Knowledge-enhanced multi-objective memetic algorithm for energy-efficient flexible job shop scheduling with limited multi-load automated guided vehicles
In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent workshops, has become a key research area. Automated guided vehicles (AGVs), as the core component of intelligent logistics systems, especially in...
Gespeichert in:
| Veröffentlicht in: | Engineering applications of artificial intelligence Jg. 159; S. 111771 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
08.11.2025
|
| Schlagworte: | |
| ISSN: | 0952-1976 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent workshops, has become a key research area. Automated guided vehicles (AGVs), as the core component of intelligent logistics systems, especially in applying multi-load AGVs, play a vital role in improving green manufacturing and optimizing logistics efficiency. While AGV transportation is considered in traditional energy-saving scheduling, most studies assume unlimited AGVs, and each can only load one job. This paper is the first to study the energy-efficient flexible job shop scheduling with limited multi-load AGVs (EFJSP-LMA), which integrates the sequencing of pickup and delivery tasks, and the allocation strategy of machines and AGVs. To address this problem effectively, the multi-objective mixed-integer programming (MMIP) model is developed to optimize the makespan and total energy consumption. To solve the MMIP model, a knowledge-enhanced multi-objective memetic algorithm (KMMA) is proposed. In the proposed KMMA, problem-specific heuristics are designed to generate a high-quality initial population with strong convergence and diversity. Subsequently, five knowledge-enhanced variable neighborhood structures are designed to enhance the quality and diversity of solutions. Additionally, an energy-saving strategy is incorporated to further optimize energy consumption. The effect of AGV quantity and load modes on the performance of the production system is studied and analyzed. Furthermore, experiment results of 60 test instances indicate that KMMA outperforms comparison algorithms, demonstrating its effectiveness in addressing the EFJSP-LMA. Finally, Real-world case studies further support our research, offering valuable insights for managing manufacturing environments. |
|---|---|
| AbstractList | In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent workshops, has become a key research area. Automated guided vehicles (AGVs), as the core component of intelligent logistics systems, especially in applying multi-load AGVs, play a vital role in improving green manufacturing and optimizing logistics efficiency. While AGV transportation is considered in traditional energy-saving scheduling, most studies assume unlimited AGVs, and each can only load one job. This paper is the first to study the energy-efficient flexible job shop scheduling with limited multi-load AGVs (EFJSP-LMA), which integrates the sequencing of pickup and delivery tasks, and the allocation strategy of machines and AGVs. To address this problem effectively, the multi-objective mixed-integer programming (MMIP) model is developed to optimize the makespan and total energy consumption. To solve the MMIP model, a knowledge-enhanced multi-objective memetic algorithm (KMMA) is proposed. In the proposed KMMA, problem-specific heuristics are designed to generate a high-quality initial population with strong convergence and diversity. Subsequently, five knowledge-enhanced variable neighborhood structures are designed to enhance the quality and diversity of solutions. Additionally, an energy-saving strategy is incorporated to further optimize energy consumption. The effect of AGV quantity and load modes on the performance of the production system is studied and analyzed. Furthermore, experiment results of 60 test instances indicate that KMMA outperforms comparison algorithms, demonstrating its effectiveness in addressing the EFJSP-LMA. Finally, Real-world case studies further support our research, offering valuable insights for managing manufacturing environments. |
| ArticleNumber | 111771 |
| Author | Song, Yuchuan Liu, Yang Lei, Qi Yang, Yunfan Fan, Lianghua |
| Author_xml | – sequence: 1 givenname: Lianghua surname: Fan fullname: Fan, Lianghua email: Fanlianghua@stu.cqu.edu.cn organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China – sequence: 2 givenname: Qi surname: Lei fullname: Lei, Qi email: leiqi@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China – sequence: 3 givenname: Yuchuan surname: Song fullname: Song, Yuchuan email: syc@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China – sequence: 4 givenname: Yang surname: Liu fullname: Liu, Yang email: liruxru@tju.edu.cn organization: College of Intelligence and Computing, Tianjin University, Tianjin, 300354, China – sequence: 5 givenname: Yunfan surname: Yang fullname: Yang, Yunfan email: yfyang21@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China |
| BookMark | eNqF0E1OwzAQBWAvQIICV0C-QIqdNk6yA1X8CSQ2sLYce5xM5NiVnbb0JhyXVAW2rEYa6b0ZfTNy4oMHQq45m3PGxU0_B9-q9VrhPGd5MeeclyU_IeesLvKM16U4I7OUesbYolqKc_L14sPOgWkhA98pr8HQYeNGzELTgx5xC3SAAUbUVLk2RBy7gdoQKXiI7T4Da1Ej-JFaB5_YOKB9aGjqwpom3YHZOPQt3U056nDA8e-AC8pQtRnDoA7LdoNmGlvoUDtIl-TUKpfg6mdekI-H-_fVU_b69vi8unvNdC74mJW2MLa2wlZVpSrB1NIoVnMjdFPkTaOgLoqFWFaq1rzmqjSaAbMFVI3NS1B8cUHEsVfHkFIEK9cRBxX3kjN5MJW9_DWVB1N5NJ2Ct8cgTN9tEaJMB4cJEOMEJ03A_yq-AS7ajOc |
| Cites_doi | 10.1016/j.knosys.2021.107430 10.1016/j.engappai.2021.104307 10.1007/s10696-022-09453-y 10.1016/j.engappai.2023.107458 10.7232/iems.2013.12.2.151 10.1016/j.jclepro.2017.10.342 10.1016/j.eswa.2023.121570 10.1016/j.jmsy.2009.06.001 10.1109/TEVC.2022.3219238 10.1016/j.cie.2015.01.003 10.1016/j.cie.2006.08.007 10.1016/j.jii.2022.100387 10.1007/BF02023073 10.1016/j.cor.2021.105517 10.1016/j.rcim.2021.102283 10.1016/j.cie.2024.109917 10.1016/j.aei.2024.102647 10.1016/j.asoc.2018.11.043 10.1016/j.eswa.2025.126527 10.3390/systems11020103 10.1016/j.rcim.2019.04.006 10.1016/j.cie.2020.106749 10.1016/j.swevo.2025.101849 10.1080/0305215X.2021.1949007 10.1109/TII.2018.2843441 10.1016/j.knosys.2020.106032 10.1109/4235.996017 10.1016/j.eswa.2024.124952 10.1111/itor.12767 10.1109/TASE.2013.2274517 10.1016/j.jii.2021.100293 10.1007/s40430-018-1357-4 10.1016/j.eswa.2023.122734 10.1016/j.jclepro.2020.124610 10.1109/TEVC.2022.3175832 10.1016/j.jmsy.2024.03.005 10.1007/s10845-019-01521-9 10.1016/j.jclepro.2019.119393 10.1016/S0278-6125(97)88885-1 10.1016/j.knosys.2022.108315 10.1109/TEVC.2007.892759 10.1016/j.ejor.2005.01.036 10.1016/j.engappai.2023.106864 10.1016/j.engappai.2023.106454 10.1155/2017/5232518 10.1016/j.swevo.2022.101131 10.5267/j.msl.2018.3.002 10.1109/TEVC.2021.3115795 10.1016/j.swevo.2024.101655 10.1016/j.engappai.2023.107762 10.1007/s10845-013-0852-9 10.1016/j.rcim.2022.102397 10.1016/j.rcim.2021.102198 10.1109/JSYST.2021.3076481 10.1016/j.jclepro.2018.11.021 10.1111/itor.12878 10.1109/TASE.2024.3422473 10.1016/j.eswa.2020.113675 10.1109/TCYB.2023.3280175 10.1016/j.eswa.2023.121149 10.1007/s00170-010-2642-2 10.20965/jaciii.2022.p0974 10.1016/j.swevo.2020.100803 10.1109/TEVC.2024.3354850 10.1016/j.eswa.2022.116785 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.111771 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_111771 S0952197625017737 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ZMT |
| ID | FETCH-LOGICAL-c261t-7f5df9f6f888a860a4da091d6cb52bbae9553648a9c191a7dc0e0f5e8bf27ea13 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001535225100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 06:51:11 EST 2025 Sat Oct 25 17:37:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-load automated guided vehicles Memetic algorithm Multi-objective optimization Total energy consumption Energy-efficient flexible job shop scheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-7f5df9f6f888a860a4da091d6cb52bbae9553648a9c191a7dc0e0f5e8bf27ea13 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_111771 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_111771 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-08 |
| PublicationDateYYYYMMDD | 2025-11-08 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Qu, Tong, Cai, Shi, Lan (bib46) 2024; 256 Zhang, Qin, Zhang, Xu, Xu, Gao (bib62) 2023; 11 Lin, Xu, Zhu, Wang, Wang, Hu (bib36) 2023; 79 Gong, Chiong, Deng, Gong, Lin, Han, Zhang (bib12) 2022; 75 Wang, Wang, Han (bib50) 2025; 22 Zitzler, Laumanns, Thiele (bib66) 2001; 103 Li, Deng, Li, Han, Tian, Zhang, Wang (bib29) 2020; 200 Angra, Chanda, Chawla (bib2) 2018; 8 Li, Gong, Lu, Wang (bib31) 2022; 27 Li, Gu, Yuan, Tang (bib34) 2022; 74 Zhang, Li, Gen, Yang, Zhang (bib65) 2024; 237 Gong, Deng, Gong, Huang (bib14) 2021; 231 Barak, Moghdani, Maghsoudlou (bib3) 2021; 283 Zou, Pan, Meng, Gao, Wang (bib67) 2020; 161 Deng, Gong, Gong, Zhang, Liu, Ren (bib11) 2017; 2017 Zhang, Li, Gong (bib61) 2024; 189 Luo, Gong, Lu (bib41) 2024; 235 Lu, Zhang, Gao, Yi, Mou (bib39) 2021; 16 Saberi-Aliabad, Reisi-Nafchi, Moslehi (bib47) 2020; 249 Jiang, Liu, Zhu (bib26) 2024; 90 Yuan, Xu (bib59) 2013; 12 Brandimarte (bib4) 1993; 41 He, Pan, Gao, Wang, Suganthan (bib17) 2021; 27 Li, Gong, Wang, Lu, Zhuang (bib32) 2023; 53 Hu, Qin, Wang, Zhang, Ding (bib23) 2025; 269 Tang, Gong, Peng, Zhu, Huang, Luo (bib49) 2024; 242 Bilge, Tanchoco (bib5) 1997; 16 Gong, Chiong, Deng, Luo (bib13) 2020; 31 Huang, Gong, Lu (bib24) 2024; 130 Li, Lu, Gao, Xiao, Wen (bib33) 2018; 14 Hu, Jia, He, Fu, Liu (bib22) 2020; 149 Lin, Deng, Han, Gong, Li (bib35) 2022; 29 Yao, Wang, Wang, Li, Gao, Xia (bib58) 2024; 62 Li, Lei (bib30) 2021; 103 Jiang, Tian, Liu, Suo, Chen, Xu, Li (bib27) 2022; 27 Deb, Pratap, Agarwal, Meyarivan (bib10) 2002; 6 Zhang, Xu, Pan, Ge (bib63) 2022; 54 Wei, Tang, Li, Lei, Wang (bib52) 2024; 74 Ho, Liu (bib20) 2009; 28 Xu, Bao, Zhang (bib56) 2023; 126 Lu, Gao, Pan, Li, Zheng (bib38) 2019; 75 Zhang, Li (bib64) 2007; 11 Qin, Xiang, Liu, Han, Wang (bib45) 2025; 93 Wisittipanich, Kachitvichyanukul (bib54) 2013; 12 Yan, Liu, Zhang, Zhang, Zhang, Yang (bib57) 2021; 72 Wu, Sun (bib55) 2018; 172 Ho, Liu (bib19) 2006; 51 Chen, Xia, Zhou, Xi (bib68) 2015; 26 Lu, Gao, Gong, Hu, Yan, Li (bib37) 2021; 60 Yu, Lu, Zhou, Yin, Wang (bib60) 2024; 128 Huo, Zhang, Hu (bib25) 2016; 56 Le-Anh, De Koster (bib28) 2006; 171 Saidi-Mehrabad, Dehnavi-Arani, Evazabadian, Mahmoodian (bib48) 2015; 86 Pan, Wang, Wang, Zhang (bib43) 2025; 29 Meng, Zhang, Shao, Ren (bib42) 2019; 210 Pan, Wang, Zheng, Chen, Wang (bib44) 2022; 27 He, Xin, Lu, Wang, Ding (bib18) 2022; 26 Wei, Liao, Zhang (bib53) 2022; 197 Homayouni, Fontes, Gonçalves (bib21) 2023; 30 He, Chiong, Li (bib15) 2022; 30 Luo, Gong, Li, Lu (bib40) 2023; 123 Amirteimoori, Kia (bib1) 2023; 35 Chaudhry, Rafique, Elbadawi, Aichouni, Usman, Boujelbene, Boudjemline (bib6) 2022; 13 Chawla, Chanda, Angra (bib7) 2018; 40 Dang, Singh, Adan, Martagan, van de Sande (bib9) 2021; 136 He, Chiong, Li, Budhi, Zhang (bib16) 2022; 243 Dai, Tang, Giret, Salido (bib8) 2019; 59 Wang, Gao, Zhang, Shao (bib51) 2010; 51 Ho (10.1016/j.engappai.2025.111771_bib20) 2009; 28 Lu (10.1016/j.engappai.2025.111771_bib37) 2021; 60 Huo (10.1016/j.engappai.2025.111771_bib25) 2016; 56 Li (10.1016/j.engappai.2025.111771_bib30) 2021; 103 Saberi-Aliabad (10.1016/j.engappai.2025.111771_bib47) 2020; 249 Wu (10.1016/j.engappai.2025.111771_bib55) 2018; 172 Zhang (10.1016/j.engappai.2025.111771_bib64) 2007; 11 Meng (10.1016/j.engappai.2025.111771_bib42) 2019; 210 Bilge (10.1016/j.engappai.2025.111771_bib5) 1997; 16 Deb (10.1016/j.engappai.2025.111771_bib10) 2002; 6 Wei (10.1016/j.engappai.2025.111771_bib53) 2022; 197 Huang (10.1016/j.engappai.2025.111771_bib24) 2024; 130 Ho (10.1016/j.engappai.2025.111771_bib19) 2006; 51 Brandimarte (10.1016/j.engappai.2025.111771_bib4) 1993; 41 Li (10.1016/j.engappai.2025.111771_bib34) 2022; 74 Li (10.1016/j.engappai.2025.111771_bib32) 2023; 53 Barak (10.1016/j.engappai.2025.111771_bib3) 2021; 283 Xu (10.1016/j.engappai.2025.111771_bib56) 2023; 126 Chawla (10.1016/j.engappai.2025.111771_bib7) 2018; 40 Jiang (10.1016/j.engappai.2025.111771_bib26) 2024; 90 Angra (10.1016/j.engappai.2025.111771_bib2) 2018; 8 Gong (10.1016/j.engappai.2025.111771_bib13) 2020; 31 Zitzler (10.1016/j.engappai.2025.111771_bib66) 2001; 103 Gong (10.1016/j.engappai.2025.111771_bib12) 2022; 75 Zou (10.1016/j.engappai.2025.111771_bib67) 2020; 161 Zhang (10.1016/j.engappai.2025.111771_bib62) 2023; 11 Lu (10.1016/j.engappai.2025.111771_bib38) 2019; 75 Yuan (10.1016/j.engappai.2025.111771_bib59) 2013; 12 Luo (10.1016/j.engappai.2025.111771_bib40) 2023; 123 Lin (10.1016/j.engappai.2025.111771_bib35) 2022; 29 Saidi-Mehrabad (10.1016/j.engappai.2025.111771_bib48) 2015; 86 Chaudhry (10.1016/j.engappai.2025.111771_bib6) 2022; 13 Qin (10.1016/j.engappai.2025.111771_bib45) 2025; 93 Yan (10.1016/j.engappai.2025.111771_bib57) 2021; 72 Li (10.1016/j.engappai.2025.111771_bib33) 2018; 14 Deng (10.1016/j.engappai.2025.111771_bib11) 2017; 2017 Li (10.1016/j.engappai.2025.111771_bib31) 2022; 27 Dang (10.1016/j.engappai.2025.111771_bib9) 2021; 136 Jiang (10.1016/j.engappai.2025.111771_bib27) 2022; 27 Zhang (10.1016/j.engappai.2025.111771_bib63) 2022; 54 He (10.1016/j.engappai.2025.111771_bib15) 2022; 30 He (10.1016/j.engappai.2025.111771_bib18) 2022; 26 Pan (10.1016/j.engappai.2025.111771_bib43) 2025; 29 Tang (10.1016/j.engappai.2025.111771_bib49) 2024; 242 Qu (10.1016/j.engappai.2025.111771_bib46) 2024; 256 Homayouni (10.1016/j.engappai.2025.111771_bib21) 2023; 30 Zhang (10.1016/j.engappai.2025.111771_bib65) 2024; 237 Wisittipanich (10.1016/j.engappai.2025.111771_bib54) 2013; 12 Amirteimoori (10.1016/j.engappai.2025.111771_bib1) 2023; 35 Hu (10.1016/j.engappai.2025.111771_bib23) 2025; 269 Wang (10.1016/j.engappai.2025.111771_bib51) 2010; 51 He (10.1016/j.engappai.2025.111771_bib17) 2021; 27 Li (10.1016/j.engappai.2025.111771_bib29) 2020; 200 Chen (10.1016/j.engappai.2025.111771_bib68) 2015; 26 Lu (10.1016/j.engappai.2025.111771_bib39) 2021; 16 Hu (10.1016/j.engappai.2025.111771_bib22) 2020; 149 Zhang (10.1016/j.engappai.2025.111771_bib61) 2024; 189 Le-Anh (10.1016/j.engappai.2025.111771_bib28) 2006; 171 Yu (10.1016/j.engappai.2025.111771_bib60) 2024; 128 Wang (10.1016/j.engappai.2025.111771_bib50) 2025; 22 Pan (10.1016/j.engappai.2025.111771_bib44) 2022; 27 Gong (10.1016/j.engappai.2025.111771_bib14) 2021; 231 Dai (10.1016/j.engappai.2025.111771_bib8) 2019; 59 He (10.1016/j.engappai.2025.111771_bib16) 2022; 243 Wei (10.1016/j.engappai.2025.111771_bib52) 2024; 74 Lin (10.1016/j.engappai.2025.111771_bib36) 2023; 79 Luo (10.1016/j.engappai.2025.111771_bib41) 2024; 235 Yao (10.1016/j.engappai.2025.111771_bib58) 2024; 62 |
| References_xml | – volume: 51 start-page: 445 year: 2006 end-page: 463 ident: bib19 article-title: A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs publication-title: Comput. Ind. Eng. – volume: 27 start-page: 610 year: 2022 end-page: 620 ident: bib31 article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time publication-title: IEEE Trans. Evol. Comput. – volume: 103 year: 2021 ident: bib30 article-title: An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with transportation and sequence-dependent setup times publication-title: Eng. Appl. Artif. Intell. – volume: 53 start-page: 8013 year: 2023 end-page: 8023 ident: bib32 article-title: Surprisingly popular-based adaptive memetic algorithm for energy-efficient distributed flexible job shop scheduling publication-title: IEEE Trans. Cybern. – volume: 103 year: 2001 ident: bib66 article-title: SPEA2: improving the strength pareto evolutionary algorithm – volume: 41 start-page: 157 year: 1993 end-page: 183 ident: bib4 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Ann. Oper. Res. – volume: 29 start-page: 496 year: 2022 end-page: 525 ident: bib35 article-title: An effective algorithm for flexible assembly job‐shop scheduling with tight job constraints publication-title: Int. Trans. Oper. Res. – volume: 90 year: 2024 ident: bib26 article-title: A Q-learning-based biology migration algorithm for energy-saving flexible job shop scheduling with speed adjustable machines and transporters publication-title: Swarm Evol. Comput. – volume: 93 year: 2025 ident: bib45 article-title: Enhancing quality-diversity algorithm by reinforcement learning for flexible job shop scheduling with transportation constraints publication-title: Swarm Evol. Comput. – volume: 60 year: 2021 ident: bib37 article-title: Sustainable scheduling of distributed permutation flow-shop with non-identical factory using a knowledge-based multi-objective memetic optimization algorithm publication-title: Swarm Evol. Comput. – volume: 31 start-page: 1443 year: 2020 end-page: 1466 ident: bib13 article-title: A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption publication-title: J. Intell. Manuf. – volume: 14 start-page: 5400 year: 2018 end-page: 5409 ident: bib33 article-title: An effective multi-objective algorithm for energy-efficient scheduling in a real-life welding shop publication-title: IEEE Trans. Ind. Inf. – volume: 56 start-page: 244 year: 2016 end-page: 251 ident: bib25 article-title: Research on scheduling problem of multi-load AGV at automated container terminal publication-title: J. Dalian Univ. Technolgy – volume: 197 year: 2022 ident: bib53 article-title: Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds publication-title: Expert Syst. Appl. – volume: 237 year: 2024 ident: bib65 article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem publication-title: Expert Syst. Appl. – volume: 235 year: 2024 ident: bib41 article-title: Knowledge-driven two-stage memetic algorithm for energy-efficient flexible job shop scheduling with machine breakdowns publication-title: Expert Syst. Appl. – volume: 172 start-page: 3249 year: 2018 end-page: 3264 ident: bib55 article-title: A green scheduling algorithm for flexible job shop with energy-saving measures publication-title: J. Clean. Prod. – volume: 35 start-page: 727 year: 2023 end-page: 753 ident: bib1 article-title: Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic publication-title: Flex. Serv. Manuf. J. – volume: 26 start-page: 1233 year: 2015 end-page: 1245 ident: bib68 article-title: A reinforcement learning based approach for a multiple-load carrier scheduling problem publication-title: J. Intell. Manuf. – volume: 72 year: 2021 ident: bib57 article-title: Research on flexible job shop scheduling under finite transportation conditions for digital twin workshop publication-title: Robot. Comput. Integrated Manuf. – volume: 11 start-page: 103 year: 2023 ident: bib62 article-title: Energy-saving scheduling for flexible job shop problem with AGV transportation considering emergencies publication-title: Systems – volume: 74 start-page: 264 year: 2024 end-page: 290 ident: bib52 article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop publication-title: J. Manuf. Syst. – volume: 27 year: 2022 ident: bib27 article-title: Energy-efficient scheduling of flexible job shops with complex processes: a case study for the aerospace industry complex components in China publication-title: Journal of Industrial Information Integration – volume: 22 start-page: 7435 year: 2025 end-page: 7448 ident: bib50 article-title: A knowledge-driven cooperative coevolutionary algorithm for integrated distributed production and transportation scheduling problem publication-title: IEEE Trans. Autom. Sci. – volume: 30 start-page: 688 year: 2023 end-page: 716 ident: bib21 article-title: A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation publication-title: Int. Trans. Oper. Res. – volume: 28 start-page: 1 year: 2009 end-page: 10 ident: bib20 article-title: The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs publication-title: J. Manuf. Syst. – volume: 16 start-page: 159 year: 1997 end-page: 174 ident: bib5 article-title: AGV systems with multi-load carriers: basic issues and potential benefits publication-title: J. Manuf. Syst. – volume: 161 year: 2020 ident: bib67 article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop publication-title: Expert Syst. Appl. – volume: 16 start-page: 844 year: 2021 end-page: 855 ident: bib39 article-title: A knowledge-based multiobjective memetic algorithm for green job shop scheduling with variable machining speeds publication-title: IEEE Syst. J. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib64 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. – volume: 123 year: 2023 ident: bib40 article-title: Problem-specific knowledge MOEA/D for energy-efficient scheduling of distributed permutation flow shop in heterogeneous factories publication-title: Eng. Appl. Artif. Intell. – volume: 27 start-page: 430 year: 2021 end-page: 444 ident: bib17 article-title: A greedy cooperative co-evolutionary algorithm with problem-specific knowledge for multiobjective flowshop group scheduling problems publication-title: IEEE Trans. Evol. Comput. – volume: 130 year: 2024 ident: bib24 article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 green fuzzy flexible job shop scheduling publication-title: Eng. Appl. Artif. Intell. – volume: 149 year: 2020 ident: bib22 article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0 publication-title: Comput. Ind. Eng. – volume: 40 start-page: 436 year: 2018 ident: bib7 article-title: Multi-load AGVs scheduling by application of modified memetic particle swarm optimization algorithm publication-title: J. Braz. Soc. Mech. Sci. Eng. – volume: 62 year: 2024 ident: bib58 article-title: Knowledge-based multi-objective evolutionary algorithm for energy-efficient flexible job shop scheduling with Mobile robot transportation publication-title: Adv. Eng. Inform. – volume: 269 year: 2025 ident: bib23 article-title: An energy-saving real-time scheduling method based on bi-level multi-agent architecture with bargaining game for flexible job shops publication-title: Expert Syst. Appl. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – volume: 249 year: 2020 ident: bib47 article-title: Energy-efficient scheduling in an unrelated parallel-machine environment under time-of-use electricity tariffs publication-title: J. Clean. Prod. – volume: 12 start-page: 151 year: 2013 end-page: 160 ident: bib54 article-title: An efficient PSO algorithm for finding pareto frontier in multi-objective job shop scheduling problems publication-title: Industrial Engineering and Management Systems – volume: 13 start-page: 343 year: 2022 end-page: 362 ident: bib6 article-title: Integrated scheduling of machines and automated guided vehicles (AGVs) in flexible job shop environment using genetic algorithms publication-title: Int. J. Ind. Eng. Comput. – volume: 126 year: 2023 ident: bib56 article-title: Multi-objective green scheduling of integrated flexible job shop and automated guided vehicles publication-title: Eng. Appl. Artif. Intell. – volume: 210 start-page: 710 year: 2019 end-page: 723 ident: bib42 article-title: MILP models for energy-aware flexible job shop scheduling problem publication-title: J. Clean. Prod. – volume: 27 start-page: 1590 year: 2022 end-page: 1603 ident: bib44 article-title: A learning-based multipopulation evolutionary optimization for flexible job shop scheduling problem with finite transportation resources publication-title: IEEE Trans. Evol. Comput. – volume: 51 start-page: 757 year: 2010 end-page: 767 ident: bib51 article-title: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem publication-title: Int. J. Adv. Manuf. Technol. – volume: 128 year: 2024 ident: bib60 article-title: A knowledge-guided bi-population evolutionary algorithm for energy-efficient scheduling of distributed flexible job shop problem publication-title: Eng. Appl. Artif. Intell. – volume: 136 year: 2021 ident: bib9 article-title: Scheduling heterogeneous multi-load AGVs with battery constraints publication-title: Comput. Oper. Res. – volume: 74 year: 2022 ident: bib34 article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network publication-title: Robot. Comput. Integrated Manuf. – volume: 256 year: 2024 ident: bib46 article-title: Energy-saving scheduling strategy for variable-speed flexible job-shop problem considering operation-dependent energy consumption publication-title: Expert Syst. Appl. – volume: 26 start-page: 974 year: 2022 end-page: 982 ident: bib18 article-title: Memetic algorithm for dynamic joint flexible job shop scheduling with machines and transportation robots publication-title: J. Adv. Comput. Intell. Intell. Inf. – volume: 242 year: 2024 ident: bib49 article-title: An effective memetic algorithm for distributed flexible job shop scheduling problem considering integrated sequencing flexibility publication-title: Expert Syst. Appl. – volume: 2017 year: 2017 ident: bib11 article-title: A bee evolutionary guiding nondominated sorting genetic algorithm II for multiobjective flexible job-shop scheduling publication-title: Comput. Intell. Neurosci. – volume: 243 year: 2022 ident: bib16 article-title: A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles publication-title: Knowl. Base Syst. – volume: 75 year: 2022 ident: bib12 article-title: A two-stage memetic algorithm for energy-efficient flexible job shop scheduling by means of decreasing the total number of machine restarts publication-title: Swarm Evol. Comput. – volume: 8 start-page: 187 year: 2018 end-page: 200 ident: bib2 article-title: Comparison and evaluation of job selection dispatching rules for integrated scheduling of multi-load automatic guided vehicles serving in variable sized flexible manufacturing system layouts: a simulation study publication-title: Management Science Letters – volume: 231 year: 2021 ident: bib14 article-title: A non-dominated ensemble fitness ranking algorithm for multi-objective flexible job-shop scheduling problem considering worker flexibility and green factors publication-title: Knowl. Base Syst. – volume: 200 year: 2020 ident: bib29 article-title: An improved jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times publication-title: Knowl. Base Syst. – volume: 75 start-page: 728 year: 2019 end-page: 749 ident: bib38 article-title: A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution publication-title: Appl. Soft Comput. – volume: 283 year: 2021 ident: bib3 article-title: Energy-efficient multi-objective flexible manufacturing scheduling publication-title: J. Clean. Prod. – volume: 79 year: 2023 ident: bib36 article-title: MLATSO: a method for task scheduling optimization in multi-load AGVs-based systems publication-title: Robot. Comput. Integrated Manuf. – volume: 86 start-page: 2 year: 2015 end-page: 13 ident: bib48 article-title: An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs publication-title: Comput. Ind. Eng. – volume: 12 start-page: 336 year: 2013 end-page: 353 ident: bib59 article-title: Multiobjective flexible job shop scheduling using memetic algorithms publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 54 start-page: 1646 year: 2022 end-page: 1667 ident: bib63 article-title: A novel heuristic method for the energy-efficient flexible job-shop scheduling problem with sequence-dependent set-up and transportation time publication-title: Eng. Optim. – volume: 30 year: 2022 ident: bib15 article-title: Energy-efficient open-shop scheduling with multiple automated guided vehicles and deteriorating jobs publication-title: Journal of Industrial Information Integration – volume: 189 year: 2024 ident: bib61 article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV publication-title: Comput. Ind. Eng. – volume: 29 start-page: 232 year: 2025 end-page: 246 ident: bib43 article-title: A bi-learning evolutionary algorithm for transportation-constrained and distributed energy-efficient flexible scheduling publication-title: IEEE Trans. Evol. Comput. – volume: 59 start-page: 143 year: 2019 end-page: 157 ident: bib8 article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints publication-title: Robot. Comput. Integrated Manuf. – volume: 171 start-page: 1 year: 2006 end-page: 23 ident: bib28 article-title: A review of design and control of automated guided vehicle systems publication-title: Eur. J. Oper. Res. – volume: 231 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib14 article-title: A non-dominated ensemble fitness ranking algorithm for multi-objective flexible job-shop scheduling problem considering worker flexibility and green factors publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2021.107430 – volume: 103 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib30 article-title: An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with transportation and sequence-dependent setup times publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104307 – volume: 35 start-page: 727 issue: 3 year: 2023 ident: 10.1016/j.engappai.2025.111771_bib1 article-title: Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic publication-title: Flex. Serv. Manuf. J. doi: 10.1007/s10696-022-09453-y – volume: 128 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib60 article-title: A knowledge-guided bi-population evolutionary algorithm for energy-efficient scheduling of distributed flexible job shop problem publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107458 – volume: 12 start-page: 151 issue: 2 year: 2013 ident: 10.1016/j.engappai.2025.111771_bib54 article-title: An efficient PSO algorithm for finding pareto frontier in multi-objective job shop scheduling problems publication-title: Industrial Engineering and Management Systems doi: 10.7232/iems.2013.12.2.151 – volume: 172 start-page: 3249 year: 2018 ident: 10.1016/j.engappai.2025.111771_bib55 article-title: A green scheduling algorithm for flexible job shop with energy-saving measures publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.10.342 – volume: 237 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib65 article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121570 – volume: 28 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.engappai.2025.111771_bib20 article-title: The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2009.06.001 – volume: 27 start-page: 1590 issue: 6 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib44 article-title: A learning-based multipopulation evolutionary optimization for flexible job shop scheduling problem with finite transportation resources publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3219238 – volume: 86 start-page: 2 year: 2015 ident: 10.1016/j.engappai.2025.111771_bib48 article-title: An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2015.01.003 – volume: 51 start-page: 445 issue: 3 year: 2006 ident: 10.1016/j.engappai.2025.111771_bib19 article-title: A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2006.08.007 – volume: 30 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib15 article-title: Energy-efficient open-shop scheduling with multiple automated guided vehicles and deteriorating jobs publication-title: Journal of Industrial Information Integration doi: 10.1016/j.jii.2022.100387 – volume: 41 start-page: 157 issue: 3 year: 1993 ident: 10.1016/j.engappai.2025.111771_bib4 article-title: Routing and scheduling in a flexible job shop by tabu search publication-title: Ann. Oper. Res. doi: 10.1007/BF02023073 – volume: 136 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib9 article-title: Scheduling heterogeneous multi-load AGVs with battery constraints publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105517 – volume: 13 start-page: 343 issue: 3 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib6 article-title: Integrated scheduling of machines and automated guided vehicles (AGVs) in flexible job shop environment using genetic algorithms publication-title: Int. J. Ind. Eng. Comput. – volume: 74 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib34 article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network publication-title: Robot. Comput. Integrated Manuf. doi: 10.1016/j.rcim.2021.102283 – volume: 189 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib61 article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.109917 – volume: 62 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib58 article-title: Knowledge-based multi-objective evolutionary algorithm for energy-efficient flexible job shop scheduling with Mobile robot transportation publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2024.102647 – volume: 75 start-page: 728 year: 2019 ident: 10.1016/j.engappai.2025.111771_bib38 article-title: A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.043 – volume: 269 year: 2025 ident: 10.1016/j.engappai.2025.111771_bib23 article-title: An energy-saving real-time scheduling method based on bi-level multi-agent architecture with bargaining game for flexible job shops publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2025.126527 – volume: 11 start-page: 103 issue: 2 year: 2023 ident: 10.1016/j.engappai.2025.111771_bib62 article-title: Energy-saving scheduling for flexible job shop problem with AGV transportation considering emergencies publication-title: Systems doi: 10.3390/systems11020103 – volume: 59 start-page: 143 year: 2019 ident: 10.1016/j.engappai.2025.111771_bib8 article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints publication-title: Robot. Comput. Integrated Manuf. doi: 10.1016/j.rcim.2019.04.006 – volume: 149 year: 2020 ident: 10.1016/j.engappai.2025.111771_bib22 article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106749 – volume: 93 year: 2025 ident: 10.1016/j.engappai.2025.111771_bib45 article-title: Enhancing quality-diversity algorithm by reinforcement learning for flexible job shop scheduling with transportation constraints publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2025.101849 – volume: 54 start-page: 1646 issue: 10 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib63 article-title: A novel heuristic method for the energy-efficient flexible job-shop scheduling problem with sequence-dependent set-up and transportation time publication-title: Eng. Optim. doi: 10.1080/0305215X.2021.1949007 – volume: 14 start-page: 5400 issue: 12 year: 2018 ident: 10.1016/j.engappai.2025.111771_bib33 article-title: An effective multi-objective algorithm for energy-efficient scheduling in a real-life welding shop publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2843441 – volume: 200 year: 2020 ident: 10.1016/j.engappai.2025.111771_bib29 article-title: An improved jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2020.106032 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.engappai.2025.111771_bib10 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 256 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib46 article-title: Energy-saving scheduling strategy for variable-speed flexible job-shop problem considering operation-dependent energy consumption publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124952 – volume: 29 start-page: 496 issue: 1 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib35 article-title: An effective algorithm for flexible assembly job‐shop scheduling with tight job constraints publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12767 – volume: 12 start-page: 336 issue: 1 year: 2013 ident: 10.1016/j.engappai.2025.111771_bib59 article-title: Multiobjective flexible job shop scheduling using memetic algorithms publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2013.2274517 – volume: 103 year: 2001 ident: 10.1016/j.engappai.2025.111771_bib66 article-title: SPEA2: improving the strength pareto evolutionary algorithm – volume: 27 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib27 article-title: Energy-efficient scheduling of flexible job shops with complex processes: a case study for the aerospace industry complex components in China publication-title: Journal of Industrial Information Integration doi: 10.1016/j.jii.2021.100293 – volume: 40 start-page: 436 issue: 9 year: 2018 ident: 10.1016/j.engappai.2025.111771_bib7 article-title: Multi-load AGVs scheduling by application of modified memetic particle swarm optimization algorithm publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1357-4 – volume: 242 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib49 article-title: An effective memetic algorithm for distributed flexible job shop scheduling problem considering integrated sequencing flexibility publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122734 – volume: 283 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib3 article-title: Energy-efficient multi-objective flexible manufacturing scheduling publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124610 – volume: 27 start-page: 610 issue: 3 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib31 article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2022.3175832 – volume: 74 start-page: 264 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib52 article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2024.03.005 – volume: 31 start-page: 1443 year: 2020 ident: 10.1016/j.engappai.2025.111771_bib13 article-title: A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption publication-title: J. Intell. Manuf. doi: 10.1007/s10845-019-01521-9 – volume: 249 year: 2020 ident: 10.1016/j.engappai.2025.111771_bib47 article-title: Energy-efficient scheduling in an unrelated parallel-machine environment under time-of-use electricity tariffs publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119393 – volume: 16 start-page: 159 issue: 3 year: 1997 ident: 10.1016/j.engappai.2025.111771_bib5 article-title: AGV systems with multi-load carriers: basic issues and potential benefits publication-title: J. Manuf. Syst. doi: 10.1016/S0278-6125(97)88885-1 – volume: 243 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib16 article-title: A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2022.108315 – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.engappai.2025.111771_bib64 article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 171 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.engappai.2025.111771_bib28 article-title: A review of design and control of automated guided vehicle systems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.01.036 – volume: 126 year: 2023 ident: 10.1016/j.engappai.2025.111771_bib56 article-title: Multi-objective green scheduling of integrated flexible job shop and automated guided vehicles publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106864 – volume: 123 year: 2023 ident: 10.1016/j.engappai.2025.111771_bib40 article-title: Problem-specific knowledge MOEA/D for energy-efficient scheduling of distributed permutation flow shop in heterogeneous factories publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106454 – volume: 2017 year: 2017 ident: 10.1016/j.engappai.2025.111771_bib11 article-title: A bee evolutionary guiding nondominated sorting genetic algorithm II for multiobjective flexible job-shop scheduling publication-title: Comput. Intell. Neurosci. doi: 10.1155/2017/5232518 – volume: 75 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib12 article-title: A two-stage memetic algorithm for energy-efficient flexible job shop scheduling by means of decreasing the total number of machine restarts publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2022.101131 – volume: 8 start-page: 187 issue: 4 year: 2018 ident: 10.1016/j.engappai.2025.111771_bib2 article-title: Comparison and evaluation of job selection dispatching rules for integrated scheduling of multi-load automatic guided vehicles serving in variable sized flexible manufacturing system layouts: a simulation study publication-title: Management Science Letters doi: 10.5267/j.msl.2018.3.002 – volume: 27 start-page: 430 issue: 3 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib17 article-title: A greedy cooperative co-evolutionary algorithm with problem-specific knowledge for multiobjective flowshop group scheduling problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3115795 – volume: 90 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib26 article-title: A Q-learning-based biology migration algorithm for energy-saving flexible job shop scheduling with speed adjustable machines and transporters publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2024.101655 – volume: 130 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib24 article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 green fuzzy flexible job shop scheduling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107762 – volume: 26 start-page: 1233 issue: 6 year: 2015 ident: 10.1016/j.engappai.2025.111771_bib68 article-title: A reinforcement learning based approach for a multiple-load carrier scheduling problem publication-title: J. Intell. Manuf. doi: 10.1007/s10845-013-0852-9 – volume: 79 year: 2023 ident: 10.1016/j.engappai.2025.111771_bib36 article-title: MLATSO: a method for task scheduling optimization in multi-load AGVs-based systems publication-title: Robot. Comput. Integrated Manuf. doi: 10.1016/j.rcim.2022.102397 – volume: 72 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib57 article-title: Research on flexible job shop scheduling under finite transportation conditions for digital twin workshop publication-title: Robot. Comput. Integrated Manuf. doi: 10.1016/j.rcim.2021.102198 – volume: 56 start-page: 244 issue: 3 year: 2016 ident: 10.1016/j.engappai.2025.111771_bib25 article-title: Research on scheduling problem of multi-load AGV at automated container terminal publication-title: J. Dalian Univ. Technolgy – volume: 16 start-page: 844 issue: 1 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib39 article-title: A knowledge-based multiobjective memetic algorithm for green job shop scheduling with variable machining speeds publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2021.3076481 – volume: 210 start-page: 710 year: 2019 ident: 10.1016/j.engappai.2025.111771_bib42 article-title: MILP models for energy-aware flexible job shop scheduling problem publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.11.021 – volume: 30 start-page: 688 issue: 2 year: 2023 ident: 10.1016/j.engappai.2025.111771_bib21 article-title: A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12878 – volume: 22 start-page: 7435 year: 2025 ident: 10.1016/j.engappai.2025.111771_bib50 article-title: A knowledge-driven cooperative coevolutionary algorithm for integrated distributed production and transportation scheduling problem publication-title: IEEE Trans. Autom. Sci. doi: 10.1109/TASE.2024.3422473 – volume: 161 year: 2020 ident: 10.1016/j.engappai.2025.111771_bib67 article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113675 – volume: 53 start-page: 8013 issue: 12 year: 2023 ident: 10.1016/j.engappai.2025.111771_bib32 article-title: Surprisingly popular-based adaptive memetic algorithm for energy-efficient distributed flexible job shop scheduling publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2023.3280175 – volume: 235 year: 2024 ident: 10.1016/j.engappai.2025.111771_bib41 article-title: Knowledge-driven two-stage memetic algorithm for energy-efficient flexible job shop scheduling with machine breakdowns publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121149 – volume: 51 start-page: 757 issue: 5 year: 2010 ident: 10.1016/j.engappai.2025.111771_bib51 article-title: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2642-2 – volume: 26 start-page: 974 issue: 6 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib18 article-title: Memetic algorithm for dynamic joint flexible job shop scheduling with machines and transportation robots publication-title: J. Adv. Comput. Intell. Intell. Inf. doi: 10.20965/jaciii.2022.p0974 – volume: 60 year: 2021 ident: 10.1016/j.engappai.2025.111771_bib37 article-title: Sustainable scheduling of distributed permutation flow-shop with non-identical factory using a knowledge-based multi-objective memetic optimization algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100803 – volume: 29 start-page: 232 issue: 1 year: 2025 ident: 10.1016/j.engappai.2025.111771_bib43 article-title: A bi-learning evolutionary algorithm for transportation-constrained and distributed energy-efficient flexible scheduling publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2024.3354850 – volume: 197 year: 2022 ident: 10.1016/j.engappai.2025.111771_bib53 article-title: Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.116785 |
| SSID | ssj0003846 |
| Score | 2.4407585 |
| Snippet | In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111771 |
| SubjectTerms | Energy-efficient flexible job shop scheduling Memetic algorithm Multi-load automated guided vehicles Multi-objective optimization Total energy consumption |
| Title | Knowledge-enhanced multi-objective memetic algorithm for energy-efficient flexible job shop scheduling with limited multi-load automated guided vehicles |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.111771 |
| Volume | 159 |
| WOSCitedRecordID | wos001535225100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZKhwMXdsSwyQduUUr2OMcRGsSmEUiDVE6RE9ttqjSp2qSan8Kf4j_x4iXJlAqYA5e0emrsOO-r3-K3IPSaxzwGKyO3mXA6bxUTdpaxwI5YmJPIDyglTDabiC8uyHyefJlMfppcmH0ZVxW5uko2_5XVQANmd6mzN2B3PygQ4DswHa7Adrj-E-M_GS-ZzaulOt-XUYN2na3U7mat-ZrLQq3lot4WzXKtCn_LNECby6ISsmZTVyyzy6xa1Zm1W9YbC0xhEE1l78AtVXqUnqCsKbNo29SgBQNx0RYMPvZ8KUPvrp0BDFUQrfERuoxK2MrwJdlMZFQvtAeaTpYAWC-WbS9UPnMZlvC16F1GOtb4e5vDz4bAo6KVVKoltnZ4eKHM_Bvt0aAUerabqLYx_Sau64qrbdjtjqLdoxJCOStWM14tYH20mHVTzIYbrpfkPhCVfQCjiY1bpWactBsnVePcQideHCZkik7OPpzPP_aqgU9U5phZwShl_fgTHdeWRhrQ5X10V5su-ExB7gGa8OohuqfNGKyFxA5IplOIoT1CP34HJT4AJdagxD0oMYASH4ISG1BiACXuQIkHUOIOlFiDEg-gxD0osQIlNqB8jL69O798-97WPUHsHGz9xo5FyEQiIkEIoSRyaMAoqLwsyrPQyzLKkzD0o4DQJHcTl8Ysd7gjQk4y4cWcuv4TNK3qij9FmHYNs8BAYk6QBWFGqRcIn8Q-YaErgoidojfm3acbVfol_TPfT1FiWJRqBVYppimg7y_3PrvxbM_RneHv8QJNm23LX6Lb-b4pdttXGnq_AHuOy7g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-enhanced+multi-objective+memetic+algorithm+for+energy-efficient+flexible+job+shop+scheduling+with+limited+multi-load+automated+guided+vehicles&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Fan%2C+Lianghua&rft.au=Lei%2C+Qi&rft.au=Song%2C+Yuchuan&rft.au=Liu%2C+Yang&rft.date=2025-11-08&rft.issn=0952-1976&rft.volume=159&rft.spage=111771&rft_id=info:doi/10.1016%2Fj.engappai.2025.111771&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_111771 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |