A novel adaptive spatial–temporal cross-graph convolutional fusion learning network for skeleton-based abnormal gait recognition
Developing graph-based abnormal gait classification models with high generalization has been a challenging problem in gait analysis. In this study, a novel adaptive spatial–temporal cross-graph convolutional fusion learning network is proposed to accurately recognize skeleton-based abnormal gait pat...
Uloženo v:
| Vydáno v: | Engineering applications of artificial intelligence Ročník 154; s. 110922 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.08.2025
|
| Témata: | |
| ISSN: | 0952-1976 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Developing graph-based abnormal gait classification models with high generalization has been a challenging problem in gait analysis. In this study, a novel adaptive spatial–temporal cross-graph convolutional fusion learning network is proposed to accurately recognize skeleton-based abnormal gait patterns. In the proposed model, with an adaptive fusion adjacency matrix including self-adaptive adjacency matrices and cross-adaptive adjacency matrices, a joint–bone gait graph convolutional fusion learning algorithm is constructed to capture spatial gait abnormality features hidden in skeleton data. A temporal convolution network is then adopted to explore temporal dependencies of gait abnormality embedded in the spatial feature space. This could discover the most discriminative spatial–temporal gait abnormality representations containing richer information about interaction coupling across joints and bones for high-generalization. The skeleton data of mimic abnormal gait from 57 participants were collected to evaluate the feasibility of our model. The experimental results based on the leave-one-subject-out (LOSO) cross-validation scheme show that our proposed model reaches the optimal performance with the highest accuracy of 99.43%, and significantly outcompetes several recent state-of-the-art models. Our model can feasibly take advantage of the adaptive fusion adjacency matrix to greatly enhance the aggregation degree of joints and bones. This helps to learn excellent gait abnormality representations containing richer interaction information for high generalization while keeping a low learning complexity. Our findings hopefully provide a powerful technical solution for abnormal gait recognition in practical clinical application. |
|---|---|
| AbstractList | Developing graph-based abnormal gait classification models with high generalization has been a challenging problem in gait analysis. In this study, a novel adaptive spatial–temporal cross-graph convolutional fusion learning network is proposed to accurately recognize skeleton-based abnormal gait patterns. In the proposed model, with an adaptive fusion adjacency matrix including self-adaptive adjacency matrices and cross-adaptive adjacency matrices, a joint–bone gait graph convolutional fusion learning algorithm is constructed to capture spatial gait abnormality features hidden in skeleton data. A temporal convolution network is then adopted to explore temporal dependencies of gait abnormality embedded in the spatial feature space. This could discover the most discriminative spatial–temporal gait abnormality representations containing richer information about interaction coupling across joints and bones for high-generalization. The skeleton data of mimic abnormal gait from 57 participants were collected to evaluate the feasibility of our model. The experimental results based on the leave-one-subject-out (LOSO) cross-validation scheme show that our proposed model reaches the optimal performance with the highest accuracy of 99.43%, and significantly outcompetes several recent state-of-the-art models. Our model can feasibly take advantage of the adaptive fusion adjacency matrix to greatly enhance the aggregation degree of joints and bones. This helps to learn excellent gait abnormality representations containing richer interaction information for high generalization while keeping a low learning complexity. Our findings hopefully provide a powerful technical solution for abnormal gait recognition in practical clinical application. |
| ArticleNumber | 110922 |
| Author | Wu, Xiaoyan Wang, Liang Wu, Bin Wu, Jianning |
| Author_xml | – sequence: 1 givenname: Liang surname: Wang fullname: Wang, Liang email: qsx20221304@student.fjnu.edu.cn organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China – sequence: 2 givenname: Xiaoyan surname: Wu fullname: Wu, Xiaoyan email: c3034755@newcastle.ac.uk organization: Business School, Newcastle University, Newcastle, NE1 7RU, UK – sequence: 3 givenname: Bin surname: Wu fullname: Wu, Bin email: wubin@fjnu.edu.cn organization: Hospital of Fujian Normal University, Fuzhou 350007, China – sequence: 4 givenname: Jianning surname: Wu fullname: Wu, Jianning email: jianningwu@fjnu.edu.cn organization: College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350117, China |
| BookMark | eNqFkE1OwzAQhb0oEm3hCsgXSLGT1CE7qoo_qRIbWFsTexzcpnZku0XsEFfghpyElMKa1Yw07z3N-yZk5LxDQi44m3HGxeV6hq6Fvgc7y1k-n3HO6jwfkTGr53nG60qckkmMa8ZYcVWKMflYUOf32FHQ0Ce7Rxp7SBa6r_fPhNveB-ioCj7GrA3Qv1Dl3d53u2S9Gy5mF4eFdgjBWddSh-nVhw01PtC4wQ6Td1kDETWFxvmwHTwt2EQDKt86e4g5IycGuojnv3NKnm9vnpb32erx7mG5WGUqFzxllc51AaoBA3NVMs1qllcGiwqEGQSl5g1UQpgKqqKsaq04aCPAcM1Qz1lZTIk45v7UCWhkH-wWwpvkTB7oybX8oycP9OSR3mC8Phpx-G5vMcioLDqF2g41ktTe_hfxDXCyheQ |
| Cites_doi | 10.1016/j.artmed.2018.12.007 10.1145/3404835.3463031 10.1109/ACCESS.2019.2952065 10.1109/TMM.2022.3168137 10.3390/app13074205 10.1109/TITS.2019.2935152 10.1109/ACCESS.2020.3022818 10.1007/s13278-024-01271-4 10.1109/CVPR.2019.01230 10.3390/s16111792 10.1016/j.eswa.2021.115582 10.1016/j.gaitpost.2015.05.002 10.1109/ACCESS.2020.3013029 10.1109/TNNLS.2022.3188569 10.1016/S0966-6362(02)00089-9 10.1016/j.neucom.2021.12.004 10.1109/ACCESS.2019.2950254 10.1007/s00371-016-1330-0 10.1016/j.jbi.2016.08.003 10.1016/j.jbiomech.2010.12.013 10.21629/JSEE.2017.01.18 10.1109/TMM.2021.3068609 10.1109/CVPR.2017.143 10.1145/3308558.3313417 10.1016/j.eswa.2023.120968 10.1109/TNSRE.2024.3352004 10.1109/ACCESS.2020.2967845 10.1109/ICCV48922.2021.01311 10.1109/MMUL.2012.24 10.5435/00124635-200702000-00005 10.1016/j.compbiomed.2022.105823 10.3390/s18020676 10.1109/TNNLS.2021.3105602 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.110922 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_110922 S0952197625009224 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SST SSV SSZ T5K TN5 ~G- 29G 9DU AAQXK AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET UHS WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c261t-7d2d3acbafa5c40d09027fe37a6f2614d1ba766f7a73479dc1adf6af1d0ed5043 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001488082300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0952-1976 |
| IngestDate | Sat Nov 29 07:52:04 EST 2025 Sat Jun 21 16:52:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive learning Graph fusion learning Graph convolutional networks Abnormal gait recognition |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-7d2d3acbafa5c40d09027fe37a6f2614d1ba766f7a73479dc1adf6af1d0ed5043 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_110922 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110922 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-15 |
| PublicationDateYYYYMMDD | 2025-08-15 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Pan, Lin, Dong, Wang, Ji (b24) 2022; 148 He, Y., Liu, X., Cheung, Y.-M., Peng, S.-J., Yi, J., Fan, W., 2021. Cross-graph attention enhanced multi-modal correlation learning for fine-grained image-text retrieval. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 1865–1869. Wu, Wu (b36) 2015; 2015 Zhao, Song, Zhang, Liu, Wang, Lin, Deng, Li (b44) 2019; 21 Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7291–7299. Zeng, Liu, Yu, Wu, Huo, Han (b41) 2023 Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W., 2021. Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13359–13368. Nguyen, Huynh, Meunier (b22) 2016; 16 Gao, Gu, Ren, Zhang, Song (b9) 2019; 7 Gouwanda, Senanayake (b10) 2011; 44 Sadeghi (b27) 2003; 17 Bari, Gavrilova (b2) 2019; 7 Zhang (b42) 2012; 19 Mostayed, Mynuddin, Mazumder, Kim, Park (b21) 2008 Tian, Ma, Wu, Li (b31) 2022; 473 Wu, Huang, Wu, Dai (b34) 2023; 233 Yan, Xiong, Lin (b38) 2018; vol. 32 Hu, Wang, Martens, Hagenbuchner, Bennamoun, Tsoi, Lewis (b13) 2021; 34 Peng, He, Liu, Cheung, Xu, Cui (b25) 2022; 35 Lim, Huang, Wu, Girardi, Cammisa (b20) 2007; 15 Xu, McGorry, Chou, Lin, Chang (b37) 2015; 42 Lee, Jun, Lee, Ko, Kim (b18) 2019 Chaaraoui, Padilla-López, Flórez-Revuelta (b4) 2015; vol. 7 Kipf, Welling (b17) 2016 Khokhlova, Migniot, Morozov, Sushkova, Dipanda (b16) 2019; 94 Zhao, Lu, Chen, Liu, Wu (b43) 2017; 28 Li, Wang, Sharf, Cao, Tu, Chen, Yu (b19) 2018; 34 Shi, L., Zhang, Y., Cheng, J., Lu, H., 2019. Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12026–12035. Wang, H., Zhao, M., Xie, X., Li, W., Guo, M., 2019. Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference. pp. 3307–3313. Wu, Lian, Xu, Wu, Chen (b35) 2020; vol. 34 Guo, Shao, Zhang, Qian (b11) 2021; 24 Jun, Lee, Lee, Lee, Kim (b15) 2020; 8 Nieto-Hidalgo, Ferrández-Pastor, Valdivieso-Sarabia, Mora-Pascual, García-Chamizo (b23) 2016; 63 Jun, Lee, Lee, Lee, Kim (b14) 2020; 8 Duhme, Memmesheimer, Paulus (b7) 2021 Tian, Li, Jiang, Ma, Li, Wu, Li (b30) 2024 Saboor, Kask, Kuusik, Alam, Le Moullec, Niazi, Zoha, Ahmad (b26) 2020; 8 Anwary, Yu, Vassallo (b1) 2018; 18 Tu, Zhang, Li, Chen, Yuan (b32) 2022; 25 Yao, Mao, Luo (b39) 2019; vol. 33 Fout, Byrd, Shariat, Ben-Hur (b8) 2017; 30 Sadeghzadehyazdi, Batabyal, Acton (b28) 2021; 185 Yin, Jiang, Zheng, Yu (b40) 2023; 13 Dhawan, Sharma, Kadam, Sharma, Kumaraguru (b6) 2024; 14 Sadeghzadehyazdi (10.1016/j.engappai.2025.110922_b28) 2021; 185 Zhao (10.1016/j.engappai.2025.110922_b44) 2019; 21 Peng (10.1016/j.engappai.2025.110922_b25) 2022; 35 Tu (10.1016/j.engappai.2025.110922_b32) 2022; 25 Sadeghi (10.1016/j.engappai.2025.110922_b27) 2003; 17 Yan (10.1016/j.engappai.2025.110922_b38) 2018; vol. 32 10.1016/j.engappai.2025.110922_b3 Gouwanda (10.1016/j.engappai.2025.110922_b10) 2011; 44 Zhao (10.1016/j.engappai.2025.110922_b43) 2017; 28 10.1016/j.engappai.2025.110922_b5 Hu (10.1016/j.engappai.2025.110922_b13) 2021; 34 Xu (10.1016/j.engappai.2025.110922_b37) 2015; 42 Dhawan (10.1016/j.engappai.2025.110922_b6) 2024; 14 Lee (10.1016/j.engappai.2025.110922_b18) 2019 Kipf (10.1016/j.engappai.2025.110922_b17) 2016 Lim (10.1016/j.engappai.2025.110922_b20) 2007; 15 Gao (10.1016/j.engappai.2025.110922_b9) 2019; 7 Anwary (10.1016/j.engappai.2025.110922_b1) 2018; 18 Jun (10.1016/j.engappai.2025.110922_b14) 2020; 8 10.1016/j.engappai.2025.110922_b33 Yin (10.1016/j.engappai.2025.110922_b40) 2023; 13 10.1016/j.engappai.2025.110922_b12 Nieto-Hidalgo (10.1016/j.engappai.2025.110922_b23) 2016; 63 Saboor (10.1016/j.engappai.2025.110922_b26) 2020; 8 Nguyen (10.1016/j.engappai.2025.110922_b22) 2016; 16 Wu (10.1016/j.engappai.2025.110922_b35) 2020; vol. 34 Zhang (10.1016/j.engappai.2025.110922_b42) 2012; 19 Mostayed (10.1016/j.engappai.2025.110922_b21) 2008 Jun (10.1016/j.engappai.2025.110922_b15) 2020; 8 Tian (10.1016/j.engappai.2025.110922_b30) 2024 Li (10.1016/j.engappai.2025.110922_b19) 2018; 34 Duhme (10.1016/j.engappai.2025.110922_b7) 2021 Wu (10.1016/j.engappai.2025.110922_b36) 2015; 2015 Khokhlova (10.1016/j.engappai.2025.110922_b16) 2019; 94 10.1016/j.engappai.2025.110922_b29 Tian (10.1016/j.engappai.2025.110922_b31) 2022; 473 Fout (10.1016/j.engappai.2025.110922_b8) 2017; 30 Guo (10.1016/j.engappai.2025.110922_b11) 2021; 24 Yao (10.1016/j.engappai.2025.110922_b39) 2019; vol. 33 Chaaraoui (10.1016/j.engappai.2025.110922_b4) 2015; vol. 7 Pan (10.1016/j.engappai.2025.110922_b24) 2022; 148 Wu (10.1016/j.engappai.2025.110922_b34) 2023; 233 Bari (10.1016/j.engappai.2025.110922_b2) 2019; 7 Zeng (10.1016/j.engappai.2025.110922_b41) 2023 |
| References_xml | – volume: 8 start-page: 167830 year: 2020 end-page: 167864 ident: b26 article-title: Latest research trends in gait analysis using wearable sensors and machine learning: A systematic review publication-title: Ieee Access – volume: 25 start-page: 1819 year: 2022 end-page: 1831 ident: b32 article-title: Joint-bone fusion graph convolutional network for semi-supervised skeleton action recognition publication-title: IEEE Trans. Multimed. – reference: Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7291–7299. – reference: Chen, Y., Zhang, Z., Yuan, C., Li, B., Deng, Y., Hu, W., 2021. Channel-wise topology refinement graph convolution for skeleton-based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 13359–13368. – reference: Shi, L., Zhang, Y., Cheng, J., Lu, H., 2019. Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12026–12035. – year: 2024 ident: b30 article-title: Cross-spatiotemporal graph convolution networks for skeleton-based Parkinsonian gait MDS-UPDRS score estimation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2023 ident: b41 article-title: Video-based quantification of gait impairments in Parkinson’s disease using skeleton-silhouette fusion convolution network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 8 start-page: 19196 year: 2020 end-page: 19207 ident: b14 article-title: Feature extraction using an RNN autoencoder for skeleton-based abnormal gait recognition publication-title: IEEE Access – volume: vol. 32 year: 2018 ident: b38 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 8 start-page: 139881 year: 2020 end-page: 139891 ident: b15 article-title: Pathological gait classification using kinect v2 and gated recurrent neural networks publication-title: Ieee Access – reference: He, Y., Liu, X., Cheung, Y.-M., Peng, S.-J., Yi, J., Fan, W., 2021. Cross-graph attention enhanced multi-modal correlation learning for fine-grained image-text retrieval. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. pp. 1865–1869. – volume: 14 start-page: 114 year: 2024 ident: b6 article-title: Game-on: Graph attention network based multimodal fusion for fake news detection publication-title: Soc. Netw. Anal. Min. – volume: 63 start-page: 82 year: 2016 end-page: 89 ident: b23 article-title: A vision based proposal for classification of normal and abnormal gait using RGB camera publication-title: J. Biomed. Inform. – volume: 28 start-page: 162 year: 2017 end-page: 169 ident: b43 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. – volume: 233 year: 2023 ident: b34 article-title: A novel graph-based hybrid deep learning of cumulative GRU and deeper GCN for recognition of abnormal gait patterns using wearable sensors publication-title: Expert Syst. Appl. – volume: 148 year: 2022 ident: b24 article-title: MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder publication-title: Comput. Biol. Med. – volume: 16 start-page: 1792 year: 2016 ident: b22 article-title: Skeleton-based abnormal gait detection publication-title: Sensors – volume: 34 start-page: 1588 year: 2021 end-page: 1600 ident: b13 article-title: Graph fusion network-based multimodal learning for freezing of gait detection publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 94 start-page: 54 year: 2019 end-page: 66 ident: b16 article-title: Normal and pathological gait classification LSTM model publication-title: Artif. Intell. Med. – start-page: 542 year: 2019 end-page: 545 ident: b18 article-title: Abnormal gait recognition using 3D joint information of multiple kinects system and RNN-LSTM publication-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 42 start-page: 145 year: 2015 end-page: 151 ident: b37 article-title: Accuracy of the microsoft kinect™ for measuring gait parameters during treadmill walking publication-title: Gait Posture – volume: vol. 34 start-page: 1054 year: 2020 end-page: 1061 ident: b35 article-title: Graph convolutional networks with Markov random field reasoning for social spammer detection publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – reference: Wang, H., Zhao, M., Xie, X., Li, W., Guo, M., 2019. Knowledge graph convolutional networks for recommender systems. In: The World Wide Web Conference. pp. 3307–3313. – volume: 35 start-page: 2194 year: 2022 end-page: 2207 ident: b25 article-title: Relation-aggregated cross-graph correlation learning for fine-grained image–text retrieval publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 36 year: 2008 end-page: 40 ident: b21 article-title: Abnormal gait detection using discrete fourier transform publication-title: 2008 International Conference on Multimedia and Ubiquitous Engineering – volume: vol. 7 start-page: 1 year: 2015 end-page: 6 ident: b4 article-title: Abnormal gait detection with RGB-D devices using joint motion history features publication-title: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition – volume: 44 start-page: 972 year: 2011 end-page: 978 ident: b10 article-title: Identifying gait asymmetry using gyroscopes—A cross-correlation and normalized symmetry index approach publication-title: J. Biomech. – volume: 2015 year: 2015 ident: b36 article-title: The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm publication-title: BioMed. Res. Int. – volume: 17 start-page: 197 year: 2003 end-page: 204 ident: b27 article-title: Local or global asymmetry in gait of people without impairments publication-title: Gait Posture – start-page: 265 year: 2021 end-page: 281 ident: b7 article-title: Fusion-gcn: Multimodal action recognition using graph convolutional networks publication-title: DAGM German Conference on Pattern Recognition – year: 2016 ident: b17 article-title: Semi-supervised classification with graph convolutional networks – volume: 7 start-page: 162708 year: 2019 end-page: 162722 ident: b2 article-title: Artificial neural network based gait recognition using kinect sensor publication-title: Ieee Access – volume: 15 start-page: 107 year: 2007 end-page: 117 ident: b20 article-title: Evaluation of the elderly patient with an abnormal gait publication-title: JAAOS- J. Am. Acad. Orthop. Surg. – volume: 13 start-page: 4205 year: 2023 ident: b40 article-title: STJA-GCN: A multi-branch spatial–temporal joint attention graph convolutional network for abnormal gait recognition publication-title: Appl. Sci. – volume: 30 year: 2017 ident: b8 article-title: Protein interface prediction using graph convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 34 start-page: 229 year: 2018 end-page: 241 ident: b19 article-title: Classification of gait anomalies from kinect publication-title: Vis. Comput. – volume: 21 start-page: 3848 year: 2019 end-page: 3858 ident: b44 article-title: T-GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 18 start-page: 676 year: 2018 ident: b1 article-title: An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors publication-title: Sensors – volume: 24 start-page: 1583 year: 2021 end-page: 1594 ident: b11 article-title: Multi-scale sparse graph convolutional network for the assessment of Parkinsonian gait publication-title: IEEE Trans. Multimed. – volume: 473 start-page: 116 year: 2022 end-page: 126 ident: b31 article-title: Skeleton-based abnormal gait recognition with spatio-temporal attention enhanced gait-structural graph convolutional networks publication-title: Neurocomputing – volume: 7 start-page: 163180 year: 2019 end-page: 163190 ident: b9 article-title: Abnormal gait recognition algorithm based on LSTM-CNN fusion network publication-title: IEEE Access – volume: vol. 33 start-page: 7370 year: 2019 end-page: 7377 ident: b39 article-title: Graph convolutional networks for text classification publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – volume: 185 year: 2021 ident: b28 article-title: Modeling spatiotemporal patterns of gait anomaly with a CNN-LSTM deep neural network publication-title: Expert Syst. Appl. – volume: 19 start-page: 4 year: 2012 end-page: 10 ident: b42 article-title: Microsoft kinect sensor and its effect publication-title: IEEE Multimedia – volume: 30 year: 2017 ident: 10.1016/j.engappai.2025.110922_b8 article-title: Protein interface prediction using graph convolutional networks publication-title: Adv. Neural Inf. Process. Syst. – volume: vol. 33 start-page: 7370 year: 2019 ident: 10.1016/j.engappai.2025.110922_b39 article-title: Graph convolutional networks for text classification – volume: 94 start-page: 54 year: 2019 ident: 10.1016/j.engappai.2025.110922_b16 article-title: Normal and pathological gait classification LSTM model publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.12.007 – volume: vol. 32 year: 2018 ident: 10.1016/j.engappai.2025.110922_b38 article-title: Spatial temporal graph convolutional networks for skeleton-based action recognition – ident: 10.1016/j.engappai.2025.110922_b12 doi: 10.1145/3404835.3463031 – volume: 7 start-page: 162708 year: 2019 ident: 10.1016/j.engappai.2025.110922_b2 article-title: Artificial neural network based gait recognition using kinect sensor publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2952065 – volume: 25 start-page: 1819 year: 2022 ident: 10.1016/j.engappai.2025.110922_b32 article-title: Joint-bone fusion graph convolutional network for semi-supervised skeleton action recognition publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2022.3168137 – volume: vol. 34 start-page: 1054 year: 2020 ident: 10.1016/j.engappai.2025.110922_b35 article-title: Graph convolutional networks with Markov random field reasoning for social spammer detection – volume: 13 start-page: 4205 issue: 7 year: 2023 ident: 10.1016/j.engappai.2025.110922_b40 article-title: STJA-GCN: A multi-branch spatial–temporal joint attention graph convolutional network for abnormal gait recognition publication-title: Appl. Sci. doi: 10.3390/app13074205 – volume: 21 start-page: 3848 issue: 9 year: 2019 ident: 10.1016/j.engappai.2025.110922_b44 article-title: T-GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2935152 – start-page: 36 year: 2008 ident: 10.1016/j.engappai.2025.110922_b21 article-title: Abnormal gait detection using discrete fourier transform – volume: 8 start-page: 167830 year: 2020 ident: 10.1016/j.engappai.2025.110922_b26 article-title: Latest research trends in gait analysis using wearable sensors and machine learning: A systematic review publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3022818 – volume: 14 start-page: 114 issue: 1 year: 2024 ident: 10.1016/j.engappai.2025.110922_b6 article-title: Game-on: Graph attention network based multimodal fusion for fake news detection publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-024-01271-4 – ident: 10.1016/j.engappai.2025.110922_b29 doi: 10.1109/CVPR.2019.01230 – volume: 16 start-page: 1792 issue: 11 year: 2016 ident: 10.1016/j.engappai.2025.110922_b22 article-title: Skeleton-based abnormal gait detection publication-title: Sensors doi: 10.3390/s16111792 – volume: 185 year: 2021 ident: 10.1016/j.engappai.2025.110922_b28 article-title: Modeling spatiotemporal patterns of gait anomaly with a CNN-LSTM deep neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115582 – volume: 42 start-page: 145 issue: 2 year: 2015 ident: 10.1016/j.engappai.2025.110922_b37 article-title: Accuracy of the microsoft kinect™ for measuring gait parameters during treadmill walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2015.05.002 – volume: 8 start-page: 139881 year: 2020 ident: 10.1016/j.engappai.2025.110922_b15 article-title: Pathological gait classification using kinect v2 and gated recurrent neural networks publication-title: Ieee Access doi: 10.1109/ACCESS.2020.3013029 – volume: 35 start-page: 2194 issue: 2 year: 2022 ident: 10.1016/j.engappai.2025.110922_b25 article-title: Relation-aggregated cross-graph correlation learning for fine-grained image–text retrieval publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3188569 – year: 2016 ident: 10.1016/j.engappai.2025.110922_b17 – start-page: 265 year: 2021 ident: 10.1016/j.engappai.2025.110922_b7 article-title: Fusion-gcn: Multimodal action recognition using graph convolutional networks – volume: 17 start-page: 197 issue: 3 year: 2003 ident: 10.1016/j.engappai.2025.110922_b27 article-title: Local or global asymmetry in gait of people without impairments publication-title: Gait Posture doi: 10.1016/S0966-6362(02)00089-9 – volume: 473 start-page: 116 year: 2022 ident: 10.1016/j.engappai.2025.110922_b31 article-title: Skeleton-based abnormal gait recognition with spatio-temporal attention enhanced gait-structural graph convolutional networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.12.004 – volume: 7 start-page: 163180 year: 2019 ident: 10.1016/j.engappai.2025.110922_b9 article-title: Abnormal gait recognition algorithm based on LSTM-CNN fusion network publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950254 – volume: 34 start-page: 229 year: 2018 ident: 10.1016/j.engappai.2025.110922_b19 article-title: Classification of gait anomalies from kinect publication-title: Vis. Comput. doi: 10.1007/s00371-016-1330-0 – volume: 63 start-page: 82 year: 2016 ident: 10.1016/j.engappai.2025.110922_b23 article-title: A vision based proposal for classification of normal and abnormal gait using RGB camera publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.08.003 – volume: 44 start-page: 972 issue: 5 year: 2011 ident: 10.1016/j.engappai.2025.110922_b10 article-title: Identifying gait asymmetry using gyroscopes—A cross-correlation and normalized symmetry index approach publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.12.013 – volume: 28 start-page: 162 issue: 1 year: 2017 ident: 10.1016/j.engappai.2025.110922_b43 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.01.18 – volume: 24 start-page: 1583 year: 2021 ident: 10.1016/j.engappai.2025.110922_b11 article-title: Multi-scale sparse graph convolutional network for the assessment of Parkinsonian gait publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2021.3068609 – ident: 10.1016/j.engappai.2025.110922_b3 doi: 10.1109/CVPR.2017.143 – ident: 10.1016/j.engappai.2025.110922_b33 doi: 10.1145/3308558.3313417 – volume: 233 year: 2023 ident: 10.1016/j.engappai.2025.110922_b34 article-title: A novel graph-based hybrid deep learning of cumulative GRU and deeper GCN for recognition of abnormal gait patterns using wearable sensors publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120968 – volume: vol. 7 start-page: 1 year: 2015 ident: 10.1016/j.engappai.2025.110922_b4 article-title: Abnormal gait detection with RGB-D devices using joint motion history features – year: 2024 ident: 10.1016/j.engappai.2025.110922_b30 article-title: Cross-spatiotemporal graph convolution networks for skeleton-based Parkinsonian gait MDS-UPDRS score estimation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3352004 – volume: 8 start-page: 19196 year: 2020 ident: 10.1016/j.engappai.2025.110922_b14 article-title: Feature extraction using an RNN autoencoder for skeleton-based abnormal gait recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2967845 – start-page: 542 year: 2019 ident: 10.1016/j.engappai.2025.110922_b18 article-title: Abnormal gait recognition using 3D joint information of multiple kinects system and RNN-LSTM – ident: 10.1016/j.engappai.2025.110922_b5 doi: 10.1109/ICCV48922.2021.01311 – volume: 19 start-page: 4 issue: 2 year: 2012 ident: 10.1016/j.engappai.2025.110922_b42 article-title: Microsoft kinect sensor and its effect publication-title: IEEE Multimedia doi: 10.1109/MMUL.2012.24 – volume: 15 start-page: 107 issue: 2 year: 2007 ident: 10.1016/j.engappai.2025.110922_b20 article-title: Evaluation of the elderly patient with an abnormal gait publication-title: JAAOS- J. Am. Acad. Orthop. Surg. doi: 10.5435/00124635-200702000-00005 – volume: 148 year: 2022 ident: 10.1016/j.engappai.2025.110922_b24 article-title: MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105823 – volume: 2015 issue: 1 year: 2015 ident: 10.1016/j.engappai.2025.110922_b36 article-title: The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm publication-title: BioMed. Res. Int. – year: 2023 ident: 10.1016/j.engappai.2025.110922_b41 article-title: Video-based quantification of gait impairments in Parkinson’s disease using skeleton-silhouette fusion convolution network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 18 start-page: 676 issue: 2 year: 2018 ident: 10.1016/j.engappai.2025.110922_b1 article-title: An automatic gait feature extraction method for identifying gait asymmetry using wearable sensors publication-title: Sensors doi: 10.3390/s18020676 – volume: 34 start-page: 1588 issue: 3 year: 2021 ident: 10.1016/j.engappai.2025.110922_b13 article-title: Graph fusion network-based multimodal learning for freezing of gait detection publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3105602 |
| SSID | ssj0003846 |
| Score | 2.4335232 |
| Snippet | Developing graph-based abnormal gait classification models with high generalization has been a challenging problem in gait analysis. In this study, a novel... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110922 |
| SubjectTerms | Abnormal gait recognition Adaptive learning Graph convolutional networks Graph fusion learning |
| Title | A novel adaptive spatial–temporal cross-graph convolutional fusion learning network for skeleton-based abnormal gait recognition |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.110922 |
| Volume | 154 |
| WOSCitedRecordID | wos001488082300002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0952-1976 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003846 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMXylO0PLQHbpZD_MrGxxQVQVVVHArKzRp715GLtYnyUrlV_AX-Dr-mv6SzL9spFdADFysaxWs783nnkW9mCHkbM0hKNir8gIccA5Qk91MoYr-IY3zNUyECzfL9esJOT0eTSfq51_vlamE2NZNydHGRzv-rqlGGylals3dQd7MoCvAzKh2PqHY8_pPix56cbUTtAYe55gUtFWkaakdriGw3qtrTFtLXLas1-9zelippXKskmhspMfWkIYtrTuLyG1oqNXhYGUDuQS6V21t7U6hWXsNHstp2Of-266HX_ctcsxAWmq6kh4d0-oO2mX6zG50gjqeNcK1Ekwpm31t0G-FhdUNwXJmxTN38RpiohK2p8GwSlaEfpGZKTLNnJ3Fn11VdU011828GweQmzvtCTvHxoOqrS_TbE7Y7cN-wjA1f0VHhzjO3TqbWycw698huyJIU99Td8aejyXHjCUQjUyjmnqBToX77Hd3uHHUcnrNH5KGNVOjYIOwx6Qn5hOzZqIVam7BEkRsM4mRPyY8x1RikDoPUYvDq8qdDH-2gj26hjxr0UYc-atFHEX10G33UoY8q9NEO-p6RLx-Ozt5_9O2wD7_AIH7lM9wrIihyKCEp4gFXfGFWiojBsMQvxDzIgQ2HJQOmip95EQAvh1AGfCC4asP3nOzImRQvCEUbI9gAWKiigTRK8hJjZowUeJQLBnGwT965Xzmbm54u2Z81vE9Sp4zMeqbG48wQZ3859-DOV3tJHrQvwiuys1qsxWtyv9isquXijQXZNc1fvIM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+adaptive+spatial%E2%80%93temporal+cross-graph+convolutional+fusion+learning+network+for+skeleton-based+abnormal+gait+recognition&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wang%2C+Liang&rft.au=Wu%2C+Xiaoyan&rft.au=Wu%2C+Bin&rft.au=Wu%2C+Jianning&rft.date=2025-08-15&rft.issn=0952-1976&rft.volume=154&rft.spage=110922&rft_id=info:doi/10.1016%2Fj.engappai.2025.110922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_110922 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |