A convolutional autoencoder-based method for learning and ranking personal daylighting preference

•Novel method for leaning personal binary daylighting preference.•Two-stage training method: feature extraction module and preference inference module.•CAE-based feature extractor designed to monitor unseen luminance map characteristics.•Inference module: classifying daylighting preference and estim...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment Vol. 285; p. 113595
Main Authors: Mah, Dongjun, Tzempelikos, Athanasios
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2025
Subjects:
ISSN:0360-1323
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Novel method for leaning personal binary daylighting preference.•Two-stage training method: feature extraction module and preference inference module.•CAE-based feature extractor designed to monitor unseen luminance map characteristics.•Inference module: classifying daylighting preference and estimating ordinal ranking. This paper presents a two-stage training method for inferring the relative daylight preference from pairs of luminance maps using convolutional autoencoder (CAE) and relative ranking concepts. It combines an updatable CAE-based feature extraction module and a binary daylighting preference inference module including relative ranking inference. A Python-based target area selection program was developed to enable the CAE model to compress the window and background areas separately from the input luminance map, ensuring that the compressed latent pixels represent these two areas distinctly. The developed CAE model was trained first using luminance maps collected from 11 individuals in private offices. Then, the trained CAE model's encoder was transferred to be a feature extractor of the personal visual preference learning models. Each model was trained to classify binary preference feedback between pairs of visual scenes and infer ordinal ranking scores for luminance distribution characteristics. The results showed that personal daylighting preference could be classified with over 85 % accuracy, and the model successfully identified the most preferred luminance scene by comparing ranking scores. In addition, the trained CAE model was able to recognize luminance maps containing significantly different characteristics by monitoring the reconstruction performance. Compared to a convolutional neural network (CNN)-based approach, the CAE-based model could leverage the condensed pixels and compare real-time luminance map characteristics with the selected conditions using L2 norm and Euclidean distance metrics, which can guide visual adjustments towards the most preferred daylighting conditions. Therefore, this study presents a significant step towards preference-based daylighting control.
AbstractList •Novel method for leaning personal binary daylighting preference.•Two-stage training method: feature extraction module and preference inference module.•CAE-based feature extractor designed to monitor unseen luminance map characteristics.•Inference module: classifying daylighting preference and estimating ordinal ranking. This paper presents a two-stage training method for inferring the relative daylight preference from pairs of luminance maps using convolutional autoencoder (CAE) and relative ranking concepts. It combines an updatable CAE-based feature extraction module and a binary daylighting preference inference module including relative ranking inference. A Python-based target area selection program was developed to enable the CAE model to compress the window and background areas separately from the input luminance map, ensuring that the compressed latent pixels represent these two areas distinctly. The developed CAE model was trained first using luminance maps collected from 11 individuals in private offices. Then, the trained CAE model's encoder was transferred to be a feature extractor of the personal visual preference learning models. Each model was trained to classify binary preference feedback between pairs of visual scenes and infer ordinal ranking scores for luminance distribution characteristics. The results showed that personal daylighting preference could be classified with over 85 % accuracy, and the model successfully identified the most preferred luminance scene by comparing ranking scores. In addition, the trained CAE model was able to recognize luminance maps containing significantly different characteristics by monitoring the reconstruction performance. Compared to a convolutional neural network (CNN)-based approach, the CAE-based model could leverage the condensed pixels and compare real-time luminance map characteristics with the selected conditions using L2 norm and Euclidean distance metrics, which can guide visual adjustments towards the most preferred daylighting conditions. Therefore, this study presents a significant step towards preference-based daylighting control.
ArticleNumber 113595
Author Tzempelikos, Athanasios
Mah, Dongjun
Author_xml – sequence: 1
  givenname: Dongjun
  orcidid: 0000-0002-5181-2944
  surname: Mah
  fullname: Mah, Dongjun
  email: dmah@purdue.edu
  organization: Lyles School of Civil and Construction Engineering, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN 47907, USA
– sequence: 2
  givenname: Athanasios
  orcidid: 0000-0001-6788-8372
  surname: Tzempelikos
  fullname: Tzempelikos, Athanasios
  organization: Lyles School of Civil and Construction Engineering, Purdue University, 550 Stadium Mall Dr., West Lafayette, IN 47907, USA
BookMark eNqFkM1uwjAQhH2gUoH2Faq8QNK1HSf4VoT6JyH10p4tx96AabCRHZB4-ybQnnva1WpmdvTNyMQHj4Q8UCgo0OpxVzRH11n0p4IBEwWlXEgxIVPgFeSUM35LZintYBBLXk6JXmYm-FPojr0LXneZPvYBvQkWY97ohDbbY78NNmtDzDrU0Tu_ybS3WdT-e9wPGNPFavW5c5ttfzlGbDEOQXhHblrdJbz_nXPy9fL8uXrL1x-v76vlOjeson1etdDIUojaSESQ0jKorWElWDQLgEZwy4FZUTJqgJm6NXVTCaElb5tFZVo-J9U118SQ0vBeHaLb63hWFNQIR-3UHxw1wlFXOIPx6WrEod3JYVTJuLG5dRFNr2xw_0X8AI59d18
Cites_doi 10.1016/j.enbuild.2022.111893
10.1016/j.autcon.2021.103812
10.1016/j.enbuild.2020.110228
10.1016/j.buildenv.2020.107212
10.1016/j.enbuild.2014.03.035
10.1016/j.enbuild.2020.110026
10.1016/j.buildenv.2021.108066
10.1177/14771535221117365
10.1016/j.enbuild.2019.03.046
10.1016/j.buildenv.2016.09.009
10.1080/09613210701544061
10.1016/j.buildenv.2016.08.005
10.1016/j.buildenv.2012.09.017
10.1016/j.enbuild.2013.04.020
10.1016/j.enbuild.2024.114130
10.1016/j.enbuild.2023.113738
10.1016/j.enbuild.2023.112876
10.1016/j.enbuild.2023.113876
10.1191/1365782804li115oa
10.1016/j.enbuild.2018.01.024
10.1177/136578280603800210
10.1016/j.enbuild.2013.11.053
10.1016/j.autcon.2024.105537
10.1016/j.buildenv.2021.107623
10.1016/j.buildenv.2020.107013
10.3390/jimaging4010019
10.1016/j.buildenv.2016.09.018
10.1016/j.applthermaleng.2023.121545
10.1016/j.buildenv.2022.108857
10.1016/j.buildenv.2019.106538
10.1016/j.autcon.2020.103370
10.1016/j.enbuild.2017.02.058
10.1016/j.enbuild.2006.03.017
10.1080/15502724.2014.881720
10.1016/j.buildenv.2021.108498
10.1016/j.enbuild.2023.113051
10.1016/j.buildenv.2020.107397
10.1016/j.apenergy.2017.12.005
10.1080/15502724.2015.1062392
10.1016/j.enbuild.2024.114071
10.1016/j.scs.2018.12.025
10.1582/LEUKOS.2010.07.02003
10.3390/buildings9100219
10.1016/j.buildenv.2016.11.024
10.1016/j.scs.2022.104007
10.1016/j.buildenv.2024.112128
10.1007/s11263-015-0816-y
10.1016/j.enbuild.2017.11.054
10.1080/15502724.2019.1684319
10.1016/j.enbuild.2024.114575
10.1016/j.buildenv.2021.108346
10.1016/j.buildenv.2018.04.022
10.1177/1477153512458671
10.1582/LEUKOS.2007.04.02.002
10.1016/j.enbuild.2018.08.010
10.3368/le.86.3.530
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2025.113595
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_buildenv_2025_113595
S0360132325010674
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
~HD
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEGFY
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c261t-6f0b94557c9ee099d207dc240dec800b53d302d5421c02c7fc7b655a93fb86cf3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001586723600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-1323
IngestDate Sat Nov 29 07:00:56 EST 2025
Sat Oct 25 17:17:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Luminance map
Ordinal ranking
Personal daylighting preference
Convolutional autoencoder (CAE)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-6f0b94557c9ee099d207dc240dec800b53d302d5421c02c7fc7b655a93fb86cf3
ORCID 0000-0002-5181-2944
0000-0001-6788-8372
ParticipantIDs crossref_primary_10_1016_j_buildenv_2025_113595
elsevier_sciencedirect_doi_10_1016_j_buildenv_2025_113595
PublicationCentury 2000
PublicationDate 2025-11-01
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zou, Zhou, Yang, Spanos (bib0039) 2018; 177
Yoon (bib0046) 2020; 221
Hu, Wang, Tan, Cai (bib0045) 2023; 301
Xiong, Awalgaonkar, Tzempelikos, Bilionis, Performance, Laboratories, Jischke, Lafayette (bib0031) 2020; 181
Fan, Painter, Mardaljevic (bib0013) 2009
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0060) 2015; 115
Zaikina, Matusiak, Klöckner (bib0007) 2015; 11
Fan, Xiao, Zhao, Wang (bib0055) 2018; 211
Van Den Wymelenberg, Inanici (bib0005) 2014; 10
Banihashemi, Weber, Lang (bib0035) 2022; 207
Choi, Yoon (bib0043) 2021; 203
Tra, Amayri, Bouguila (bib0048) 2022; 259
Van Den Wymelenberg, Inanici, Johnson (bib0008) 2010; 7
Li, Song, Luo (bib0064) 2017
Moeck (bib0010) 2007; 4
Konis (bib0024) 2014; 77
Kim, Song, Lee, Lee (bib0040) 2024; 311
Gao, Qian, Dong, Liu (bib0037) 2024; 320
Hirning, Isoardi, Garcia-Hansen (bib0022) 2017; 113
Bonfigli, Felicetti, Principi, Fagiani, Squartini, Piazza (bib0056) 2018; 158
Krizhevsky, Sutskever, Hinton (bib0059) 2012; 25
Xiang, Fu, Zhou, Wang, Zhang, Hu, Xu, Liu, Liu, Ma (bib0036) 2021; 187
Kim, Tzempelikos (bib0068) 2022; 213
Xiong, Tzempelikos, Bilionis, Awalgaonkar, Lee, Konstantzos, Sadeghi, Karava (bib0030) 2018; 138
Mahić, Galicinao, Van Den Wymelenberg (bib0025) 2017; 113
Liguori, Quintana, Fu, Miller, Frisch, van Treeck (bib0057) 2024; 310
Li, Li, Yang, Dong (bib0042) 2019; 45
Garretón, Colombo, Pattini (bib0021) 2018; 166
Gautam, Jebelli (bib0053) 2024; 165
de Vries, Heynderickx, de Kort (bib0002) 2022; 54
Suk, Schiler, Kensek (bib0026) 2013; 64
Liang, Kamat, Menassa (bib0054) 2020; 120
(bib0061) 2018
Konstantzos, Tzempelikos (bib0019) 2017; 113
Lindelöf, Morel (bib0029) 2008; 36
Wagdy, Hansen, Isoardi, Allan (bib0020) 2017; 2017
Loy-Benitez, Li, Nam, Yoo (bib0049) 2020; 52
Ware (bib0006) 2012
Inanici (bib0009) 2006; 38
Van Den Wymelenberg, Inanici (bib0032) 2016; 12
Aggarwal, Hinneburg, Keim (bib0034) 2001; 8
Cuttle (bib0003) 2004; 36
Suk, Schiler (bib0015) 2013; 45
Fu, Quintana, Nagy, Miller (bib0050) 2024; 236
Wienold, Christoffersen (bib0017) 2006; 38
Hirning, Isoardi, Cowling (bib0018) 2014; 70
Marty, Fontoynont, Christoffersen (bib0004) 2003
Xiao, Khayatian (bib0038) 2020; 224
Liguori, Markovic, Dam, Frisch, van Treeck, Causone (bib0058) 2021; 191
Wang, Li, Liang, Yoon, Mu, Liu (bib0044) 2023; 290
Kim, Tzempelikos (bib0069) 2021; 129
Xiong, Tzempelikos, Bilionis, Karava (bib0001) 2019; 193
Mah, Tzempelikos (bib0033) 2024; 266
Li, Yuan, Liu, Han, Stouffs (bib0067) 2024; 305
Jiang, Risbeck, Samy, Zhang, Cyrus, Lee (bib0047) 2023; 285
Dai, He, Sun (bib0065) 2015
Liu, Pang, Karlsson, Gong (bib0051) 2020; 183
Araya, Grolinger, ElYamany, Capretz, Bitsuamlak (bib0052) 2017; 144
Kruisselbrink, Dangol, van Loenen (bib0062) 2020; 169
Suk, Schiler, Kensek (bib0027) 2017; 113
Kingsley, C, Brown (bib0028) 2010; 86
Pierson, Cauwerts, Bodart, Wienold (bib0014) 2021; 17
Prechelt (bib0063) 2012
Konis (bib0023) 2013; 59
He, Li, Gao, Chen, Wu, Cheng, Lin (bib0066) 2021; 206
Cauwerts (bib0012) 2018; 4
Yang, Li, Chen, Hong (bib0041) 2022; 84
Wagdy, Garcia-Hansen, Isoardi, Pham (bib0016) 2019; 9
Tyukhova, Waters (bib0011) 2014; 10
Tyukhova (10.1016/j.buildenv.2025.113595_bib0011) 2014; 10
Mah (10.1016/j.buildenv.2025.113595_bib0033) 2024; 266
Bonfigli (10.1016/j.buildenv.2025.113595_bib0056) 2018; 158
Xiong (10.1016/j.buildenv.2025.113595_bib0031) 2020; 181
Garretón (10.1016/j.buildenv.2025.113595_bib0021) 2018; 166
Zaikina (10.1016/j.buildenv.2025.113595_bib0007) 2015; 11
Liu (10.1016/j.buildenv.2025.113595_bib0051) 2020; 183
Liguori (10.1016/j.buildenv.2025.113595_bib0057) 2024; 310
Prechelt (10.1016/j.buildenv.2025.113595_bib0063) 2012
Inanici (10.1016/j.buildenv.2025.113595_bib0009) 2006; 38
Cuttle (10.1016/j.buildenv.2025.113595_bib0003) 2004; 36
Fu (10.1016/j.buildenv.2025.113595_bib0050) 2024; 236
Gao (10.1016/j.buildenv.2025.113595_bib0037) 2024; 320
Wienold (10.1016/j.buildenv.2025.113595_bib0017) 2006; 38
Xiong (10.1016/j.buildenv.2025.113595_bib0001) 2019; 193
Cauwerts (10.1016/j.buildenv.2025.113595_bib0012) 2018; 4
Fan (10.1016/j.buildenv.2025.113595_bib0055) 2018; 211
Moeck (10.1016/j.buildenv.2025.113595_bib0010) 2007; 4
Tra (10.1016/j.buildenv.2025.113595_bib0048) 2022; 259
Suk (10.1016/j.buildenv.2025.113595_bib0015) 2013; 45
Banihashemi (10.1016/j.buildenv.2025.113595_bib0035) 2022; 207
Ware (10.1016/j.buildenv.2025.113595_bib0006) 2012
Araya (10.1016/j.buildenv.2025.113595_bib0052) 2017; 144
Yang (10.1016/j.buildenv.2025.113595_bib0041) 2022; 84
Kim (10.1016/j.buildenv.2025.113595_bib0040) 2024; 311
Suk (10.1016/j.buildenv.2025.113595_bib0027) 2017; 113
Li (10.1016/j.buildenv.2025.113595_bib0067) 2024; 305
Marty (10.1016/j.buildenv.2025.113595_bib0004) 2003
Van Den Wymelenberg (10.1016/j.buildenv.2025.113595_bib0008) 2010; 7
Choi (10.1016/j.buildenv.2025.113595_bib0043) 2021; 203
Gautam (10.1016/j.buildenv.2025.113595_bib0053) 2024; 165
Liguori (10.1016/j.buildenv.2025.113595_bib0058) 2021; 191
He (10.1016/j.buildenv.2025.113595_bib0066) 2021; 206
Jiang (10.1016/j.buildenv.2025.113595_bib0047) 2023; 285
Krizhevsky (10.1016/j.buildenv.2025.113595_bib0059) 2012; 25
Liang (10.1016/j.buildenv.2025.113595_bib0054) 2020; 120
Zou (10.1016/j.buildenv.2025.113595_bib0039) 2018; 177
Konis (10.1016/j.buildenv.2025.113595_bib0024) 2014; 77
Xiong (10.1016/j.buildenv.2025.113595_bib0030) 2018; 138
Suk (10.1016/j.buildenv.2025.113595_bib0026) 2013; 64
Kruisselbrink (10.1016/j.buildenv.2025.113595_bib0062) 2020; 169
de Vries (10.1016/j.buildenv.2025.113595_bib0002) 2022; 54
Loy-Benitez (10.1016/j.buildenv.2025.113595_bib0049) 2020; 52
Pierson (10.1016/j.buildenv.2025.113595_bib0014) 2021; 17
Mahić (10.1016/j.buildenv.2025.113595_bib0025) 2017; 113
Wagdy (10.1016/j.buildenv.2025.113595_bib0016) 2019; 9
Kim (10.1016/j.buildenv.2025.113595_bib0068) 2022; 213
Van Den Wymelenberg (10.1016/j.buildenv.2025.113595_bib0032) 2016; 12
Li (10.1016/j.buildenv.2025.113595_bib0042) 2019; 45
Li (10.1016/j.buildenv.2025.113595_bib0064) 2017
Lindelöf (10.1016/j.buildenv.2025.113595_bib0029) 2008; 36
Kingsley (10.1016/j.buildenv.2025.113595_bib0028) 2010; 86
Konstantzos (10.1016/j.buildenv.2025.113595_bib0019) 2017; 113
Xiao (10.1016/j.buildenv.2025.113595_bib0038) 2020; 224
Yoon (10.1016/j.buildenv.2025.113595_bib0046) 2020; 221
Fan (10.1016/j.buildenv.2025.113595_bib0013) 2009
Hirning (10.1016/j.buildenv.2025.113595_bib0018) 2014; 70
Wagdy (10.1016/j.buildenv.2025.113595_bib0020) 2017; 2017
Aggarwal (10.1016/j.buildenv.2025.113595_bib0034) 2001; 8
Xiang (10.1016/j.buildenv.2025.113595_bib0036) 2021; 187
Hirning (10.1016/j.buildenv.2025.113595_bib0022) 2017; 113
Konis (10.1016/j.buildenv.2025.113595_bib0023) 2013; 59
Van Den Wymelenberg (10.1016/j.buildenv.2025.113595_bib0005) 2014; 10
Wang (10.1016/j.buildenv.2025.113595_bib0044) 2023; 290
Hu (10.1016/j.buildenv.2025.113595_bib0045) 2023; 301
Russakovsky (10.1016/j.buildenv.2025.113595_bib0060) 2015; 115
Kim (10.1016/j.buildenv.2025.113595_bib0069) 2021; 129
Dai (10.1016/j.buildenv.2025.113595_bib0065) 2015
References_xml – volume: 211
  start-page: 1123
  year: 2018
  end-page: 1135
  ident: bib0055
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy.
– volume: 36
  start-page: 83
  year: 2008
  end-page: 96
  ident: bib0029
  article-title: Bayesian estimation of visual discomfort
  publication-title: Build. Res. Inf.
– volume: 11
  start-page: 193
  year: 2015
  end-page: 207
  ident: bib0007
  article-title: Luminance-based measures of shape and detail distinctness of 3D objects as important predictors of light modeling concept. Results of a full-scale study pairing proposed measures with subjective responses
  publication-title: LEUKOS - J. Illum. Eng. Soc. North Am.
– start-page: 3617
  year: 2017
  end-page: 3625
  ident: bib0064
  article-title: Improving pairwise ranking for multi-label image classification
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit
– volume: 4
  year: 2018
  ident: bib0012
  article-title: Application of high-dynamic range imaging techniques in architecture : a step toward high-quality daylit interiors?
  publication-title: J. Imaging.
– volume: 166
  start-page: 145
  year: 2018
  end-page: 153
  ident: bib0021
  article-title: A global evaluation of discomfort glare metrics in real office spaces with presence of direct sunlight
  publication-title: Energy Build.
– volume: 305
  year: 2024
  ident: bib0067
  article-title: A predictive model for daylight performance based on multimodal generative adversarial networks at the early design stage
  publication-title: Energy Build.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 24
  ident: bib0016
  article-title: A parametric method for remapping and calibrating fisheye images for glare analysis
  publication-title: Buildings
– volume: 193
  start-page: 111
  year: 2019
  end-page: 126
  ident: bib0001
  article-title: A personalized daylighting control approach to dynamically optimize visual satisfaction and lighting energy use
  publication-title: Energy Build.
– volume: 45
  start-page: 450
  year: 2013
  end-page: 463
  ident: bib0015
  article-title: Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis
  publication-title: Light. Res. Technol.
– volume: 77
  start-page: 67
  year: 2014
  end-page: 79
  ident: bib0024
  article-title: Predicting visual comfort in side-lit open-plan core zones: results of a field study pairing high dynamic range images with subjective responses
  publication-title: Energy Build.
– volume: 177
  start-page: 12
  year: 2018
  end-page: 22
  ident: bib0039
  article-title: Towards occupant activity driven smart buildings via WiFi-enabled IoT devices and deep learning
  publication-title: Energy Build.
– start-page: 53
  year: 2012
  end-page: 67
  ident: bib0063
  article-title: Early stopping — But when?
  publication-title: BT - Neural Networks: Tricks of the Trade
– volume: 285
  year: 2023
  ident: bib0047
  article-title: A timeseries supervised learning framework for fault prediction in chiller systems
  publication-title: Energy Build.
– volume: 183
  year: 2020
  ident: bib0051
  article-title: Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control
  publication-title: Build. Environ.
– volume: 138
  start-page: 74
  year: 2018
  end-page: 88
  ident: bib0030
  article-title: Inferring personalized visual satisfaction profiles in daylit offices from comparative preferences using a Bayesian approach
  publication-title: Build. Environ.
– volume: 206
  year: 2021
  ident: bib0066
  article-title: Predictive models for daylight performance of general floorplans based on CNN and GAN: a proof-of-concept study
  publication-title: Build. Environ.
– volume: 10
  start-page: 87
  year: 2014
  end-page: 99
  ident: bib0011
  article-title: An assessment of high dynamic range luminance measurements with LED lighting
  publication-title: LEUKOS - J. Illum. Eng. Soc. North Am.
– volume: 158
  start-page: 1461
  year: 2018
  end-page: 1474
  ident: bib0056
  article-title: Denoising autoencoders for non-intrusive load monitoring: improvements and comparative evaluation
  publication-title: Energy Build.
– volume: 86
  start-page: 530
  year: 2010
  end-page: 544
  ident: bib0028
  article-title: Preference uncertainty, preference learning, and paired comparison experiments
  publication-title: Land. Econ.
– volume: 259
  year: 2022
  ident: bib0048
  article-title: Outlier detection via multiclass deep autoencoding gaussian mixture model for building chiller diagnosis
  publication-title: Energy Build.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0060
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 266
  year: 2024
  ident: bib0033
  article-title: Inferring personal daylighting preferences using HDRI and deep learning techniques
  publication-title: Build. Environ.
– volume: 310
  year: 2024
  ident: bib0057
  article-title: Opening the Black Box: towards inherently interpretable energy data imputation models using building physics insight
  publication-title: Energy Build.
– volume: 59
  start-page: 662
  year: 2013
  end-page: 677
  ident: bib0023
  article-title: Evaluating daylighting effectiveness and occupant visual comfort in a side-lit open-plan office building in San Francisco, California
  publication-title: Build. Environ.
– volume: 25
  year: 2012
  ident: bib0059
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 38
  start-page: 743
  year: 2006
  end-page: 757
  ident: bib0017
  article-title: Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras
  publication-title: Energy Build.
– volume: 12
  start-page: 113
  year: 2016
  end-page: 138
  ident: bib0032
  article-title: Evaluating a new suite of luminance-based design metrics for predicting human visual comfort in offices with daylight
  publication-title: Leukos.
– volume: 129
  year: 2021
  ident: bib0069
  article-title: Semi-automated luminance map re-projection via high dynamic range imaging and indoor space 3-D reconstruction
  publication-title: Autom. Constr.
– volume: 207
  year: 2022
  ident: bib0035
  article-title: Model order reduction of building energy simulation models using a convolutional neural network autoencoder
  publication-title: Build. Environ.
– volume: 38
  start-page: 135
  year: 2006
  ident: bib0009
  article-title: Evaluation of high dynamic range photography as a luminance data acquisition system
  publication-title: Light. Res. Technol.
– volume: 311
  year: 2024
  ident: bib0040
  article-title: Time-series data clustering with load-shape preservation for identifying residential energy consumption behaviors
  publication-title: Energy Build.
– volume: 165
  year: 2024
  ident: bib0053
  article-title: Autoencoder-based photoplethysmography (PPG) signal reliability enhancement in construction health monitoring
  publication-title: Autom. Constr.
– volume: 84
  year: 2022
  ident: bib0041
  article-title: Characterizing residential load patterns on multi-time scales utilizing LSTM autoencoder and electricity consumption data
  publication-title: Sustain. Cities Soc.
– start-page: 69
  year: 2012
  end-page: 95
  ident: bib0006
  article-title: Lightness, Brightness, Contrast, and Constancy, Inf. Vis. Percept. Des
– volume: 169
  year: 2020
  ident: bib0062
  article-title: Recommendations for long-term luminance distribution measurements: the spatial resolution
  publication-title: Build. Environ.
– volume: 17
  start-page: 140
  year: 2021
  end-page: 169
  ident: bib0014
  article-title: Tutorial: luminance maps for daylighting studies from high dynamic range photography
  publication-title: Leukos.
– volume: 52
  year: 2020
  ident: bib0049
  article-title: Sustainable subway indoor air quality monitoring and fault-tolerant ventilation control using a sparse autoencoder-driven sensor self-validation, Sustain
  publication-title: Cities Soc.
– start-page: 251
  year: 2009
  end-page: 256
  ident: bib0013
  article-title: A data collection method for long-term field studies of visual comfort in real-world daylit office environments
  publication-title: Proc. PLEA
– volume: 203
  year: 2021
  ident: bib0043
  article-title: Autoencoder-driven fault detection and diagnosis in building automation systems: residual-based and latent space-based approaches
  publication-title: Build. Environ.
– year: 2018
  ident: bib0061
  article-title: BS EN 17037:2018: daylight in buildings
– volume: 4
  start-page: 99
  year: 2007
  end-page: 112
  ident: bib0010
  article-title: Accuracy of luminance maps obtained from high dynamic range images
  publication-title: Leukos.
– volume: 64
  start-page: 113
  year: 2013
  end-page: 122
  ident: bib0026
  article-title: Development of new daylight glare analysis methodology using absolute glare factor and relative glare factor
  publication-title: Energy Build.
– volume: 10
  start-page: 145
  year: 2014
  end-page: 164
  ident: bib0005
  article-title: A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight
  publication-title: Leukos.
– volume: 54
  start-page: 798
  year: 2022
  end-page: 818
  ident: bib0002
  article-title: From luminance to brightness: a data-driven approach to support brightness assessments in open plan offices
  publication-title: Light. Res. Technol.
– volume: 7
  start-page: 103
  year: 2010
  end-page: 122
  ident: bib0008
  article-title: The effect of luminance distribution patterns on occupant preference in a daylit office environment
  publication-title: Leukos.
– volume: 45
  start-page: 588
  year: 2019
  end-page: 595
  ident: bib0042
  article-title: Indoor tracking trajectory data similarity analysis with a deep convolutional autoencoder
  publication-title: Sustain. Cities Soc.
– volume: 2017
  start-page: 3419
  year: 2017
  end-page: 3426
  ident: bib0020
  article-title: Multi-region contrast method - A new framework for post-processing HDRI luminance information for visual discomfort analysis
  publication-title: Proc. 33rd PLEA Int. Conf. Des. to Thrive
– volume: 113
  start-page: 121
  year: 2017
  end-page: 130
  ident: bib0027
  article-title: Investigation of existing discomfort glare indices using human subject study data
  publication-title: Build. Environ.
– volume: 181
  year: 2020
  ident: bib0031
  article-title: Efficient learning of personalized visual preferences in daylit offices : an online elicitation framework
  publication-title: Build. Environ.
– volume: 236
  year: 2024
  ident: bib0050
  article-title: Filling time-series gaps using image techniques: multidimensional context autoencoder approach for building energy data imputation
  publication-title: Appl. Therm. Eng.
– volume: 36
  start-page: 201
  year: 2004
  end-page: 216
  ident: bib0003
  article-title: Brightness, lightness, and providing “a preconceived appearance to the interior
  publication-title: Light. Res. Technol.
– volume: 113
  start-page: 65
  year: 2017
  end-page: 77
  ident: bib0019
  article-title: Daylight glare evaluation with the sun in the field of view through window shades
  publication-title: Build. Environ.
– volume: 113
  start-page: 78
  year: 2017
  end-page: 91
  ident: bib0025
  article-title: A pilot daylighting field study: testing the usefulness of laboratory-derived luminance-based metrics for building design and control
  publication-title: Build. Environ.
– volume: 320
  year: 2024
  ident: bib0037
  article-title: Machine learning-based reduced-order reconstruction method for flow fields
  publication-title: Energy Build.
– volume: 113
  start-page: 107
  year: 2017
  end-page: 120
  ident: bib0022
  article-title: Prediction of discomfort glare from windows under tropical skies
  publication-title: Build. Environ.
– volume: 8
  start-page: 420
  year: 2001
  end-page: 434
  ident: bib0034
  article-title: On the surprising behavior of distance metrics in high dimensional space
  publication-title: Database Theory—ICDT 2001 8th Int. Conf
– volume: 187
  year: 2021
  ident: bib0036
  article-title: Non-intrusive reduced order model of urban airflow with dynamic boundary conditions
  publication-title: Build. Environ
– volume: 290
  year: 2023
  ident: bib0044
  article-title: Fault detection and calibration for building energy system using bayesian inference and sparse autoencoder: a case study in photovoltaic thermal heat pump system
  publication-title: Energy Build.
– volume: 221
  year: 2020
  ident: bib0046
  article-title: In-situ sensor calibration in an operational air-handling unit coupling autoencoder and bayesian inference
  publication-title: Energy Build.
– volume: 70
  start-page: 427
  year: 2014
  end-page: 440
  ident: bib0018
  article-title: Discomfort glare in open plan green buildings
  publication-title: Energy Build.
– volume: 213
  year: 2022
  ident: bib0068
  article-title: Performance evaluation of non-intrusive luminance mapping towards human-centered daylighting control
  publication-title: Build. Environ.
– volume: 120
  year: 2020
  ident: bib0054
  article-title: Teaching robots to perform quasi-repetitive construction tasks through human demonstration
  publication-title: Autom. Constr.
– volume: 301
  year: 2023
  ident: bib0045
  article-title: Digital twin-enhanced predictive maintenance for indoor climate: a parallel LSTM-autoencoder failure prediction approach
  publication-title: Energy Build.
– volume: 224
  year: 2020
  ident: bib0038
  article-title: Unsupervised learning for feature projection: extracting patterns from multidimensional building measurements
  publication-title: Energy Build.
– volume: 191
  year: 2021
  ident: bib0058
  article-title: Indoor environment data time-series reconstruction using autoencoder neural networks
  publication-title: Build. Environ.
– start-page: 3992
  year: 2015
  end-page: 4000
  ident: bib0065
  article-title: Convolutional feature masking for joint object and stuff segmentation
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit
– year: 2003
  ident: bib0004
  article-title: User assessment of visual comfort : review of existing methods
  publication-title: ECCO-Build.
– volume: 144
  start-page: 191
  year: 2017
  end-page: 206
  ident: bib0052
  article-title: An ensemble learning framework for anomaly detection in building energy consumption
  publication-title: Energy Build.
– volume: 259
  year: 2022
  ident: 10.1016/j.buildenv.2025.113595_bib0048
  article-title: Outlier detection via multiclass deep autoencoding gaussian mixture model for building chiller diagnosis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.111893
– volume: 129
  year: 2021
  ident: 10.1016/j.buildenv.2025.113595_bib0069
  article-title: Semi-automated luminance map re-projection via high dynamic range imaging and indoor space 3-D reconstruction
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103812
– start-page: 3617
  year: 2017
  ident: 10.1016/j.buildenv.2025.113595_bib0064
  article-title: Improving pairwise ranking for multi-label image classification
– volume: 224
  year: 2020
  ident: 10.1016/j.buildenv.2025.113595_bib0038
  article-title: Unsupervised learning for feature projection: extracting patterns from multidimensional building measurements
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110228
– volume: 183
  year: 2020
  ident: 10.1016/j.buildenv.2025.113595_bib0051
  article-title: Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107212
– volume: 77
  start-page: 67
  year: 2014
  ident: 10.1016/j.buildenv.2025.113595_bib0024
  article-title: Predicting visual comfort in side-lit open-plan core zones: results of a field study pairing high dynamic range images with subjective responses
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.03.035
– volume: 221
  year: 2020
  ident: 10.1016/j.buildenv.2025.113595_bib0046
  article-title: In-situ sensor calibration in an operational air-handling unit coupling autoencoder and bayesian inference
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110026
– volume: 203
  year: 2021
  ident: 10.1016/j.buildenv.2025.113595_bib0043
  article-title: Autoencoder-driven fault detection and diagnosis in building automation systems: residual-based and latent space-based approaches
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108066
– volume: 54
  start-page: 798
  year: 2022
  ident: 10.1016/j.buildenv.2025.113595_bib0002
  article-title: From luminance to brightness: a data-driven approach to support brightness assessments in open plan offices
  publication-title: Light. Res. Technol.
  doi: 10.1177/14771535221117365
– volume: 193
  start-page: 111
  year: 2019
  ident: 10.1016/j.buildenv.2025.113595_bib0001
  article-title: A personalized daylighting control approach to dynamically optimize visual satisfaction and lighting energy use
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.03.046
– volume: 113
  start-page: 65
  year: 2017
  ident: 10.1016/j.buildenv.2025.113595_bib0019
  article-title: Daylight glare evaluation with the sun in the field of view through window shades
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.09.009
– volume: 36
  start-page: 83
  year: 2008
  ident: 10.1016/j.buildenv.2025.113595_bib0029
  article-title: Bayesian estimation of visual discomfort
  publication-title: Build. Res. Inf.
  doi: 10.1080/09613210701544061
– volume: 113
  start-page: 107
  year: 2017
  ident: 10.1016/j.buildenv.2025.113595_bib0022
  article-title: Prediction of discomfort glare from windows under tropical skies
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.08.005
– volume: 59
  start-page: 662
  year: 2013
  ident: 10.1016/j.buildenv.2025.113595_bib0023
  article-title: Evaluating daylighting effectiveness and occupant visual comfort in a side-lit open-plan office building in San Francisco, California
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.09.017
– volume: 64
  start-page: 113
  year: 2013
  ident: 10.1016/j.buildenv.2025.113595_bib0026
  article-title: Development of new daylight glare analysis methodology using absolute glare factor and relative glare factor
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.04.020
– volume: 311
  year: 2024
  ident: 10.1016/j.buildenv.2025.113595_bib0040
  article-title: Time-series data clustering with load-shape preservation for identifying residential energy consumption behaviors
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114130
– volume: 301
  year: 2023
  ident: 10.1016/j.buildenv.2025.113595_bib0045
  article-title: Digital twin-enhanced predictive maintenance for indoor climate: a parallel LSTM-autoencoder failure prediction approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113738
– volume: 285
  year: 2023
  ident: 10.1016/j.buildenv.2025.113595_bib0047
  article-title: A timeseries supervised learning framework for fault prediction in chiller systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.112876
– volume: 2017
  start-page: 3419
  year: 2017
  ident: 10.1016/j.buildenv.2025.113595_bib0020
  article-title: Multi-region contrast method - A new framework for post-processing HDRI luminance information for visual discomfort analysis
– volume: 305
  year: 2024
  ident: 10.1016/j.buildenv.2025.113595_bib0067
  article-title: A predictive model for daylight performance based on multimodal generative adversarial networks at the early design stage
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113876
– volume: 36
  start-page: 201
  year: 2004
  ident: 10.1016/j.buildenv.2025.113595_bib0003
  article-title: Brightness, lightness, and providing “a preconceived appearance to the interior
  publication-title: Light. Res. Technol.
  doi: 10.1191/1365782804li115oa
– volume: 25
  year: 2012
  ident: 10.1016/j.buildenv.2025.113595_bib0059
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 166
  start-page: 145
  year: 2018
  ident: 10.1016/j.buildenv.2025.113595_bib0021
  article-title: A global evaluation of discomfort glare metrics in real office spaces with presence of direct sunlight
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.01.024
– volume: 10
  start-page: 87
  year: 2014
  ident: 10.1016/j.buildenv.2025.113595_bib0011
  article-title: An assessment of high dynamic range luminance measurements with LED lighting
  publication-title: LEUKOS - J. Illum. Eng. Soc. North Am.
– volume: 38
  start-page: 135
  year: 2006
  ident: 10.1016/j.buildenv.2025.113595_bib0009
  article-title: Evaluation of high dynamic range photography as a luminance data acquisition system
  publication-title: Light. Res. Technol.
  doi: 10.1177/136578280603800210
– volume: 70
  start-page: 427
  year: 2014
  ident: 10.1016/j.buildenv.2025.113595_bib0018
  article-title: Discomfort glare in open plan green buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.11.053
– volume: 165
  year: 2024
  ident: 10.1016/j.buildenv.2025.113595_bib0053
  article-title: Autoencoder-based photoplethysmography (PPG) signal reliability enhancement in construction health monitoring
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105537
– start-page: 69
  year: 2012
  ident: 10.1016/j.buildenv.2025.113595_bib0006
– volume: 191
  year: 2021
  ident: 10.1016/j.buildenv.2025.113595_bib0058
  article-title: Indoor environment data time-series reconstruction using autoencoder neural networks
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107623
– volume: 181
  year: 2020
  ident: 10.1016/j.buildenv.2025.113595_bib0031
  article-title: Efficient learning of personalized visual preferences in daylit offices : an online elicitation framework
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107013
– volume: 4
  year: 2018
  ident: 10.1016/j.buildenv.2025.113595_bib0012
  article-title: Application of high-dynamic range imaging techniques in architecture : a step toward high-quality daylit interiors?
  publication-title: J. Imaging.
  doi: 10.3390/jimaging4010019
– start-page: 251
  year: 2009
  ident: 10.1016/j.buildenv.2025.113595_bib0013
  article-title: A data collection method for long-term field studies of visual comfort in real-world daylit office environments
– volume: 8
  start-page: 420
  year: 2001
  ident: 10.1016/j.buildenv.2025.113595_bib0034
  article-title: On the surprising behavior of distance metrics in high dimensional space
– volume: 113
  start-page: 121
  year: 2017
  ident: 10.1016/j.buildenv.2025.113595_bib0027
  article-title: Investigation of existing discomfort glare indices using human subject study data
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.09.018
– volume: 236
  year: 2024
  ident: 10.1016/j.buildenv.2025.113595_bib0050
  article-title: Filling time-series gaps using image techniques: multidimensional context autoencoder approach for building energy data imputation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.121545
– volume: 213
  year: 2022
  ident: 10.1016/j.buildenv.2025.113595_bib0068
  article-title: Performance evaluation of non-intrusive luminance mapping towards human-centered daylighting control
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.108857
– volume: 169
  year: 2020
  ident: 10.1016/j.buildenv.2025.113595_bib0062
  article-title: Recommendations for long-term luminance distribution measurements: the spatial resolution
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106538
– volume: 120
  year: 2020
  ident: 10.1016/j.buildenv.2025.113595_bib0054
  article-title: Teaching robots to perform quasi-repetitive construction tasks through human demonstration
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103370
– volume: 144
  start-page: 191
  year: 2017
  ident: 10.1016/j.buildenv.2025.113595_bib0052
  article-title: An ensemble learning framework for anomaly detection in building energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.058
– volume: 38
  start-page: 743
  year: 2006
  ident: 10.1016/j.buildenv.2025.113595_bib0017
  article-title: Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.03.017
– start-page: 53
  year: 2012
  ident: 10.1016/j.buildenv.2025.113595_bib0063
  article-title: Early stopping — But when?
– volume: 10
  start-page: 145
  year: 2014
  ident: 10.1016/j.buildenv.2025.113595_bib0005
  article-title: A critical investigation of common lighting design metrics for predicting human visual comfort in offices with daylight
  publication-title: Leukos.
  doi: 10.1080/15502724.2014.881720
– volume: 207
  year: 2022
  ident: 10.1016/j.buildenv.2025.113595_bib0035
  article-title: Model order reduction of building energy simulation models using a convolutional neural network autoencoder
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108498
– volume: 290
  year: 2023
  ident: 10.1016/j.buildenv.2025.113595_bib0044
  article-title: Fault detection and calibration for building energy system using bayesian inference and sparse autoencoder: a case study in photovoltaic thermal heat pump system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113051
– volume: 187
  year: 2021
  ident: 10.1016/j.buildenv.2025.113595_bib0036
  article-title: Non-intrusive reduced order model of urban airflow with dynamic boundary conditions
  publication-title: Build. Environ
  doi: 10.1016/j.buildenv.2020.107397
– volume: 211
  start-page: 1123
  year: 2018
  ident: 10.1016/j.buildenv.2025.113595_bib0055
  article-title: Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2017.12.005
– volume: 12
  start-page: 113
  year: 2016
  ident: 10.1016/j.buildenv.2025.113595_bib0032
  article-title: Evaluating a new suite of luminance-based design metrics for predicting human visual comfort in offices with daylight
  publication-title: Leukos.
  doi: 10.1080/15502724.2015.1062392
– volume: 310
  year: 2024
  ident: 10.1016/j.buildenv.2025.113595_bib0057
  article-title: Opening the Black Box: towards inherently interpretable energy data imputation models using building physics insight
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114071
– volume: 45
  start-page: 588
  year: 2019
  ident: 10.1016/j.buildenv.2025.113595_bib0042
  article-title: Indoor tracking trajectory data similarity analysis with a deep convolutional autoencoder
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.12.025
– volume: 7
  start-page: 103
  year: 2010
  ident: 10.1016/j.buildenv.2025.113595_bib0008
  article-title: The effect of luminance distribution patterns on occupant preference in a daylit office environment
  publication-title: Leukos.
  doi: 10.1582/LEUKOS.2010.07.02003
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.buildenv.2025.113595_bib0016
  article-title: A parametric method for remapping and calibrating fisheye images for glare analysis
  publication-title: Buildings
  doi: 10.3390/buildings9100219
– volume: 113
  start-page: 78
  year: 2017
  ident: 10.1016/j.buildenv.2025.113595_bib0025
  article-title: A pilot daylighting field study: testing the usefulness of laboratory-derived luminance-based metrics for building design and control
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2016.11.024
– volume: 84
  year: 2022
  ident: 10.1016/j.buildenv.2025.113595_bib0041
  article-title: Characterizing residential load patterns on multi-time scales utilizing LSTM autoencoder and electricity consumption data
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2022.104007
– volume: 11
  start-page: 193
  year: 2015
  ident: 10.1016/j.buildenv.2025.113595_bib0007
  article-title: Luminance-based measures of shape and detail distinctness of 3D objects as important predictors of light modeling concept. Results of a full-scale study pairing proposed measures with subjective responses
  publication-title: LEUKOS - J. Illum. Eng. Soc. North Am.
– volume: 266
  year: 2024
  ident: 10.1016/j.buildenv.2025.113595_bib0033
  article-title: Inferring personal daylighting preferences using HDRI and deep learning techniques
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2024.112128
– volume: 115
  start-page: 211
  year: 2015
  ident: 10.1016/j.buildenv.2025.113595_bib0060
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– start-page: 3992
  year: 2015
  ident: 10.1016/j.buildenv.2025.113595_bib0065
  article-title: Convolutional feature masking for joint object and stuff segmentation
– volume: 52
  year: 2020
  ident: 10.1016/j.buildenv.2025.113595_bib0049
  article-title: Sustainable subway indoor air quality monitoring and fault-tolerant ventilation control using a sparse autoencoder-driven sensor self-validation, Sustain
  publication-title: Cities Soc.
– volume: 158
  start-page: 1461
  year: 2018
  ident: 10.1016/j.buildenv.2025.113595_bib0056
  article-title: Denoising autoencoders for non-intrusive load monitoring: improvements and comparative evaluation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.054
– volume: 17
  start-page: 140
  year: 2021
  ident: 10.1016/j.buildenv.2025.113595_bib0014
  article-title: Tutorial: luminance maps for daylighting studies from high dynamic range photography
  publication-title: Leukos.
  doi: 10.1080/15502724.2019.1684319
– volume: 320
  year: 2024
  ident: 10.1016/j.buildenv.2025.113595_bib0037
  article-title: Machine learning-based reduced-order reconstruction method for flow fields
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114575
– volume: 206
  year: 2021
  ident: 10.1016/j.buildenv.2025.113595_bib0066
  article-title: Predictive models for daylight performance of general floorplans based on CNN and GAN: a proof-of-concept study
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.108346
– volume: 138
  start-page: 74
  year: 2018
  ident: 10.1016/j.buildenv.2025.113595_bib0030
  article-title: Inferring personalized visual satisfaction profiles in daylit offices from comparative preferences using a Bayesian approach
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.04.022
– volume: 45
  start-page: 450
  year: 2013
  ident: 10.1016/j.buildenv.2025.113595_bib0015
  article-title: Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis
  publication-title: Light. Res. Technol.
  doi: 10.1177/1477153512458671
– volume: 4
  start-page: 99
  year: 2007
  ident: 10.1016/j.buildenv.2025.113595_bib0010
  article-title: Accuracy of luminance maps obtained from high dynamic range images
  publication-title: Leukos.
  doi: 10.1582/LEUKOS.2007.04.02.002
– volume: 177
  start-page: 12
  year: 2018
  ident: 10.1016/j.buildenv.2025.113595_bib0039
  article-title: Towards occupant activity driven smart buildings via WiFi-enabled IoT devices and deep learning
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.08.010
– year: 2003
  ident: 10.1016/j.buildenv.2025.113595_bib0004
  article-title: User assessment of visual comfort : review of existing methods
  publication-title: ECCO-Build.
– volume: 86
  start-page: 530
  year: 2010
  ident: 10.1016/j.buildenv.2025.113595_bib0028
  article-title: Preference uncertainty, preference learning, and paired comparison experiments
  publication-title: Land. Econ.
  doi: 10.3368/le.86.3.530
SSID ssj0016934
Score 2.4671872
Snippet •Novel method for leaning personal binary daylighting preference.•Two-stage training method: feature extraction module and preference inference...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113595
SubjectTerms Convolutional autoencoder (CAE)
Luminance map
Ordinal ranking
Personal daylighting preference
Title A convolutional autoencoder-based method for learning and ranking personal daylighting preference
URI https://dx.doi.org/10.1016/j.buildenv.2025.113595
Volume 285
WOSCitedRecordID wos001586723600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-1323
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016934
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ_toaQvsm0SdOiteGtLlh9HE1KaHEKhKezNWBq53e3iDfsIob--I0tae5uFtoRehDHowXxCmhnNfEPIuzCBREMtA42XVRADywLJOUNAahmLSEUx1G2xifTqKptM8s-DwTaL_3aeNk12d5ff_Feo8R-CbVJn_wHu7aD4A78RdGwRdmz_CviijSR3UxgmgM16YdgqQS8Dc2eBqxrdBhjOvWekDTOv2joKhsq4VdDfA5rzxni3GeueknbnHdhV1W7795LmOkf3d6umN99mmy7m96dGbX0-_WFj_Arjvq9W08WOD4IJl4y3dYz55JguEskmZIUBGru8f9gyW6Dn3sFtfQizsTTLxuWOzTSm4IywNTh_I8X-YgY3Y6MGZ0jw4kfkgKUiz4bkoLg4n1xuX5KSnDsKMbuYXpb4_tn2Kyg9peP6kDxz1gItLMrPyUA3L8jTHofkS1IVdAdveg9vavGmiDf1eFPEizq8qceb9vCmHd6vyNeP59dnnwJXNyNQaA-vg6QOZR4Lkapca7QAgIUpKFTdQCu0D6TgwEMGImaRCplKa5XKRIgq57XMElXz12TYLBp9RGjIVSQTbl7rqzgCyCBGixQgjVhVJZUekQ9eWOWNpUcpfdzgrPTiLY14SyveEcm9TEun5FnlrcSt8Ie-bx7Q9y150u3cYzJcLzf6hDxWt-vpannqds0vOmmAAw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+convolutional+autoencoder-based+method+for+learning+and+ranking+personal+daylighting+preference&rft.jtitle=Building+and+environment&rft.au=Mah%2C+Dongjun&rft.au=Tzempelikos%2C+Athanasios&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0360-1323&rft.volume=285&rft_id=info:doi/10.1016%2Fj.buildenv.2025.113595&rft.externalDocID=S0360132325010674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon