Inversion-derived VD-MLI interlayer pressure prediction based on gas transport mechanisms

In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform distribution. This is primarily attributed to the combined effects of flow resistance, material outgassing, and cryo-adsorption. Consequently, the int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy Jg. 184; S. 151833
Hauptverfasser: wu, Hao, Tan, Hongbo, Xu, Zhangliang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 03.11.2025
Schlagworte:
ISSN:0360-3199
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform distribution. This is primarily attributed to the combined effects of flow resistance, material outgassing, and cryo-adsorption. Consequently, the interlayer pressure is often significantly higher than the pressure within the vacuum chamber. A clear understanding of the gas transport mechanisms within the interlayers of MLI is critical for enhancing the vacuum lifetime of liquid hydrogen storage tanks and reducing their manufacturing costs. This study developed a gas transport equation for MLI that incorporates both interlayer adsorption effects and variable density factors. By solving a Layer-By-Layer (LBL) model, a dataset of interlayer pressure-temperature samples was established through simulation. Subsequently, interlayer pressure was inversely determined from measured interlayer temperatures, utilizing this sample dataset to address the issue of missing boundary conditions in the governing equations for interlayer gas dynamics. Investigations conducted using a liquid hydrogen calorimeter tested two Variable Density MLI (VD-MLI) configurations. The inversion results revealed that with an increase in the porosity of the reflective shields, the interlayer pressure distribution transitioned from an “L”-shape towards a linear profile. The peak interlayer pressures were found to be 43.43 and 17.71 times the chamber pressure, respectively. The heat flux densities corresponding to the inverse solutions for these two VD-MLI configurations deviated from the experimental results by 13.3 % and 8.7 %, respectively. The interlayer gas transport equation and inversion algorithm proposed in this study enable the efficient and accurate determination of interlayer pressure distribution within VD-MLI. This provides a methodological breakthrough and essential technical tools to support the insulation design, vacuum longevity prediction, and reliability enhancement of liquid hydrogen storage and transportation systems. •A novel gas transport equation for VD-MLI is developed, coupling cryo-adsorption and layer density effects.•A TSVD-LSQR based inversion method is proposed to determine interlayer pressure with ill-defined boundary conditions.•Increased porosity is experimentally proven to transition the interlayer pressure profile from “∩“-shaped to “L”-shaped.
AbstractList In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform distribution. This is primarily attributed to the combined effects of flow resistance, material outgassing, and cryo-adsorption. Consequently, the interlayer pressure is often significantly higher than the pressure within the vacuum chamber. A clear understanding of the gas transport mechanisms within the interlayers of MLI is critical for enhancing the vacuum lifetime of liquid hydrogen storage tanks and reducing their manufacturing costs. This study developed a gas transport equation for MLI that incorporates both interlayer adsorption effects and variable density factors. By solving a Layer-By-Layer (LBL) model, a dataset of interlayer pressure-temperature samples was established through simulation. Subsequently, interlayer pressure was inversely determined from measured interlayer temperatures, utilizing this sample dataset to address the issue of missing boundary conditions in the governing equations for interlayer gas dynamics. Investigations conducted using a liquid hydrogen calorimeter tested two Variable Density MLI (VD-MLI) configurations. The inversion results revealed that with an increase in the porosity of the reflective shields, the interlayer pressure distribution transitioned from an “L”-shape towards a linear profile. The peak interlayer pressures were found to be 43.43 and 17.71 times the chamber pressure, respectively. The heat flux densities corresponding to the inverse solutions for these two VD-MLI configurations deviated from the experimental results by 13.3 % and 8.7 %, respectively. The interlayer gas transport equation and inversion algorithm proposed in this study enable the efficient and accurate determination of interlayer pressure distribution within VD-MLI. This provides a methodological breakthrough and essential technical tools to support the insulation design, vacuum longevity prediction, and reliability enhancement of liquid hydrogen storage and transportation systems. •A novel gas transport equation for VD-MLI is developed, coupling cryo-adsorption and layer density effects.•A TSVD-LSQR based inversion method is proposed to determine interlayer pressure with ill-defined boundary conditions.•Increased porosity is experimentally proven to transition the interlayer pressure profile from “∩“-shaped to “L”-shaped.
ArticleNumber 151833
Author Xu, Zhangliang
wu, Hao
Tan, Hongbo
Author_xml – sequence: 1
  givenname: Hao
  surname: wu
  fullname: wu, Hao
  email: wuhao526@stu.xjtu.edu.cn
– sequence: 2
  givenname: Hongbo
  orcidid: 0000-0001-6782-1549
  surname: Tan
  fullname: Tan, Hongbo
  email: hongbotan@xjtu.edu.cn
– sequence: 3
  givenname: Zhangliang
  surname: Xu
  fullname: Xu, Zhangliang
BookMark eNqFkM1OwzAQhH0oEm3hFVBeIMGOEye5gcpPKxVxASROln821FHrVLuhUt-eVIUzp53DzGj2m7FJ7CMwdiN4JrhQt10Wus3RQ4Qs53mZiVLUUk7YlEvFUyma5pLNiDrORcWLZso-V_EASKGPqQcMB_DJx0P6sl4lIQ6AW3METPYIRN8IJ-GDG0Z3Yg2N3lF8GUoGNJH2PQ7JDtzGxEA7umIXrdkSXP_eOXt_enxbLNP16_Nqcb9OXa7EkFZFa2UhFHdlXUkANS7LhSvbSom6drlsvbLWCFfVtrHgfKHyxhprlSt8ZaScM3XuddgTIbR6j2Fn8KgF1ycoutN_UPQJij5DGYN35yCM6w4BUJMLEN34IoIbtO_DfxU_6C90Kw
Cites_doi 10.1016/j.vacuum.2021.110113
10.2514/3.6860
10.2514/3.49550
10.1088/1757-899X/1301/1/012067
10.1016/j.cryogenics.2023.103699
10.1145/355984.355989
10.1016/0360-3199(86)90104-7
10.1016/j.cryogenics.2016.10.006
10.1016/0011-2275(90)90234-4
10.2514/3.30193
ContentType Journal Article
Copyright 2025 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2025 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2025.151833
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijhydene_2025_151833
S0360319925048360
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
~HD
29J
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
LY6
M41
R2-
SAC
SCB
T9H
WUQ
ID FETCH-LOGICAL-c261t-74fb34160c5873ee601721c5f76188c23fd6bba1c78b9becd4629babb6c4d7a33
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598169700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Sat Nov 29 06:49:36 EST 2025
Sat Nov 15 16:53:07 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Variable density multi-layer insulation
Liquid hydrogen storage
Vacuum-cryogenic gas transport mechanisms
Inversion algorithm
Inter-layer pressure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-74fb34160c5873ee601721c5f76188c23fd6bba1c78b9becd4629babb6c4d7a33
ORCID 0000-0001-6782-1549
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2025_151833
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_151833
PublicationCentury 2000
PublicationDate 2025-11-03
PublicationDateYYYYMMDD 2025-11-03
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-03
  day: 03
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Keller, Cunnington (bib1) 1974
Paige, Saunders (bib23) 1982; 8
Keller, Cunnington (bib14) 1971
Brown, Hastings (bib9) 2004
Maynard, Louriou, Estebe (bib19) 2024; 1301
Martin, Hastings (bib24) 2001
Black, Glaser (bib3) 1961
Wang, Huang, Li (bib11) 2016; 80
Lin (bib15) 1973; 11
Lin (bib16) 1974; 12
Hastings, Martin (bib10) 1998
Glaser (bib7) 1962
(bib4) 1964
Taylor, Alderson, Kalyanam (bib12) 1986; 11
Hinckley (bib8) 1964
Wu, Li, Ding (bib21) 2023; 132
Eizinger, ObertScheider, Stipsitz (bib18) 2021; 187
Black, Glaser (bib6) 1966
Bapat, Narayankhedkar, Lukose (bib17) 1990; 30
McIntosh (bib20) 1994
Glassford (bib22) 1970
(bib2) 2009
(bib5) 1968
Price (bib13) 1967
Hastings (10.1016/j.ijhydene.2025.151833_bib10) 1998
Paige (10.1016/j.ijhydene.2025.151833_bib23) 1982; 8
Brown (10.1016/j.ijhydene.2025.151833_bib9) 2004
Lin (10.1016/j.ijhydene.2025.151833_bib15) 1973; 11
Black (10.1016/j.ijhydene.2025.151833_bib6) 1966
(10.1016/j.ijhydene.2025.151833_bib5) 1968
Lin (10.1016/j.ijhydene.2025.151833_bib16) 1974; 12
Martin (10.1016/j.ijhydene.2025.151833_bib24) 2001
Glaser (10.1016/j.ijhydene.2025.151833_bib7) 1962
Maynard (10.1016/j.ijhydene.2025.151833_bib19) 2024; 1301
Wang (10.1016/j.ijhydene.2025.151833_bib11) 2016; 80
(10.1016/j.ijhydene.2025.151833_bib4) 1964
Black (10.1016/j.ijhydene.2025.151833_bib3) 1961
Eizinger (10.1016/j.ijhydene.2025.151833_bib18) 2021; 187
Glassford (10.1016/j.ijhydene.2025.151833_bib22) 1970
Price (10.1016/j.ijhydene.2025.151833_bib13) 1967
Keller (10.1016/j.ijhydene.2025.151833_bib1) 1974
Wu (10.1016/j.ijhydene.2025.151833_bib21) 2023; 132
(10.1016/j.ijhydene.2025.151833_bib2) 2009
Keller (10.1016/j.ijhydene.2025.151833_bib14) 1971
Hinckley (10.1016/j.ijhydene.2025.151833_bib8) 1964
Taylor (10.1016/j.ijhydene.2025.151833_bib12) 1986; 11
Bapat (10.1016/j.ijhydene.2025.151833_bib17) 1990; 30
McIntosh (10.1016/j.ijhydene.2025.151833_bib20) 1994
References_xml – year: 1974
  ident: bib1
  article-title: Thermal Performance of Multi-layer insulations, final Report[R]
  publication-title: Washington, D.C.: NASA Technical Report NAS3-14377
– year: 1962
  ident: bib7
  article-title: Design of thermal protection systems for liquid hydrogen Tanks[R]
  publication-title: Washington, D.C.: NASA technical report NASA-CR62859
– start-page: 1464
  year: 1970
  end-page: 1468
  ident: bib22
  article-title: Outgassing behavior of Multilayer insulation materials
  publication-title: J Spacecraft Rockets
– volume: 8
  start-page: 43
  year: 1982
  end-page: 71
  ident: bib23
  article-title: LSQR: an algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans Math Software
– start-page: 26
  year: 1966
  end-page: 34
  ident: bib6
  article-title: Effects of compressive loads on the heat flux through multilayer insulation
  publication-title: Advances in cryogenic Engineering[J]
– volume: 1301
  year: 2024
  ident: bib19
  article-title: Model based exploration of physical parameters for liquid hydrogen System insulation performance
  publication-title: IOP Conf Ser Mater Sci Eng
– volume: 30
  start-page: 700
  year: 1990
  end-page: 710
  ident: bib17
  article-title: Performance prediction of multilay er insulation
  publication-title: Cryogenics
– year: 1964
  ident: bib4
  article-title: Basic investigation of multi-layer insulation Systems[R]
  publication-title: Washington, D.C.: NASA technical Report, NASA-CR-54191
– volume: 80
  start-page: 154
  year: 2016
  end-page: 163
  ident: bib11
  article-title: Optimization of variable density multilayer insulation for cryogenic application and experimental validation
  publication-title: Cryogenics
– year: 2009
  ident: bib2
  article-title: Standard practice for evacuated reflective insulation in Cryogenic Service[P]
– year: 1964
  ident: bib8
  article-title: Liquid propellant losses during space Flight[R]
  publication-title: Washington, D.C.: NASA technical report NASA CR-53336
– year: 1994
  ident: bib20
  article-title: Layer by layer MLI calculation using a separated mode equation[M]
  publication-title: Advances in cryogenic engineering
– year: 1971
  ident: bib14
  article-title: Thermal performance of multi-layer insulationss, final Report[R]
  publication-title: Washington, D.C.: NASA technical report NASA CR-72605
– year: 1998
  ident: bib10
  article-title: Experimental testing of a Foam/Multilayer insulation (FMLI) Thermal Control System (TCS) for use on a cryogenic upper stage space technology applications international Forum[C]
  publication-title: 1st Conference on Orbital Vehicles
– volume: 187
  start-page: 110
  year: 2021
  end-page: 113
  ident: bib18
  article-title: Monte Carlo simulations of residual gas pumping out of multi-layer insulation
  publication-title: Vacuum
– year: 2004
  ident: bib9
  article-title: A hedayat analytical modeling and Test correlation of variable density multilayer insulation for cryogenic Storage[Z]
– volume: 11
  year: 1986
  ident: bib12
  article-title: Technical and economic assessment of methods for the storage of large quantities of hydrogen
  publication-title: Int J Hydrogen Energy
– start-page: 662
  year: 1967
  end-page: 670
  ident: bib13
  article-title: Measuring the gas pressure within a high-performance insulation blanket
  publication-title: Adv Cryog Eng
– year: 2001
  ident: bib24
  article-title: Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate[R]
  publication-title: Washington, D.C.: NASA technical report NASA/TM-2001-211089
– volume: 132
  year: 2023
  ident: bib21
  article-title: Calculation and analysis of optimal layer density for variable density multilayer insulation based on layer by layer model and Lockheed equation
  publication-title: Cryogenics
– year: 1968
  ident: bib5
  article-title: Advanced studies on multilayer insulation Systems[R]
  publication-title: Washington, D.C.: NASA technical report NASA-CR-72368
– volume: 11
  start-page: 995
  year: 1973
  end-page: 1000
  ident: bib15
  article-title: Analysis of gas flow through a multilayer insulation system
  publication-title: AIAA J
– start-page: 32
  year: 1961
  end-page: 41
  ident: bib3
  article-title: Progress report on development of high-efficiency insulation
  publication-title: Advances in cryogenic Engineering[J]
– volume: 12
  start-page: 1590
  year: 1974
  end-page: 1592
  ident: bib16
  article-title: Outgas dominated pressure distribution in a multilayer insulation System
  publication-title: AIAA J
– volume: 187
  start-page: 110
  year: 2021
  ident: 10.1016/j.ijhydene.2025.151833_bib18
  article-title: Monte Carlo simulations of residual gas pumping out of multi-layer insulation
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2021.110113
– year: 2004
  ident: 10.1016/j.ijhydene.2025.151833_bib9
– year: 1971
  ident: 10.1016/j.ijhydene.2025.151833_bib14
  article-title: Thermal performance of multi-layer insulationss, final Report[R]
– volume: 11
  start-page: 995
  issue: 7
  year: 1973
  ident: 10.1016/j.ijhydene.2025.151833_bib15
  article-title: Analysis of gas flow through a multilayer insulation system
  publication-title: AIAA J
  doi: 10.2514/3.6860
– year: 1968
  ident: 10.1016/j.ijhydene.2025.151833_bib5
  article-title: Advanced studies on multilayer insulation Systems[R]
– year: 1998
  ident: 10.1016/j.ijhydene.2025.151833_bib10
  article-title: Experimental testing of a Foam/Multilayer insulation (FMLI) Thermal Control System (TCS) for use on a cryogenic upper stage space technology applications international Forum[C]
  publication-title: 1st Conference on Orbital Vehicles
– year: 1974
  ident: 10.1016/j.ijhydene.2025.151833_bib1
  article-title: Thermal Performance of Multi-layer insulations, final Report[R]
– year: 2009
  ident: 10.1016/j.ijhydene.2025.151833_bib2
– year: 1964
  ident: 10.1016/j.ijhydene.2025.151833_bib4
  article-title: Basic investigation of multi-layer insulation Systems[R]
– year: 1994
  ident: 10.1016/j.ijhydene.2025.151833_bib20
  article-title: Layer by layer MLI calculation using a separated mode equation[M]
– volume: 12
  start-page: 1590
  issue: 11
  year: 1974
  ident: 10.1016/j.ijhydene.2025.151833_bib16
  article-title: Outgas dominated pressure distribution in a multilayer insulation System
  publication-title: AIAA J
  doi: 10.2514/3.49550
– volume: 1301
  year: 2024
  ident: 10.1016/j.ijhydene.2025.151833_bib19
  article-title: Model based exploration of physical parameters for liquid hydrogen System insulation performance
  publication-title: IOP Conf Ser Mater Sci Eng
  doi: 10.1088/1757-899X/1301/1/012067
– volume: 132
  year: 2023
  ident: 10.1016/j.ijhydene.2025.151833_bib21
  article-title: Calculation and analysis of optimal layer density for variable density multilayer insulation based on layer by layer model and Lockheed equation
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2023.103699
– volume: 8
  start-page: 43
  issue: 1
  year: 1982
  ident: 10.1016/j.ijhydene.2025.151833_bib23
  article-title: LSQR: an algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Trans Math Software
  doi: 10.1145/355984.355989
– start-page: 32
  year: 1961
  ident: 10.1016/j.ijhydene.2025.151833_bib3
  article-title: Progress report on development of high-efficiency insulation
– start-page: 26
  year: 1966
  ident: 10.1016/j.ijhydene.2025.151833_bib6
  article-title: Effects of compressive loads on the heat flux through multilayer insulation
– volume: 11
  year: 1986
  ident: 10.1016/j.ijhydene.2025.151833_bib12
  article-title: Technical and economic assessment of methods for the storage of large quantities of hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/0360-3199(86)90104-7
– volume: 80
  start-page: 154
  issue: 1
  year: 2016
  ident: 10.1016/j.ijhydene.2025.151833_bib11
  article-title: Optimization of variable density multilayer insulation for cryogenic application and experimental validation
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2016.10.006
– volume: 30
  start-page: 700
  issue: 8
  year: 1990
  ident: 10.1016/j.ijhydene.2025.151833_bib17
  article-title: Performance prediction of multilay er insulation
  publication-title: Cryogenics
  doi: 10.1016/0011-2275(90)90234-4
– year: 1962
  ident: 10.1016/j.ijhydene.2025.151833_bib7
  article-title: Design of thermal protection systems for liquid hydrogen Tanks[R]
– start-page: 1464
  year: 1970
  ident: 10.1016/j.ijhydene.2025.151833_bib22
  article-title: Outgassing behavior of Multilayer insulation materials
  publication-title: J Spacecraft Rockets
  doi: 10.2514/3.30193
– start-page: 662
  issue: 13
  year: 1967
  ident: 10.1016/j.ijhydene.2025.151833_bib13
  article-title: Measuring the gas pressure within a high-performance insulation blanket
  publication-title: Adv Cryog Eng
– year: 2001
  ident: 10.1016/j.ijhydene.2025.151833_bib24
  article-title: Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate[R]
– year: 1964
  ident: 10.1016/j.ijhydene.2025.151833_bib8
  article-title: Liquid propellant losses during space Flight[R]
SSID ssj0017049
Score 2.4855614
Snippet In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 151833
SubjectTerms Inter-layer pressure
Inversion algorithm
Liquid hydrogen storage
Vacuum-cryogenic gas transport mechanisms
Variable density multi-layer insulation
Title Inversion-derived VD-MLI interlayer pressure prediction based on gas transport mechanisms
URI https://dx.doi.org/10.1016/j.ijhydene.2025.151833
Volume 184
WOSCitedRecordID wos001598169700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017049
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYocOkB8SgqFJAPvaEN2ZftPaIWBKhFlYAqPa38SkjUblASKP33nbF34xVEolXVi2VZu7Y13-54ZjwPQt5zOCJZ1megm6QcGtaNgOfZyMScWQEidM58sQl-eSl6veJLXRV16soJ8KoSj4_F3X-FGsYAbAyd_Qu455PCAPQBdGgBdmj_CHjMnOFsYJGB5R5AoPz6Mfr86dxlhph8lyBjHzrvV7w6gI4Z-mrheJ4ZvDsYyClWjvA5zw9_WIwNHk7rrOaj4PkeDImt9BO3v8xkPMDSAS6osMHz57074-Q4WAocuzsbVwM1H-y5p5wNG60vg7ZJIsldbF4a7GRNrExwTPLxWcjxfTmkwHuzhXzcmxRGneEItg0b7uAyHZBOhE-b8SRH9hVOjnNjQjYMS3lFVhKeF8DmVo7PT3oX84slXmtEzWZaQeOLV1ssr7RkkOt1slYrD_TYg75Blmy1SV63UkpukW_P4Kcefhrgpw38NMBPHfwUOgA_ncNPA_xvyM3pyfWHs6gunxFpUItnEc_6CmQU1tW54Km1zKn7Ou9zFguhk7RvmFIy1lyoAn5lk7GkUFIppjPDZZpuk-VqXNm3hDJpY5O4a2qVwdFa5F2ZahtbaYXqZnqHHDVEKu98lpSycR8clQ1ZSyRr6cm6Q4qGlmUt63kZroRP4IV3d__h3XdomEEvTnRI2iPLs8m93Ser-mE2nE4O6q_lN02Lf2E
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion-derived+VD-MLI+interlayer+pressure+prediction+based+on+gas+transport+mechanisms&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=wu%2C+Hao&rft.au=Tan%2C+Hongbo&rft.au=Xu%2C+Zhangliang&rft.date=2025-11-03&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=184&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.151833&rft.externalDocID=S0360319925048360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon