Inversion-derived VD-MLI interlayer pressure prediction based on gas transport mechanisms
In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform distribution. This is primarily attributed to the combined effects of flow resistance, material outgassing, and cryo-adsorption. Consequently, the int...
Gespeichert in:
| Veröffentlicht in: | International journal of hydrogen energy Jg. 184; S. 151833 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
03.11.2025
|
| Schlagworte: | |
| ISSN: | 0360-3199 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform distribution. This is primarily attributed to the combined effects of flow resistance, material outgassing, and cryo-adsorption. Consequently, the interlayer pressure is often significantly higher than the pressure within the vacuum chamber. A clear understanding of the gas transport mechanisms within the interlayers of MLI is critical for enhancing the vacuum lifetime of liquid hydrogen storage tanks and reducing their manufacturing costs. This study developed a gas transport equation for MLI that incorporates both interlayer adsorption effects and variable density factors. By solving a Layer-By-Layer (LBL) model, a dataset of interlayer pressure-temperature samples was established through simulation. Subsequently, interlayer pressure was inversely determined from measured interlayer temperatures, utilizing this sample dataset to address the issue of missing boundary conditions in the governing equations for interlayer gas dynamics. Investigations conducted using a liquid hydrogen calorimeter tested two Variable Density MLI (VD-MLI) configurations. The inversion results revealed that with an increase in the porosity of the reflective shields, the interlayer pressure distribution transitioned from an “L”-shape towards a linear profile. The peak interlayer pressures were found to be 43.43 and 17.71 times the chamber pressure, respectively. The heat flux densities corresponding to the inverse solutions for these two VD-MLI configurations deviated from the experimental results by 13.3 % and 8.7 %, respectively. The interlayer gas transport equation and inversion algorithm proposed in this study enable the efficient and accurate determination of interlayer pressure distribution within VD-MLI. This provides a methodological breakthrough and essential technical tools to support the insulation design, vacuum longevity prediction, and reliability enhancement of liquid hydrogen storage and transportation systems.
•A novel gas transport equation for VD-MLI is developed, coupling cryo-adsorption and layer density effects.•A TSVD-LSQR based inversion method is proposed to determine interlayer pressure with ill-defined boundary conditions.•Increased porosity is experimentally proven to transition the interlayer pressure profile from “∩“-shaped to “L”-shaped. |
|---|---|
| AbstractList | In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform distribution. This is primarily attributed to the combined effects of flow resistance, material outgassing, and cryo-adsorption. Consequently, the interlayer pressure is often significantly higher than the pressure within the vacuum chamber. A clear understanding of the gas transport mechanisms within the interlayers of MLI is critical for enhancing the vacuum lifetime of liquid hydrogen storage tanks and reducing their manufacturing costs. This study developed a gas transport equation for MLI that incorporates both interlayer adsorption effects and variable density factors. By solving a Layer-By-Layer (LBL) model, a dataset of interlayer pressure-temperature samples was established through simulation. Subsequently, interlayer pressure was inversely determined from measured interlayer temperatures, utilizing this sample dataset to address the issue of missing boundary conditions in the governing equations for interlayer gas dynamics. Investigations conducted using a liquid hydrogen calorimeter tested two Variable Density MLI (VD-MLI) configurations. The inversion results revealed that with an increase in the porosity of the reflective shields, the interlayer pressure distribution transitioned from an “L”-shape towards a linear profile. The peak interlayer pressures were found to be 43.43 and 17.71 times the chamber pressure, respectively. The heat flux densities corresponding to the inverse solutions for these two VD-MLI configurations deviated from the experimental results by 13.3 % and 8.7 %, respectively. The interlayer gas transport equation and inversion algorithm proposed in this study enable the efficient and accurate determination of interlayer pressure distribution within VD-MLI. This provides a methodological breakthrough and essential technical tools to support the insulation design, vacuum longevity prediction, and reliability enhancement of liquid hydrogen storage and transportation systems.
•A novel gas transport equation for VD-MLI is developed, coupling cryo-adsorption and layer density effects.•A TSVD-LSQR based inversion method is proposed to determine interlayer pressure with ill-defined boundary conditions.•Increased porosity is experimentally proven to transition the interlayer pressure profile from “∩“-shaped to “L”-shaped. |
| ArticleNumber | 151833 |
| Author | Xu, Zhangliang wu, Hao Tan, Hongbo |
| Author_xml | – sequence: 1 givenname: Hao surname: wu fullname: wu, Hao email: wuhao526@stu.xjtu.edu.cn – sequence: 2 givenname: Hongbo orcidid: 0000-0001-6782-1549 surname: Tan fullname: Tan, Hongbo email: hongbotan@xjtu.edu.cn – sequence: 3 givenname: Zhangliang surname: Xu fullname: Xu, Zhangliang |
| BookMark | eNqFkM1OwzAQhH0oEm3hFVBeIMGOEye5gcpPKxVxASROln821FHrVLuhUt-eVIUzp53DzGj2m7FJ7CMwdiN4JrhQt10Wus3RQ4Qs53mZiVLUUk7YlEvFUyma5pLNiDrORcWLZso-V_EASKGPqQcMB_DJx0P6sl4lIQ6AW3METPYIRN8IJ-GDG0Z3Yg2N3lF8GUoGNJH2PQ7JDtzGxEA7umIXrdkSXP_eOXt_enxbLNP16_Nqcb9OXa7EkFZFa2UhFHdlXUkANS7LhSvbSom6drlsvbLWCFfVtrHgfKHyxhprlSt8ZaScM3XuddgTIbR6j2Fn8KgF1ycoutN_UPQJij5DGYN35yCM6w4BUJMLEN34IoIbtO_DfxU_6C90Kw |
| Cites_doi | 10.1016/j.vacuum.2021.110113 10.2514/3.6860 10.2514/3.49550 10.1088/1757-899X/1301/1/012067 10.1016/j.cryogenics.2023.103699 10.1145/355984.355989 10.1016/0360-3199(86)90104-7 10.1016/j.cryogenics.2016.10.006 10.1016/0011-2275(90)90234-4 10.2514/3.30193 |
| ContentType | Journal Article |
| Copyright | 2025 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2025 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2025.151833 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_ijhydene_2025_151833 S0360319925048360 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- ~HD 29J 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF LY6 M41 R2- SAC SCB T9H WUQ |
| ID | FETCH-LOGICAL-c261t-74fb34160c5873ee601721c5f76188c23fd6bba1c78b9becd4629babb6c4d7a33 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001598169700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Sat Nov 29 06:49:36 EST 2025 Sat Nov 15 16:53:07 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variable density multi-layer insulation Liquid hydrogen storage Vacuum-cryogenic gas transport mechanisms Inversion algorithm Inter-layer pressure |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-74fb34160c5873ee601721c5f76188c23fd6bba1c78b9becd4629babb6c4d7a33 |
| ORCID | 0000-0001-6782-1549 |
| ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2025_151833 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_151833 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-03 |
| PublicationDateYYYYMMDD | 2025-11-03 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Keller, Cunnington (bib1) 1974 Paige, Saunders (bib23) 1982; 8 Keller, Cunnington (bib14) 1971 Brown, Hastings (bib9) 2004 Maynard, Louriou, Estebe (bib19) 2024; 1301 Martin, Hastings (bib24) 2001 Black, Glaser (bib3) 1961 Wang, Huang, Li (bib11) 2016; 80 Lin (bib15) 1973; 11 Lin (bib16) 1974; 12 Hastings, Martin (bib10) 1998 Glaser (bib7) 1962 (bib4) 1964 Taylor, Alderson, Kalyanam (bib12) 1986; 11 Hinckley (bib8) 1964 Wu, Li, Ding (bib21) 2023; 132 Eizinger, ObertScheider, Stipsitz (bib18) 2021; 187 Black, Glaser (bib6) 1966 Bapat, Narayankhedkar, Lukose (bib17) 1990; 30 McIntosh (bib20) 1994 Glassford (bib22) 1970 (bib2) 2009 (bib5) 1968 Price (bib13) 1967 Hastings (10.1016/j.ijhydene.2025.151833_bib10) 1998 Paige (10.1016/j.ijhydene.2025.151833_bib23) 1982; 8 Brown (10.1016/j.ijhydene.2025.151833_bib9) 2004 Lin (10.1016/j.ijhydene.2025.151833_bib15) 1973; 11 Black (10.1016/j.ijhydene.2025.151833_bib6) 1966 (10.1016/j.ijhydene.2025.151833_bib5) 1968 Lin (10.1016/j.ijhydene.2025.151833_bib16) 1974; 12 Martin (10.1016/j.ijhydene.2025.151833_bib24) 2001 Glaser (10.1016/j.ijhydene.2025.151833_bib7) 1962 Maynard (10.1016/j.ijhydene.2025.151833_bib19) 2024; 1301 Wang (10.1016/j.ijhydene.2025.151833_bib11) 2016; 80 (10.1016/j.ijhydene.2025.151833_bib4) 1964 Black (10.1016/j.ijhydene.2025.151833_bib3) 1961 Eizinger (10.1016/j.ijhydene.2025.151833_bib18) 2021; 187 Glassford (10.1016/j.ijhydene.2025.151833_bib22) 1970 Price (10.1016/j.ijhydene.2025.151833_bib13) 1967 Keller (10.1016/j.ijhydene.2025.151833_bib1) 1974 Wu (10.1016/j.ijhydene.2025.151833_bib21) 2023; 132 (10.1016/j.ijhydene.2025.151833_bib2) 2009 Keller (10.1016/j.ijhydene.2025.151833_bib14) 1971 Hinckley (10.1016/j.ijhydene.2025.151833_bib8) 1964 Taylor (10.1016/j.ijhydene.2025.151833_bib12) 1986; 11 Bapat (10.1016/j.ijhydene.2025.151833_bib17) 1990; 30 McIntosh (10.1016/j.ijhydene.2025.151833_bib20) 1994 |
| References_xml | – year: 1974 ident: bib1 article-title: Thermal Performance of Multi-layer insulations, final Report[R] publication-title: Washington, D.C.: NASA Technical Report NAS3-14377 – year: 1962 ident: bib7 article-title: Design of thermal protection systems for liquid hydrogen Tanks[R] publication-title: Washington, D.C.: NASA technical report NASA-CR62859 – start-page: 1464 year: 1970 end-page: 1468 ident: bib22 article-title: Outgassing behavior of Multilayer insulation materials publication-title: J Spacecraft Rockets – volume: 8 start-page: 43 year: 1982 end-page: 71 ident: bib23 article-title: LSQR: an algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans Math Software – start-page: 26 year: 1966 end-page: 34 ident: bib6 article-title: Effects of compressive loads on the heat flux through multilayer insulation publication-title: Advances in cryogenic Engineering[J] – volume: 1301 year: 2024 ident: bib19 article-title: Model based exploration of physical parameters for liquid hydrogen System insulation performance publication-title: IOP Conf Ser Mater Sci Eng – volume: 30 start-page: 700 year: 1990 end-page: 710 ident: bib17 article-title: Performance prediction of multilay er insulation publication-title: Cryogenics – year: 1964 ident: bib4 article-title: Basic investigation of multi-layer insulation Systems[R] publication-title: Washington, D.C.: NASA technical Report, NASA-CR-54191 – volume: 80 start-page: 154 year: 2016 end-page: 163 ident: bib11 article-title: Optimization of variable density multilayer insulation for cryogenic application and experimental validation publication-title: Cryogenics – year: 2009 ident: bib2 article-title: Standard practice for evacuated reflective insulation in Cryogenic Service[P] – year: 1964 ident: bib8 article-title: Liquid propellant losses during space Flight[R] publication-title: Washington, D.C.: NASA technical report NASA CR-53336 – year: 1994 ident: bib20 article-title: Layer by layer MLI calculation using a separated mode equation[M] publication-title: Advances in cryogenic engineering – year: 1971 ident: bib14 article-title: Thermal performance of multi-layer insulationss, final Report[R] publication-title: Washington, D.C.: NASA technical report NASA CR-72605 – year: 1998 ident: bib10 article-title: Experimental testing of a Foam/Multilayer insulation (FMLI) Thermal Control System (TCS) for use on a cryogenic upper stage space technology applications international Forum[C] publication-title: 1st Conference on Orbital Vehicles – volume: 187 start-page: 110 year: 2021 end-page: 113 ident: bib18 article-title: Monte Carlo simulations of residual gas pumping out of multi-layer insulation publication-title: Vacuum – year: 2004 ident: bib9 article-title: A hedayat analytical modeling and Test correlation of variable density multilayer insulation for cryogenic Storage[Z] – volume: 11 year: 1986 ident: bib12 article-title: Technical and economic assessment of methods for the storage of large quantities of hydrogen publication-title: Int J Hydrogen Energy – start-page: 662 year: 1967 end-page: 670 ident: bib13 article-title: Measuring the gas pressure within a high-performance insulation blanket publication-title: Adv Cryog Eng – year: 2001 ident: bib24 article-title: Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate[R] publication-title: Washington, D.C.: NASA technical report NASA/TM-2001-211089 – volume: 132 year: 2023 ident: bib21 article-title: Calculation and analysis of optimal layer density for variable density multilayer insulation based on layer by layer model and Lockheed equation publication-title: Cryogenics – year: 1968 ident: bib5 article-title: Advanced studies on multilayer insulation Systems[R] publication-title: Washington, D.C.: NASA technical report NASA-CR-72368 – volume: 11 start-page: 995 year: 1973 end-page: 1000 ident: bib15 article-title: Analysis of gas flow through a multilayer insulation system publication-title: AIAA J – start-page: 32 year: 1961 end-page: 41 ident: bib3 article-title: Progress report on development of high-efficiency insulation publication-title: Advances in cryogenic Engineering[J] – volume: 12 start-page: 1590 year: 1974 end-page: 1592 ident: bib16 article-title: Outgas dominated pressure distribution in a multilayer insulation System publication-title: AIAA J – volume: 187 start-page: 110 year: 2021 ident: 10.1016/j.ijhydene.2025.151833_bib18 article-title: Monte Carlo simulations of residual gas pumping out of multi-layer insulation publication-title: Vacuum doi: 10.1016/j.vacuum.2021.110113 – year: 2004 ident: 10.1016/j.ijhydene.2025.151833_bib9 – year: 1971 ident: 10.1016/j.ijhydene.2025.151833_bib14 article-title: Thermal performance of multi-layer insulationss, final Report[R] – volume: 11 start-page: 995 issue: 7 year: 1973 ident: 10.1016/j.ijhydene.2025.151833_bib15 article-title: Analysis of gas flow through a multilayer insulation system publication-title: AIAA J doi: 10.2514/3.6860 – year: 1968 ident: 10.1016/j.ijhydene.2025.151833_bib5 article-title: Advanced studies on multilayer insulation Systems[R] – year: 1998 ident: 10.1016/j.ijhydene.2025.151833_bib10 article-title: Experimental testing of a Foam/Multilayer insulation (FMLI) Thermal Control System (TCS) for use on a cryogenic upper stage space technology applications international Forum[C] publication-title: 1st Conference on Orbital Vehicles – year: 1974 ident: 10.1016/j.ijhydene.2025.151833_bib1 article-title: Thermal Performance of Multi-layer insulations, final Report[R] – year: 2009 ident: 10.1016/j.ijhydene.2025.151833_bib2 – year: 1964 ident: 10.1016/j.ijhydene.2025.151833_bib4 article-title: Basic investigation of multi-layer insulation Systems[R] – year: 1994 ident: 10.1016/j.ijhydene.2025.151833_bib20 article-title: Layer by layer MLI calculation using a separated mode equation[M] – volume: 12 start-page: 1590 issue: 11 year: 1974 ident: 10.1016/j.ijhydene.2025.151833_bib16 article-title: Outgas dominated pressure distribution in a multilayer insulation System publication-title: AIAA J doi: 10.2514/3.49550 – volume: 1301 year: 2024 ident: 10.1016/j.ijhydene.2025.151833_bib19 article-title: Model based exploration of physical parameters for liquid hydrogen System insulation performance publication-title: IOP Conf Ser Mater Sci Eng doi: 10.1088/1757-899X/1301/1/012067 – volume: 132 year: 2023 ident: 10.1016/j.ijhydene.2025.151833_bib21 article-title: Calculation and analysis of optimal layer density for variable density multilayer insulation based on layer by layer model and Lockheed equation publication-title: Cryogenics doi: 10.1016/j.cryogenics.2023.103699 – volume: 8 start-page: 43 issue: 1 year: 1982 ident: 10.1016/j.ijhydene.2025.151833_bib23 article-title: LSQR: an algorithm for sparse linear equations and sparse least squares publication-title: ACM Trans Math Software doi: 10.1145/355984.355989 – start-page: 32 year: 1961 ident: 10.1016/j.ijhydene.2025.151833_bib3 article-title: Progress report on development of high-efficiency insulation – start-page: 26 year: 1966 ident: 10.1016/j.ijhydene.2025.151833_bib6 article-title: Effects of compressive loads on the heat flux through multilayer insulation – volume: 11 year: 1986 ident: 10.1016/j.ijhydene.2025.151833_bib12 article-title: Technical and economic assessment of methods for the storage of large quantities of hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/0360-3199(86)90104-7 – volume: 80 start-page: 154 issue: 1 year: 2016 ident: 10.1016/j.ijhydene.2025.151833_bib11 article-title: Optimization of variable density multilayer insulation for cryogenic application and experimental validation publication-title: Cryogenics doi: 10.1016/j.cryogenics.2016.10.006 – volume: 30 start-page: 700 issue: 8 year: 1990 ident: 10.1016/j.ijhydene.2025.151833_bib17 article-title: Performance prediction of multilay er insulation publication-title: Cryogenics doi: 10.1016/0011-2275(90)90234-4 – year: 1962 ident: 10.1016/j.ijhydene.2025.151833_bib7 article-title: Design of thermal protection systems for liquid hydrogen Tanks[R] – start-page: 1464 year: 1970 ident: 10.1016/j.ijhydene.2025.151833_bib22 article-title: Outgassing behavior of Multilayer insulation materials publication-title: J Spacecraft Rockets doi: 10.2514/3.30193 – start-page: 662 issue: 13 year: 1967 ident: 10.1016/j.ijhydene.2025.151833_bib13 article-title: Measuring the gas pressure within a high-performance insulation blanket publication-title: Adv Cryog Eng – year: 2001 ident: 10.1016/j.ijhydene.2025.151833_bib24 article-title: Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate[R] – year: 1964 ident: 10.1016/j.ijhydene.2025.151833_bib8 article-title: Liquid propellant losses during space Flight[R] |
| SSID | ssj0017049 |
| Score | 2.4855614 |
| Snippet | In ground-based liquid hydrogen storage and transportation systems, the interlayer pressure within Multilayer Insulation (MLI) exhibits a non-uniform... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 151833 |
| SubjectTerms | Inter-layer pressure Inversion algorithm Liquid hydrogen storage Vacuum-cryogenic gas transport mechanisms Variable density multi-layer insulation |
| Title | Inversion-derived VD-MLI interlayer pressure prediction based on gas transport mechanisms |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2025.151833 |
| Volume | 184 |
| WOSCitedRecordID | wos001598169700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017049 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYocOkB8SgqFJAPvaEN2ZftPaIWBKhFlYAqPa38SkjUblASKP33nbF34xVEolXVi2VZu7Y13-54ZjwPQt5zOCJZ1megm6QcGtaNgOfZyMScWQEidM58sQl-eSl6veJLXRV16soJ8KoSj4_F3X-FGsYAbAyd_Qu455PCAPQBdGgBdmj_CHjMnOFsYJGB5R5AoPz6Mfr86dxlhph8lyBjHzrvV7w6gI4Z-mrheJ4ZvDsYyClWjvA5zw9_WIwNHk7rrOaj4PkeDImt9BO3v8xkPMDSAS6osMHz57074-Q4WAocuzsbVwM1H-y5p5wNG60vg7ZJIsldbF4a7GRNrExwTPLxWcjxfTmkwHuzhXzcmxRGneEItg0b7uAyHZBOhE-b8SRH9hVOjnNjQjYMS3lFVhKeF8DmVo7PT3oX84slXmtEzWZaQeOLV1ssr7RkkOt1slYrD_TYg75Blmy1SV63UkpukW_P4Kcefhrgpw38NMBPHfwUOgA_ncNPA_xvyM3pyfWHs6gunxFpUItnEc_6CmQU1tW54Km1zKn7Ou9zFguhk7RvmFIy1lyoAn5lk7GkUFIppjPDZZpuk-VqXNm3hDJpY5O4a2qVwdFa5F2ZahtbaYXqZnqHHDVEKu98lpSycR8clQ1ZSyRr6cm6Q4qGlmUt63kZroRP4IV3d__h3XdomEEvTnRI2iPLs8m93Ser-mE2nE4O6q_lN02Lf2E |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inversion-derived+VD-MLI+interlayer+pressure+prediction+based+on+gas+transport+mechanisms&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=wu%2C+Hao&rft.au=Tan%2C+Hongbo&rft.au=Xu%2C+Zhangliang&rft.date=2025-11-03&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=184&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.151833&rft.externalDocID=S0360319925048360 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |