| Score | 2.4232938 |
| Snippet | The paper presents an innovative approach to ship route planning, with a Decision Support System (DSS) at its core. DSS integrates deterministic algorithms... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 121455 |
| SubjectTerms | Decision support system prototyping Decision-making for ship navigation Deterministic algorithm Machine learning Operational guidance Proactive ship stability assessment Second generation intact stability criteria Weather routing |
| Title | Implementation of the operational guidance as a part of the second generation intact stability criteria to the deterministic ship weather routing |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2025.121455 |
| Volume | 333 |
| WOSCitedRecordID | wos001496481200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006603 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgMgIRggxpf8wFuUkTaJkzxOaAgQjEkbqOIlcmxn6mBJlabb2ld-Af-Ye_2RZDAJEOIlqlI7aXqO7OObe48JeY4v57gSzJfAHj-CNYSf8oL7sHLgYQACttA7z316l-zvp9NpdjAafXO1MGdfk6pKLy6y-X-FGs4B2Fg6-xdwdxeFE_AZQIcjwA7HPwJe-_2e2pKiyuUA1HPVuLjf8XImTaXAwuPeHK7hWi1weSxxW2XbGu0ksIoSNKTOol15MMqgvTN3olXafBpt-Ozp3K9zIyu9pl62bma0-veDwMi_6k0Qu8D1Sqy_1Od2F-33uMNRnx8Av0Vr3INmrU5XQOIu8H64rtdSf_e5mB1X7jWHDWNMYh0fDfrYmquv6ZOZTK1BhnNoOhyvQ-Oc8cvYb8IQJzs1Pgk8yA7eBt0zImME_JOv9qF2n4drgwgcj1kaXCObkyTOYGjc3H2zN33bTeiMBaHLFMIOg0Lzq-92tcYZ6JajO-S2XXDQXUOUu2Skqi1yc2BDuUVuaVSsd_k98v0yg2hdUoCTDhhEHYMoX1BOkUGulWEQ7RlEDYNoxyDqGETbWne5xCCKDKKWQdQy6D75-Grv6OVr3-7c4QtYkbd-yqKMoXNgKmIc5-VEyCIdxwXo7VhwxUSZSJC-4zJiIhKg6gOmYCEsM1YqFovwAdmo6ko9JJQXmSpFOA4TBVK5KHg84apgKhWBBGklt8kL91_nc2PQkrvMxZPcoZMjOrlBZ5tkDpLcykwjH3Ng0m_6PvqHvo_JjZ74T8hG2yzVU3JdnLWzRfPMku4Hs3ivDQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implementation+of+the+operational+guidance+as+a+part+of+the+second+generation+intact+stability+criteria+to+the+deterministic+ship+weather+routing&rft.jtitle=Ocean+engineering&rft.au=Zyczkowski%2C+Marcin&rft.au=Krata%2C+Przemyslaw&rft.au=Szozda%2C+Zbigniew&rft.date=2025-07-30&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=333&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.121455&rft.externalDocID=S0029801825011680 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |