Knowledge-enhanced multi-objective memetic algorithm for energy-efficient flexible job shop scheduling with limited multi-load automated guided vehicles

In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent workshops, has become a key research area. Automated guided vehicles (AGVs), as the core component of intelligent logistics systems, especially in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering applications of artificial intelligence Jg. 159; S. 111771
Hauptverfasser: Fan, Lianghua, Lei, Qi, Song, Yuchuan, Liu, Yang, Yang, Yunfan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 08.11.2025
Schlagworte:
ISSN:0952-1976
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent workshops, has become a key research area. Automated guided vehicles (AGVs), as the core component of intelligent logistics systems, especially in applying multi-load AGVs, play a vital role in improving green manufacturing and optimizing logistics efficiency. While AGV transportation is considered in traditional energy-saving scheduling, most studies assume unlimited AGVs, and each can only load one job. This paper is the first to study the energy-efficient flexible job shop scheduling with limited multi-load AGVs (EFJSP-LMA), which integrates the sequencing of pickup and delivery tasks, and the allocation strategy of machines and AGVs. To address this problem effectively, the multi-objective mixed-integer programming (MMIP) model is developed to optimize the makespan and total energy consumption. To solve the MMIP model, a knowledge-enhanced multi-objective memetic algorithm (KMMA) is proposed. In the proposed KMMA, problem-specific heuristics are designed to generate a high-quality initial population with strong convergence and diversity. Subsequently, five knowledge-enhanced variable neighborhood structures are designed to enhance the quality and diversity of solutions. Additionally, an energy-saving strategy is incorporated to further optimize energy consumption. The effect of AGV quantity and load modes on the performance of the production system is studied and analyzed. Furthermore, experiment results of 60 test instances indicate that KMMA outperforms comparison algorithms, demonstrating its effectiveness in addressing the EFJSP-LMA. Finally, Real-world case studies further support our research, offering valuable insights for managing manufacturing environments.
AbstractList In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent workshops, has become a key research area. Automated guided vehicles (AGVs), as the core component of intelligent logistics systems, especially in applying multi-load AGVs, play a vital role in improving green manufacturing and optimizing logistics efficiency. While AGV transportation is considered in traditional energy-saving scheduling, most studies assume unlimited AGVs, and each can only load one job. This paper is the first to study the energy-efficient flexible job shop scheduling with limited multi-load AGVs (EFJSP-LMA), which integrates the sequencing of pickup and delivery tasks, and the allocation strategy of machines and AGVs. To address this problem effectively, the multi-objective mixed-integer programming (MMIP) model is developed to optimize the makespan and total energy consumption. To solve the MMIP model, a knowledge-enhanced multi-objective memetic algorithm (KMMA) is proposed. In the proposed KMMA, problem-specific heuristics are designed to generate a high-quality initial population with strong convergence and diversity. Subsequently, five knowledge-enhanced variable neighborhood structures are designed to enhance the quality and diversity of solutions. Additionally, an energy-saving strategy is incorporated to further optimize energy consumption. The effect of AGV quantity and load modes on the performance of the production system is studied and analyzed. Furthermore, experiment results of 60 test instances indicate that KMMA outperforms comparison algorithms, demonstrating its effectiveness in addressing the EFJSP-LMA. Finally, Real-world case studies further support our research, offering valuable insights for managing manufacturing environments.
ArticleNumber 111771
Author Song, Yuchuan
Liu, Yang
Lei, Qi
Yang, Yunfan
Fan, Lianghua
Author_xml – sequence: 1
  givenname: Lianghua
  surname: Fan
  fullname: Fan, Lianghua
  email: Fanlianghua@stu.cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
– sequence: 2
  givenname: Qi
  surname: Lei
  fullname: Lei, Qi
  email: leiqi@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
– sequence: 3
  givenname: Yuchuan
  surname: Song
  fullname: Song, Yuchuan
  email: syc@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
– sequence: 4
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  email: liruxru@tju.edu.cn
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, 300354, China
– sequence: 5
  givenname: Yunfan
  surname: Yang
  fullname: Yang, Yunfan
  email: yfyang21@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, 400030, China
BookMark eNqF0E1OwzAQBWAvQIICV0C-QIqdNk6yA1X8CSQ2sLYce5xM5NiVnbb0JhyXVAW2rEYa6b0ZfTNy4oMHQq45m3PGxU0_B9-q9VrhPGd5MeeclyU_IeesLvKM16U4I7OUesbYolqKc_L14sPOgWkhA98pr8HQYeNGzELTgx5xC3SAAUbUVLk2RBy7gdoQKXiI7T4Da1Ej-JFaB5_YOKB9aGjqwpom3YHZOPQt3U056nDA8e-AC8pQtRnDoA7LdoNmGlvoUDtIl-TUKpfg6mdekI-H-_fVU_b69vi8unvNdC74mJW2MLa2wlZVpSrB1NIoVnMjdFPkTaOgLoqFWFaq1rzmqjSaAbMFVI3NS1B8cUHEsVfHkFIEK9cRBxX3kjN5MJW9_DWVB1N5NJ2Ct8cgTN9tEaJMB4cJEOMEJ03A_yq-AS7ajOc
Cites_doi 10.1016/j.knosys.2021.107430
10.1016/j.engappai.2021.104307
10.1007/s10696-022-09453-y
10.1016/j.engappai.2023.107458
10.7232/iems.2013.12.2.151
10.1016/j.jclepro.2017.10.342
10.1016/j.eswa.2023.121570
10.1016/j.jmsy.2009.06.001
10.1109/TEVC.2022.3219238
10.1016/j.cie.2015.01.003
10.1016/j.cie.2006.08.007
10.1016/j.jii.2022.100387
10.1007/BF02023073
10.1016/j.cor.2021.105517
10.1016/j.rcim.2021.102283
10.1016/j.cie.2024.109917
10.1016/j.aei.2024.102647
10.1016/j.asoc.2018.11.043
10.1016/j.eswa.2025.126527
10.3390/systems11020103
10.1016/j.rcim.2019.04.006
10.1016/j.cie.2020.106749
10.1016/j.swevo.2025.101849
10.1080/0305215X.2021.1949007
10.1109/TII.2018.2843441
10.1016/j.knosys.2020.106032
10.1109/4235.996017
10.1016/j.eswa.2024.124952
10.1111/itor.12767
10.1109/TASE.2013.2274517
10.1016/j.jii.2021.100293
10.1007/s40430-018-1357-4
10.1016/j.eswa.2023.122734
10.1016/j.jclepro.2020.124610
10.1109/TEVC.2022.3175832
10.1016/j.jmsy.2024.03.005
10.1007/s10845-019-01521-9
10.1016/j.jclepro.2019.119393
10.1016/S0278-6125(97)88885-1
10.1016/j.knosys.2022.108315
10.1109/TEVC.2007.892759
10.1016/j.ejor.2005.01.036
10.1016/j.engappai.2023.106864
10.1016/j.engappai.2023.106454
10.1155/2017/5232518
10.1016/j.swevo.2022.101131
10.5267/j.msl.2018.3.002
10.1109/TEVC.2021.3115795
10.1016/j.swevo.2024.101655
10.1016/j.engappai.2023.107762
10.1007/s10845-013-0852-9
10.1016/j.rcim.2022.102397
10.1016/j.rcim.2021.102198
10.1109/JSYST.2021.3076481
10.1016/j.jclepro.2018.11.021
10.1111/itor.12878
10.1109/TASE.2024.3422473
10.1016/j.eswa.2020.113675
10.1109/TCYB.2023.3280175
10.1016/j.eswa.2023.121149
10.1007/s00170-010-2642-2
10.20965/jaciii.2022.p0974
10.1016/j.swevo.2020.100803
10.1109/TEVC.2024.3354850
10.1016/j.eswa.2022.116785
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.111771
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_111771
S0952197625017737
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c261t-7f5df9f6f888a860a4da091d6cb52bbae9553648a9c191a7dc0e0f5e8bf27ea13
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001535225100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 06:51:11 EST 2025
Sat Oct 25 17:37:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multi-load automated guided vehicles
Memetic algorithm
Multi-objective optimization
Total energy consumption
Energy-efficient flexible job shop scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-7f5df9f6f888a860a4da091d6cb52bbae9553648a9c191a7dc0e0f5e8bf27ea13
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_111771
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_111771
PublicationCentury 2000
PublicationDate 2025-11-08
PublicationDateYYYYMMDD 2025-11-08
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-08
  day: 08
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Qu, Tong, Cai, Shi, Lan (bib46) 2024; 256
Zhang, Qin, Zhang, Xu, Xu, Gao (bib62) 2023; 11
Lin, Xu, Zhu, Wang, Wang, Hu (bib36) 2023; 79
Gong, Chiong, Deng, Gong, Lin, Han, Zhang (bib12) 2022; 75
Wang, Wang, Han (bib50) 2025; 22
Zitzler, Laumanns, Thiele (bib66) 2001; 103
Li, Deng, Li, Han, Tian, Zhang, Wang (bib29) 2020; 200
Angra, Chanda, Chawla (bib2) 2018; 8
Li, Gong, Lu, Wang (bib31) 2022; 27
Li, Gu, Yuan, Tang (bib34) 2022; 74
Zhang, Li, Gen, Yang, Zhang (bib65) 2024; 237
Gong, Deng, Gong, Huang (bib14) 2021; 231
Barak, Moghdani, Maghsoudlou (bib3) 2021; 283
Zou, Pan, Meng, Gao, Wang (bib67) 2020; 161
Deng, Gong, Gong, Zhang, Liu, Ren (bib11) 2017; 2017
Zhang, Li, Gong (bib61) 2024; 189
Luo, Gong, Lu (bib41) 2024; 235
Lu, Zhang, Gao, Yi, Mou (bib39) 2021; 16
Saberi-Aliabad, Reisi-Nafchi, Moslehi (bib47) 2020; 249
Jiang, Liu, Zhu (bib26) 2024; 90
Yuan, Xu (bib59) 2013; 12
Brandimarte (bib4) 1993; 41
He, Pan, Gao, Wang, Suganthan (bib17) 2021; 27
Li, Gong, Wang, Lu, Zhuang (bib32) 2023; 53
Hu, Qin, Wang, Zhang, Ding (bib23) 2025; 269
Tang, Gong, Peng, Zhu, Huang, Luo (bib49) 2024; 242
Bilge, Tanchoco (bib5) 1997; 16
Gong, Chiong, Deng, Luo (bib13) 2020; 31
Huang, Gong, Lu (bib24) 2024; 130
Li, Lu, Gao, Xiao, Wen (bib33) 2018; 14
Hu, Jia, He, Fu, Liu (bib22) 2020; 149
Lin, Deng, Han, Gong, Li (bib35) 2022; 29
Yao, Wang, Wang, Li, Gao, Xia (bib58) 2024; 62
Li, Lei (bib30) 2021; 103
Jiang, Tian, Liu, Suo, Chen, Xu, Li (bib27) 2022; 27
Deb, Pratap, Agarwal, Meyarivan (bib10) 2002; 6
Zhang, Xu, Pan, Ge (bib63) 2022; 54
Wei, Tang, Li, Lei, Wang (bib52) 2024; 74
Ho, Liu (bib20) 2009; 28
Xu, Bao, Zhang (bib56) 2023; 126
Lu, Gao, Pan, Li, Zheng (bib38) 2019; 75
Zhang, Li (bib64) 2007; 11
Qin, Xiang, Liu, Han, Wang (bib45) 2025; 93
Wisittipanich, Kachitvichyanukul (bib54) 2013; 12
Yan, Liu, Zhang, Zhang, Zhang, Yang (bib57) 2021; 72
Wu, Sun (bib55) 2018; 172
Ho, Liu (bib19) 2006; 51
Chen, Xia, Zhou, Xi (bib68) 2015; 26
Lu, Gao, Gong, Hu, Yan, Li (bib37) 2021; 60
Yu, Lu, Zhou, Yin, Wang (bib60) 2024; 128
Huo, Zhang, Hu (bib25) 2016; 56
Le-Anh, De Koster (bib28) 2006; 171
Saidi-Mehrabad, Dehnavi-Arani, Evazabadian, Mahmoodian (bib48) 2015; 86
Pan, Wang, Wang, Zhang (bib43) 2025; 29
Meng, Zhang, Shao, Ren (bib42) 2019; 210
Pan, Wang, Zheng, Chen, Wang (bib44) 2022; 27
He, Xin, Lu, Wang, Ding (bib18) 2022; 26
Wei, Liao, Zhang (bib53) 2022; 197
Homayouni, Fontes, Gonçalves (bib21) 2023; 30
He, Chiong, Li (bib15) 2022; 30
Luo, Gong, Li, Lu (bib40) 2023; 123
Amirteimoori, Kia (bib1) 2023; 35
Chaudhry, Rafique, Elbadawi, Aichouni, Usman, Boujelbene, Boudjemline (bib6) 2022; 13
Chawla, Chanda, Angra (bib7) 2018; 40
Dang, Singh, Adan, Martagan, van de Sande (bib9) 2021; 136
He, Chiong, Li, Budhi, Zhang (bib16) 2022; 243
Dai, Tang, Giret, Salido (bib8) 2019; 59
Wang, Gao, Zhang, Shao (bib51) 2010; 51
Ho (10.1016/j.engappai.2025.111771_bib20) 2009; 28
Lu (10.1016/j.engappai.2025.111771_bib37) 2021; 60
Huo (10.1016/j.engappai.2025.111771_bib25) 2016; 56
Li (10.1016/j.engappai.2025.111771_bib30) 2021; 103
Saberi-Aliabad (10.1016/j.engappai.2025.111771_bib47) 2020; 249
Wu (10.1016/j.engappai.2025.111771_bib55) 2018; 172
Zhang (10.1016/j.engappai.2025.111771_bib64) 2007; 11
Meng (10.1016/j.engappai.2025.111771_bib42) 2019; 210
Bilge (10.1016/j.engappai.2025.111771_bib5) 1997; 16
Deb (10.1016/j.engappai.2025.111771_bib10) 2002; 6
Wei (10.1016/j.engappai.2025.111771_bib53) 2022; 197
Huang (10.1016/j.engappai.2025.111771_bib24) 2024; 130
Ho (10.1016/j.engappai.2025.111771_bib19) 2006; 51
Brandimarte (10.1016/j.engappai.2025.111771_bib4) 1993; 41
Li (10.1016/j.engappai.2025.111771_bib34) 2022; 74
Li (10.1016/j.engappai.2025.111771_bib32) 2023; 53
Barak (10.1016/j.engappai.2025.111771_bib3) 2021; 283
Xu (10.1016/j.engappai.2025.111771_bib56) 2023; 126
Chawla (10.1016/j.engappai.2025.111771_bib7) 2018; 40
Jiang (10.1016/j.engappai.2025.111771_bib26) 2024; 90
Angra (10.1016/j.engappai.2025.111771_bib2) 2018; 8
Gong (10.1016/j.engappai.2025.111771_bib13) 2020; 31
Zitzler (10.1016/j.engappai.2025.111771_bib66) 2001; 103
Gong (10.1016/j.engappai.2025.111771_bib12) 2022; 75
Zou (10.1016/j.engappai.2025.111771_bib67) 2020; 161
Zhang (10.1016/j.engappai.2025.111771_bib62) 2023; 11
Lu (10.1016/j.engappai.2025.111771_bib38) 2019; 75
Yuan (10.1016/j.engappai.2025.111771_bib59) 2013; 12
Luo (10.1016/j.engappai.2025.111771_bib40) 2023; 123
Lin (10.1016/j.engappai.2025.111771_bib35) 2022; 29
Saidi-Mehrabad (10.1016/j.engappai.2025.111771_bib48) 2015; 86
Chaudhry (10.1016/j.engappai.2025.111771_bib6) 2022; 13
Qin (10.1016/j.engappai.2025.111771_bib45) 2025; 93
Yan (10.1016/j.engappai.2025.111771_bib57) 2021; 72
Li (10.1016/j.engappai.2025.111771_bib33) 2018; 14
Deng (10.1016/j.engappai.2025.111771_bib11) 2017; 2017
Li (10.1016/j.engappai.2025.111771_bib31) 2022; 27
Dang (10.1016/j.engappai.2025.111771_bib9) 2021; 136
Jiang (10.1016/j.engappai.2025.111771_bib27) 2022; 27
Zhang (10.1016/j.engappai.2025.111771_bib63) 2022; 54
He (10.1016/j.engappai.2025.111771_bib15) 2022; 30
He (10.1016/j.engappai.2025.111771_bib18) 2022; 26
Pan (10.1016/j.engappai.2025.111771_bib43) 2025; 29
Tang (10.1016/j.engappai.2025.111771_bib49) 2024; 242
Qu (10.1016/j.engappai.2025.111771_bib46) 2024; 256
Homayouni (10.1016/j.engappai.2025.111771_bib21) 2023; 30
Zhang (10.1016/j.engappai.2025.111771_bib65) 2024; 237
Wisittipanich (10.1016/j.engappai.2025.111771_bib54) 2013; 12
Amirteimoori (10.1016/j.engappai.2025.111771_bib1) 2023; 35
Hu (10.1016/j.engappai.2025.111771_bib23) 2025; 269
Wang (10.1016/j.engappai.2025.111771_bib51) 2010; 51
He (10.1016/j.engappai.2025.111771_bib17) 2021; 27
Li (10.1016/j.engappai.2025.111771_bib29) 2020; 200
Chen (10.1016/j.engappai.2025.111771_bib68) 2015; 26
Lu (10.1016/j.engappai.2025.111771_bib39) 2021; 16
Hu (10.1016/j.engappai.2025.111771_bib22) 2020; 149
Zhang (10.1016/j.engappai.2025.111771_bib61) 2024; 189
Le-Anh (10.1016/j.engappai.2025.111771_bib28) 2006; 171
Yu (10.1016/j.engappai.2025.111771_bib60) 2024; 128
Wang (10.1016/j.engappai.2025.111771_bib50) 2025; 22
Pan (10.1016/j.engappai.2025.111771_bib44) 2022; 27
Gong (10.1016/j.engappai.2025.111771_bib14) 2021; 231
Dai (10.1016/j.engappai.2025.111771_bib8) 2019; 59
He (10.1016/j.engappai.2025.111771_bib16) 2022; 243
Wei (10.1016/j.engappai.2025.111771_bib52) 2024; 74
Lin (10.1016/j.engappai.2025.111771_bib36) 2023; 79
Luo (10.1016/j.engappai.2025.111771_bib41) 2024; 235
Yao (10.1016/j.engappai.2025.111771_bib58) 2024; 62
References_xml – volume: 51
  start-page: 445
  year: 2006
  end-page: 463
  ident: bib19
  article-title: A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs
  publication-title: Comput. Ind. Eng.
– volume: 27
  start-page: 610
  year: 2022
  end-page: 620
  ident: bib31
  article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time
  publication-title: IEEE Trans. Evol. Comput.
– volume: 103
  year: 2021
  ident: bib30
  article-title: An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with transportation and sequence-dependent setup times
  publication-title: Eng. Appl. Artif. Intell.
– volume: 53
  start-page: 8013
  year: 2023
  end-page: 8023
  ident: bib32
  article-title: Surprisingly popular-based adaptive memetic algorithm for energy-efficient distributed flexible job shop scheduling
  publication-title: IEEE Trans. Cybern.
– volume: 103
  year: 2001
  ident: bib66
  article-title: SPEA2: improving the strength pareto evolutionary algorithm
– volume: 41
  start-page: 157
  year: 1993
  end-page: 183
  ident: bib4
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann. Oper. Res.
– volume: 29
  start-page: 496
  year: 2022
  end-page: 525
  ident: bib35
  article-title: An effective algorithm for flexible assembly job‐shop scheduling with tight job constraints
  publication-title: Int. Trans. Oper. Res.
– volume: 90
  year: 2024
  ident: bib26
  article-title: A Q-learning-based biology migration algorithm for energy-saving flexible job shop scheduling with speed adjustable machines and transporters
  publication-title: Swarm Evol. Comput.
– volume: 93
  year: 2025
  ident: bib45
  article-title: Enhancing quality-diversity algorithm by reinforcement learning for flexible job shop scheduling with transportation constraints
  publication-title: Swarm Evol. Comput.
– volume: 60
  year: 2021
  ident: bib37
  article-title: Sustainable scheduling of distributed permutation flow-shop with non-identical factory using a knowledge-based multi-objective memetic optimization algorithm
  publication-title: Swarm Evol. Comput.
– volume: 31
  start-page: 1443
  year: 2020
  end-page: 1466
  ident: bib13
  article-title: A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption
  publication-title: J. Intell. Manuf.
– volume: 14
  start-page: 5400
  year: 2018
  end-page: 5409
  ident: bib33
  article-title: An effective multi-objective algorithm for energy-efficient scheduling in a real-life welding shop
  publication-title: IEEE Trans. Ind. Inf.
– volume: 56
  start-page: 244
  year: 2016
  end-page: 251
  ident: bib25
  article-title: Research on scheduling problem of multi-load AGV at automated container terminal
  publication-title: J. Dalian Univ. Technolgy
– volume: 197
  year: 2022
  ident: bib53
  article-title: Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds
  publication-title: Expert Syst. Appl.
– volume: 237
  year: 2024
  ident: bib65
  article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 235
  year: 2024
  ident: bib41
  article-title: Knowledge-driven two-stage memetic algorithm for energy-efficient flexible job shop scheduling with machine breakdowns
  publication-title: Expert Syst. Appl.
– volume: 172
  start-page: 3249
  year: 2018
  end-page: 3264
  ident: bib55
  article-title: A green scheduling algorithm for flexible job shop with energy-saving measures
  publication-title: J. Clean. Prod.
– volume: 35
  start-page: 727
  year: 2023
  end-page: 753
  ident: bib1
  article-title: Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic
  publication-title: Flex. Serv. Manuf. J.
– volume: 26
  start-page: 1233
  year: 2015
  end-page: 1245
  ident: bib68
  article-title: A reinforcement learning based approach for a multiple-load carrier scheduling problem
  publication-title: J. Intell. Manuf.
– volume: 72
  year: 2021
  ident: bib57
  article-title: Research on flexible job shop scheduling under finite transportation conditions for digital twin workshop
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 11
  start-page: 103
  year: 2023
  ident: bib62
  article-title: Energy-saving scheduling for flexible job shop problem with AGV transportation considering emergencies
  publication-title: Systems
– volume: 74
  start-page: 264
  year: 2024
  end-page: 290
  ident: bib52
  article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop
  publication-title: J. Manuf. Syst.
– volume: 27
  year: 2022
  ident: bib27
  article-title: Energy-efficient scheduling of flexible job shops with complex processes: a case study for the aerospace industry complex components in China
  publication-title: Journal of Industrial Information Integration
– volume: 22
  start-page: 7435
  year: 2025
  end-page: 7448
  ident: bib50
  article-title: A knowledge-driven cooperative coevolutionary algorithm for integrated distributed production and transportation scheduling problem
  publication-title: IEEE Trans. Autom. Sci.
– volume: 30
  start-page: 688
  year: 2023
  end-page: 716
  ident: bib21
  article-title: A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation
  publication-title: Int. Trans. Oper. Res.
– volume: 28
  start-page: 1
  year: 2009
  end-page: 10
  ident: bib20
  article-title: The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs
  publication-title: J. Manuf. Syst.
– volume: 16
  start-page: 159
  year: 1997
  end-page: 174
  ident: bib5
  article-title: AGV systems with multi-load carriers: basic issues and potential benefits
  publication-title: J. Manuf. Syst.
– volume: 161
  year: 2020
  ident: bib67
  article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 844
  year: 2021
  end-page: 855
  ident: bib39
  article-title: A knowledge-based multiobjective memetic algorithm for green job shop scheduling with variable machining speeds
  publication-title: IEEE Syst. J.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib64
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– volume: 123
  year: 2023
  ident: bib40
  article-title: Problem-specific knowledge MOEA/D for energy-efficient scheduling of distributed permutation flow shop in heterogeneous factories
  publication-title: Eng. Appl. Artif. Intell.
– volume: 27
  start-page: 430
  year: 2021
  end-page: 444
  ident: bib17
  article-title: A greedy cooperative co-evolutionary algorithm with problem-specific knowledge for multiobjective flowshop group scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 130
  year: 2024
  ident: bib24
  article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 green fuzzy flexible job shop scheduling
  publication-title: Eng. Appl. Artif. Intell.
– volume: 149
  year: 2020
  ident: bib22
  article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0
  publication-title: Comput. Ind. Eng.
– volume: 40
  start-page: 436
  year: 2018
  ident: bib7
  article-title: Multi-load AGVs scheduling by application of modified memetic particle swarm optimization algorithm
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 62
  year: 2024
  ident: bib58
  article-title: Knowledge-based multi-objective evolutionary algorithm for energy-efficient flexible job shop scheduling with Mobile robot transportation
  publication-title: Adv. Eng. Inform.
– volume: 269
  year: 2025
  ident: bib23
  article-title: An energy-saving real-time scheduling method based on bi-level multi-agent architecture with bargaining game for flexible job shops
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 249
  year: 2020
  ident: bib47
  article-title: Energy-efficient scheduling in an unrelated parallel-machine environment under time-of-use electricity tariffs
  publication-title: J. Clean. Prod.
– volume: 12
  start-page: 151
  year: 2013
  end-page: 160
  ident: bib54
  article-title: An efficient PSO algorithm for finding pareto frontier in multi-objective job shop scheduling problems
  publication-title: Industrial Engineering and Management Systems
– volume: 13
  start-page: 343
  year: 2022
  end-page: 362
  ident: bib6
  article-title: Integrated scheduling of machines and automated guided vehicles (AGVs) in flexible job shop environment using genetic algorithms
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 126
  year: 2023
  ident: bib56
  article-title: Multi-objective green scheduling of integrated flexible job shop and automated guided vehicles
  publication-title: Eng. Appl. Artif. Intell.
– volume: 210
  start-page: 710
  year: 2019
  end-page: 723
  ident: bib42
  article-title: MILP models for energy-aware flexible job shop scheduling problem
  publication-title: J. Clean. Prod.
– volume: 27
  start-page: 1590
  year: 2022
  end-page: 1603
  ident: bib44
  article-title: A learning-based multipopulation evolutionary optimization for flexible job shop scheduling problem with finite transportation resources
  publication-title: IEEE Trans. Evol. Comput.
– volume: 51
  start-page: 757
  year: 2010
  end-page: 767
  ident: bib51
  article-title: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 128
  year: 2024
  ident: bib60
  article-title: A knowledge-guided bi-population evolutionary algorithm for energy-efficient scheduling of distributed flexible job shop problem
  publication-title: Eng. Appl. Artif. Intell.
– volume: 136
  year: 2021
  ident: bib9
  article-title: Scheduling heterogeneous multi-load AGVs with battery constraints
  publication-title: Comput. Oper. Res.
– volume: 74
  year: 2022
  ident: bib34
  article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 256
  year: 2024
  ident: bib46
  article-title: Energy-saving scheduling strategy for variable-speed flexible job-shop problem considering operation-dependent energy consumption
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 974
  year: 2022
  end-page: 982
  ident: bib18
  article-title: Memetic algorithm for dynamic joint flexible job shop scheduling with machines and transportation robots
  publication-title: J. Adv. Comput. Intell. Intell. Inf.
– volume: 242
  year: 2024
  ident: bib49
  article-title: An effective memetic algorithm for distributed flexible job shop scheduling problem considering integrated sequencing flexibility
  publication-title: Expert Syst. Appl.
– volume: 2017
  year: 2017
  ident: bib11
  article-title: A bee evolutionary guiding nondominated sorting genetic algorithm II for multiobjective flexible job-shop scheduling
  publication-title: Comput. Intell. Neurosci.
– volume: 243
  year: 2022
  ident: bib16
  article-title: A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles
  publication-title: Knowl. Base Syst.
– volume: 75
  year: 2022
  ident: bib12
  article-title: A two-stage memetic algorithm for energy-efficient flexible job shop scheduling by means of decreasing the total number of machine restarts
  publication-title: Swarm Evol. Comput.
– volume: 8
  start-page: 187
  year: 2018
  end-page: 200
  ident: bib2
  article-title: Comparison and evaluation of job selection dispatching rules for integrated scheduling of multi-load automatic guided vehicles serving in variable sized flexible manufacturing system layouts: a simulation study
  publication-title: Management Science Letters
– volume: 231
  year: 2021
  ident: bib14
  article-title: A non-dominated ensemble fitness ranking algorithm for multi-objective flexible job-shop scheduling problem considering worker flexibility and green factors
  publication-title: Knowl. Base Syst.
– volume: 200
  year: 2020
  ident: bib29
  article-title: An improved jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times
  publication-title: Knowl. Base Syst.
– volume: 75
  start-page: 728
  year: 2019
  end-page: 749
  ident: bib38
  article-title: A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution
  publication-title: Appl. Soft Comput.
– volume: 283
  year: 2021
  ident: bib3
  article-title: Energy-efficient multi-objective flexible manufacturing scheduling
  publication-title: J. Clean. Prod.
– volume: 79
  year: 2023
  ident: bib36
  article-title: MLATSO: a method for task scheduling optimization in multi-load AGVs-based systems
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 86
  start-page: 2
  year: 2015
  end-page: 13
  ident: bib48
  article-title: An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs
  publication-title: Comput. Ind. Eng.
– volume: 12
  start-page: 336
  year: 2013
  end-page: 353
  ident: bib59
  article-title: Multiobjective flexible job shop scheduling using memetic algorithms
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 54
  start-page: 1646
  year: 2022
  end-page: 1667
  ident: bib63
  article-title: A novel heuristic method for the energy-efficient flexible job-shop scheduling problem with sequence-dependent set-up and transportation time
  publication-title: Eng. Optim.
– volume: 30
  year: 2022
  ident: bib15
  article-title: Energy-efficient open-shop scheduling with multiple automated guided vehicles and deteriorating jobs
  publication-title: Journal of Industrial Information Integration
– volume: 189
  year: 2024
  ident: bib61
  article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV
  publication-title: Comput. Ind. Eng.
– volume: 29
  start-page: 232
  year: 2025
  end-page: 246
  ident: bib43
  article-title: A bi-learning evolutionary algorithm for transportation-constrained and distributed energy-efficient flexible scheduling
  publication-title: IEEE Trans. Evol. Comput.
– volume: 59
  start-page: 143
  year: 2019
  end-page: 157
  ident: bib8
  article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints
  publication-title: Robot. Comput. Integrated Manuf.
– volume: 171
  start-page: 1
  year: 2006
  end-page: 23
  ident: bib28
  article-title: A review of design and control of automated guided vehicle systems
  publication-title: Eur. J. Oper. Res.
– volume: 231
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib14
  article-title: A non-dominated ensemble fitness ranking algorithm for multi-objective flexible job-shop scheduling problem considering worker flexibility and green factors
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.107430
– volume: 103
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib30
  article-title: An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling with transportation and sequence-dependent setup times
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104307
– volume: 35
  start-page: 727
  issue: 3
  year: 2023
  ident: 10.1016/j.engappai.2025.111771_bib1
  article-title: Concurrent scheduling of jobs and AGVs in a flexible job shop system: a parallel hybrid PSO-GA meta-heuristic
  publication-title: Flex. Serv. Manuf. J.
  doi: 10.1007/s10696-022-09453-y
– volume: 128
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib60
  article-title: A knowledge-guided bi-population evolutionary algorithm for energy-efficient scheduling of distributed flexible job shop problem
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107458
– volume: 12
  start-page: 151
  issue: 2
  year: 2013
  ident: 10.1016/j.engappai.2025.111771_bib54
  article-title: An efficient PSO algorithm for finding pareto frontier in multi-objective job shop scheduling problems
  publication-title: Industrial Engineering and Management Systems
  doi: 10.7232/iems.2013.12.2.151
– volume: 172
  start-page: 3249
  year: 2018
  ident: 10.1016/j.engappai.2025.111771_bib55
  article-title: A green scheduling algorithm for flexible job shop with energy-saving measures
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.10.342
– volume: 237
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib65
  article-title: A multiobjective memetic algorithm with particle swarm optimization and Q-learning-based local search for energy-efficient distributed heterogeneous hybrid flow-shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121570
– volume: 28
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.engappai.2025.111771_bib20
  article-title: The performance of load-selection rules and pickup-dispatching rules for multiple-load AGVs
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2009.06.001
– volume: 27
  start-page: 1590
  issue: 6
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib44
  article-title: A learning-based multipopulation evolutionary optimization for flexible job shop scheduling problem with finite transportation resources
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3219238
– volume: 86
  start-page: 2
  year: 2015
  ident: 10.1016/j.engappai.2025.111771_bib48
  article-title: An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.01.003
– volume: 51
  start-page: 445
  issue: 3
  year: 2006
  ident: 10.1016/j.engappai.2025.111771_bib19
  article-title: A simulation study on the performance of pickup-dispatching rules for multiple-load AGVs
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2006.08.007
– volume: 30
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib15
  article-title: Energy-efficient open-shop scheduling with multiple automated guided vehicles and deteriorating jobs
  publication-title: Journal of Industrial Information Integration
  doi: 10.1016/j.jii.2022.100387
– volume: 41
  start-page: 157
  issue: 3
  year: 1993
  ident: 10.1016/j.engappai.2025.111771_bib4
  article-title: Routing and scheduling in a flexible job shop by tabu search
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02023073
– volume: 136
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib9
  article-title: Scheduling heterogeneous multi-load AGVs with battery constraints
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105517
– volume: 13
  start-page: 343
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib6
  article-title: Integrated scheduling of machines and automated guided vehicles (AGVs) in flexible job shop environment using genetic algorithms
  publication-title: Int. J. Ind. Eng. Comput.
– volume: 74
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib34
  article-title: Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network
  publication-title: Robot. Comput. Integrated Manuf.
  doi: 10.1016/j.rcim.2021.102283
– volume: 189
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib61
  article-title: Deep reinforcement learning-based memetic algorithm for energy-aware flexible job shop scheduling with multi-AGV
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.109917
– volume: 62
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib58
  article-title: Knowledge-based multi-objective evolutionary algorithm for energy-efficient flexible job shop scheduling with Mobile robot transportation
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2024.102647
– volume: 75
  start-page: 728
  year: 2019
  ident: 10.1016/j.engappai.2025.111771_bib38
  article-title: A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.043
– volume: 269
  year: 2025
  ident: 10.1016/j.engappai.2025.111771_bib23
  article-title: An energy-saving real-time scheduling method based on bi-level multi-agent architecture with bargaining game for flexible job shops
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2025.126527
– volume: 11
  start-page: 103
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2025.111771_bib62
  article-title: Energy-saving scheduling for flexible job shop problem with AGV transportation considering emergencies
  publication-title: Systems
  doi: 10.3390/systems11020103
– volume: 59
  start-page: 143
  year: 2019
  ident: 10.1016/j.engappai.2025.111771_bib8
  article-title: Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints
  publication-title: Robot. Comput. Integrated Manuf.
  doi: 10.1016/j.rcim.2019.04.006
– volume: 149
  year: 2020
  ident: 10.1016/j.engappai.2025.111771_bib22
  article-title: Deep reinforcement learning based AGVs real-time scheduling with mixed rule for flexible shop floor in industry 4.0
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106749
– volume: 93
  year: 2025
  ident: 10.1016/j.engappai.2025.111771_bib45
  article-title: Enhancing quality-diversity algorithm by reinforcement learning for flexible job shop scheduling with transportation constraints
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2025.101849
– volume: 54
  start-page: 1646
  issue: 10
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib63
  article-title: A novel heuristic method for the energy-efficient flexible job-shop scheduling problem with sequence-dependent set-up and transportation time
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2021.1949007
– volume: 14
  start-page: 5400
  issue: 12
  year: 2018
  ident: 10.1016/j.engappai.2025.111771_bib33
  article-title: An effective multi-objective algorithm for energy-efficient scheduling in a real-life welding shop
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2843441
– volume: 200
  year: 2020
  ident: 10.1016/j.engappai.2025.111771_bib29
  article-title: An improved jaya algorithm for solving the flexible job shop scheduling problem with transportation and setup times
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.106032
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.engappai.2025.111771_bib10
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 256
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib46
  article-title: Energy-saving scheduling strategy for variable-speed flexible job-shop problem considering operation-dependent energy consumption
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124952
– volume: 29
  start-page: 496
  issue: 1
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib35
  article-title: An effective algorithm for flexible assembly job‐shop scheduling with tight job constraints
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12767
– volume: 12
  start-page: 336
  issue: 1
  year: 2013
  ident: 10.1016/j.engappai.2025.111771_bib59
  article-title: Multiobjective flexible job shop scheduling using memetic algorithms
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2013.2274517
– volume: 103
  year: 2001
  ident: 10.1016/j.engappai.2025.111771_bib66
  article-title: SPEA2: improving the strength pareto evolutionary algorithm
– volume: 27
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib27
  article-title: Energy-efficient scheduling of flexible job shops with complex processes: a case study for the aerospace industry complex components in China
  publication-title: Journal of Industrial Information Integration
  doi: 10.1016/j.jii.2021.100293
– volume: 40
  start-page: 436
  issue: 9
  year: 2018
  ident: 10.1016/j.engappai.2025.111771_bib7
  article-title: Multi-load AGVs scheduling by application of modified memetic particle swarm optimization algorithm
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1357-4
– volume: 242
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib49
  article-title: An effective memetic algorithm for distributed flexible job shop scheduling problem considering integrated sequencing flexibility
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122734
– volume: 283
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib3
  article-title: Energy-efficient multi-objective flexible manufacturing scheduling
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124610
– volume: 27
  start-page: 610
  issue: 3
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib31
  article-title: A learning-based memetic algorithm for energy-efficient flexible job-shop scheduling with type-2 fuzzy processing time
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2022.3175832
– volume: 74
  start-page: 264
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib52
  article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2024.03.005
– volume: 31
  start-page: 1443
  year: 2020
  ident: 10.1016/j.engappai.2025.111771_bib13
  article-title: A memetic algorithm for multi-objective distributed production scheduling: minimizing the makespan and total energy consumption
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-019-01521-9
– volume: 249
  year: 2020
  ident: 10.1016/j.engappai.2025.111771_bib47
  article-title: Energy-efficient scheduling in an unrelated parallel-machine environment under time-of-use electricity tariffs
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119393
– volume: 16
  start-page: 159
  issue: 3
  year: 1997
  ident: 10.1016/j.engappai.2025.111771_bib5
  article-title: AGV systems with multi-load carriers: basic issues and potential benefits
  publication-title: J. Manuf. Syst.
  doi: 10.1016/S0278-6125(97)88885-1
– volume: 243
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib16
  article-title: A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2022.108315
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.engappai.2025.111771_bib64
  article-title: MOEA/D: a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 171
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.engappai.2025.111771_bib28
  article-title: A review of design and control of automated guided vehicle systems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.01.036
– volume: 126
  year: 2023
  ident: 10.1016/j.engappai.2025.111771_bib56
  article-title: Multi-objective green scheduling of integrated flexible job shop and automated guided vehicles
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106864
– volume: 123
  year: 2023
  ident: 10.1016/j.engappai.2025.111771_bib40
  article-title: Problem-specific knowledge MOEA/D for energy-efficient scheduling of distributed permutation flow shop in heterogeneous factories
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106454
– volume: 2017
  year: 2017
  ident: 10.1016/j.engappai.2025.111771_bib11
  article-title: A bee evolutionary guiding nondominated sorting genetic algorithm II for multiobjective flexible job-shop scheduling
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2017/5232518
– volume: 75
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib12
  article-title: A two-stage memetic algorithm for energy-efficient flexible job shop scheduling by means of decreasing the total number of machine restarts
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2022.101131
– volume: 8
  start-page: 187
  issue: 4
  year: 2018
  ident: 10.1016/j.engappai.2025.111771_bib2
  article-title: Comparison and evaluation of job selection dispatching rules for integrated scheduling of multi-load automatic guided vehicles serving in variable sized flexible manufacturing system layouts: a simulation study
  publication-title: Management Science Letters
  doi: 10.5267/j.msl.2018.3.002
– volume: 27
  start-page: 430
  issue: 3
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib17
  article-title: A greedy cooperative co-evolutionary algorithm with problem-specific knowledge for multiobjective flowshop group scheduling problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3115795
– volume: 90
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib26
  article-title: A Q-learning-based biology migration algorithm for energy-saving flexible job shop scheduling with speed adjustable machines and transporters
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2024.101655
– volume: 130
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib24
  article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 green fuzzy flexible job shop scheduling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107762
– volume: 26
  start-page: 1233
  issue: 6
  year: 2015
  ident: 10.1016/j.engappai.2025.111771_bib68
  article-title: A reinforcement learning based approach for a multiple-load carrier scheduling problem
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-013-0852-9
– volume: 79
  year: 2023
  ident: 10.1016/j.engappai.2025.111771_bib36
  article-title: MLATSO: a method for task scheduling optimization in multi-load AGVs-based systems
  publication-title: Robot. Comput. Integrated Manuf.
  doi: 10.1016/j.rcim.2022.102397
– volume: 72
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib57
  article-title: Research on flexible job shop scheduling under finite transportation conditions for digital twin workshop
  publication-title: Robot. Comput. Integrated Manuf.
  doi: 10.1016/j.rcim.2021.102198
– volume: 56
  start-page: 244
  issue: 3
  year: 2016
  ident: 10.1016/j.engappai.2025.111771_bib25
  article-title: Research on scheduling problem of multi-load AGV at automated container terminal
  publication-title: J. Dalian Univ. Technolgy
– volume: 16
  start-page: 844
  issue: 1
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib39
  article-title: A knowledge-based multiobjective memetic algorithm for green job shop scheduling with variable machining speeds
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2021.3076481
– volume: 210
  start-page: 710
  year: 2019
  ident: 10.1016/j.engappai.2025.111771_bib42
  article-title: MILP models for energy-aware flexible job shop scheduling problem
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.11.021
– volume: 30
  start-page: 688
  issue: 2
  year: 2023
  ident: 10.1016/j.engappai.2025.111771_bib21
  article-title: A multistart biased random key genetic algorithm for the flexible job shop scheduling problem with transportation
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12878
– volume: 22
  start-page: 7435
  year: 2025
  ident: 10.1016/j.engappai.2025.111771_bib50
  article-title: A knowledge-driven cooperative coevolutionary algorithm for integrated distributed production and transportation scheduling problem
  publication-title: IEEE Trans. Autom. Sci.
  doi: 10.1109/TASE.2024.3422473
– volume: 161
  year: 2020
  ident: 10.1016/j.engappai.2025.111771_bib67
  article-title: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113675
– volume: 53
  start-page: 8013
  issue: 12
  year: 2023
  ident: 10.1016/j.engappai.2025.111771_bib32
  article-title: Surprisingly popular-based adaptive memetic algorithm for energy-efficient distributed flexible job shop scheduling
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2023.3280175
– volume: 235
  year: 2024
  ident: 10.1016/j.engappai.2025.111771_bib41
  article-title: Knowledge-driven two-stage memetic algorithm for energy-efficient flexible job shop scheduling with machine breakdowns
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121149
– volume: 51
  start-page: 757
  issue: 5
  year: 2010
  ident: 10.1016/j.engappai.2025.111771_bib51
  article-title: A multi-objective genetic algorithm based on immune and entropy principle for flexible job-shop scheduling problem
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2642-2
– volume: 26
  start-page: 974
  issue: 6
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib18
  article-title: Memetic algorithm for dynamic joint flexible job shop scheduling with machines and transportation robots
  publication-title: J. Adv. Comput. Intell. Intell. Inf.
  doi: 10.20965/jaciii.2022.p0974
– volume: 60
  year: 2021
  ident: 10.1016/j.engappai.2025.111771_bib37
  article-title: Sustainable scheduling of distributed permutation flow-shop with non-identical factory using a knowledge-based multi-objective memetic optimization algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100803
– volume: 29
  start-page: 232
  issue: 1
  year: 2025
  ident: 10.1016/j.engappai.2025.111771_bib43
  article-title: A bi-learning evolutionary algorithm for transportation-constrained and distributed energy-efficient flexible scheduling
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2024.3354850
– volume: 197
  year: 2022
  ident: 10.1016/j.engappai.2025.111771_bib53
  article-title: Hybrid energy-efficient scheduling measures for flexible job-shop problem with variable machining speeds
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.116785
SSID ssj0003846
Score 2.4407585
Snippet In alignment with the national call for energy conservation and emission reduction, energy-efficient scheduling in manufacturing, especially intelligent...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111771
SubjectTerms Energy-efficient flexible job shop scheduling
Memetic algorithm
Multi-load automated guided vehicles
Multi-objective optimization
Total energy consumption
Title Knowledge-enhanced multi-objective memetic algorithm for energy-efficient flexible job shop scheduling with limited multi-load automated guided vehicles
URI https://dx.doi.org/10.1016/j.engappai.2025.111771
Volume 159
WOSCitedRecordID wos001535225100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLZKhwMXdsSwyQduUUr2OMcRGsSmEUiDVE6RE9ttqjSp2qSan8Kf4j_x4iXJlAqYA5e0emrsOO-r3-K3IPSaxzwGKyO3mXA6bxUTdpaxwI5YmJPIDyglTDabiC8uyHyefJlMfppcmH0ZVxW5uko2_5XVQANmd6mzN2B3PygQ4DswHa7Adrj-E-M_GS-ZzaulOt-XUYN2na3U7mat-ZrLQq3lot4WzXKtCn_LNECby6ISsmZTVyyzy6xa1Zm1W9YbC0xhEE1l78AtVXqUnqCsKbNo29SgBQNx0RYMPvZ8KUPvrp0BDFUQrfERuoxK2MrwJdlMZFQvtAeaTpYAWC-WbS9UPnMZlvC16F1GOtb4e5vDz4bAo6KVVKoltnZ4eKHM_Bvt0aAUerabqLYx_Sau64qrbdjtjqLdoxJCOStWM14tYH20mHVTzIYbrpfkPhCVfQCjiY1bpWactBsnVePcQideHCZkik7OPpzPP_aqgU9U5phZwShl_fgTHdeWRhrQ5X10V5su-ExB7gGa8OohuqfNGKyFxA5IplOIoT1CP34HJT4AJdagxD0oMYASH4ISG1BiACXuQIkHUOIOlFiDEg-gxD0osQIlNqB8jL69O798-97WPUHsHGz9xo5FyEQiIkEIoSRyaMAoqLwsyrPQyzLKkzD0o4DQJHcTl8Ysd7gjQk4y4cWcuv4TNK3qij9FmHYNs8BAYk6QBWFGqRcIn8Q-YaErgoidojfm3acbVfol_TPfT1FiWJRqBVYppimg7y_3PrvxbM_RneHv8QJNm23LX6Lb-b4pdttXGnq_AHuOy7g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge-enhanced+multi-objective+memetic+algorithm+for+energy-efficient+flexible+job+shop+scheduling+with+limited+multi-load+automated+guided+vehicles&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Fan%2C+Lianghua&rft.au=Lei%2C+Qi&rft.au=Song%2C+Yuchuan&rft.au=Liu%2C+Yang&rft.date=2025-11-08&rft.issn=0952-1976&rft.volume=159&rft.spage=111771&rft_id=info:doi/10.1016%2Fj.engappai.2025.111771&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_111771
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon