Ablation and molten layer flow simulation for plate model of SiO2f/SiO2 composite material using particle method
•Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface morphology of SiO₂f/SiO₂ composite materials. It addresses challenges associated with aerodynamic heating, extremely viscous flows, and phase changes...
Gespeichert in:
| Veröffentlicht in: | Computers & fluids Jg. 284; S. 106436 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.11.2024
|
| Schlagworte: | |
| ISSN: | 0045-7930 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface morphology of SiO₂f/SiO₂ composite materials. It addresses challenges associated with aerodynamic heating, extremely viscous flows, and phase changes between solid-liquid and liquid-gas states.•Introduction of a Novel Simulation Method: A novel simulation approach is introduced for SiO₂f/SiO₂ composites that accounts for heat transfer, melting, solidification, evaporation behavior, and viscosity variations with temperature.•Innovative Application of Conceptual Particles: The method employs conceptual particles to establish models for applying heat flux and airflow shear force. This ensures that these forces are accurately applied solely to the upper surface of models composed of solid, wall, and dummy particles.•Advancement over Previous Algorithms: In contrast to previous algorithms for silicon-based materials, this method solves the complete Navier-Stokes and continuity equations based on the MPS method. This advancement enables the consideration of unsteady effects, two- and three-dimensional simulations, and additional influencing factors such as gravity and surface tension.•Validation and Examination of Effects: The ablative regression of a plate model was validated against experimental results for SiO₂f/SiO₂ composites, demonstrating that the particle method accurately simulates the ablation process.
In this paper, the moving particle semi-implicit method (MPS) is extended from calculating free mobility to simulating the extremely viscous and temperature-dependent molten layer flow of SiO2f/SiO2 composite material under aerodynamic heating conditions, which includes strong heating and shear of incoming flow. A method for applying heat flux and airflow shear, based on the conceptual particle approach, has been established. Heat transfer, melting, solidification, and evaporation behaviors are considered, with temperature-dependent viscosity variations also accounted for. The ablative regression of the plate model is verified using experimental results of the SiO2f/SiO2 composite material, and results from convergence analysis demonstrate the accuracy of the space step size selection. Surface morphology analysis through three-dimensional computation indicates that the extended particle method also accurately describes the surface morphology of SiO2f/SiO2 composite material under aerodynamic heating conditions. Thus, the extended particle method accurately simulates both the ablation process and the surface morphology of the SiO2f/SiO2 composite material. The influences of acceleration and surface tension are discussed. Ablative recession, when subject to acceleration, is smaller than that observed in its absence. When exposed to surface tension, the liquid layer tends to form a spherical shape, and the particles behave as a cohesive unit, resulting in smaller ablative recession than in the absence of surface tension. |
|---|---|
| AbstractList | •Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface morphology of SiO₂f/SiO₂ composite materials. It addresses challenges associated with aerodynamic heating, extremely viscous flows, and phase changes between solid-liquid and liquid-gas states.•Introduction of a Novel Simulation Method: A novel simulation approach is introduced for SiO₂f/SiO₂ composites that accounts for heat transfer, melting, solidification, evaporation behavior, and viscosity variations with temperature.•Innovative Application of Conceptual Particles: The method employs conceptual particles to establish models for applying heat flux and airflow shear force. This ensures that these forces are accurately applied solely to the upper surface of models composed of solid, wall, and dummy particles.•Advancement over Previous Algorithms: In contrast to previous algorithms for silicon-based materials, this method solves the complete Navier-Stokes and continuity equations based on the MPS method. This advancement enables the consideration of unsteady effects, two- and three-dimensional simulations, and additional influencing factors such as gravity and surface tension.•Validation and Examination of Effects: The ablative regression of a plate model was validated against experimental results for SiO₂f/SiO₂ composites, demonstrating that the particle method accurately simulates the ablation process.
In this paper, the moving particle semi-implicit method (MPS) is extended from calculating free mobility to simulating the extremely viscous and temperature-dependent molten layer flow of SiO2f/SiO2 composite material under aerodynamic heating conditions, which includes strong heating and shear of incoming flow. A method for applying heat flux and airflow shear, based on the conceptual particle approach, has been established. Heat transfer, melting, solidification, and evaporation behaviors are considered, with temperature-dependent viscosity variations also accounted for. The ablative regression of the plate model is verified using experimental results of the SiO2f/SiO2 composite material, and results from convergence analysis demonstrate the accuracy of the space step size selection. Surface morphology analysis through three-dimensional computation indicates that the extended particle method also accurately describes the surface morphology of SiO2f/SiO2 composite material under aerodynamic heating conditions. Thus, the extended particle method accurately simulates both the ablation process and the surface morphology of the SiO2f/SiO2 composite material. The influences of acceleration and surface tension are discussed. Ablative recession, when subject to acceleration, is smaller than that observed in its absence. When exposed to surface tension, the liquid layer tends to form a spherical shape, and the particles behave as a cohesive unit, resulting in smaller ablative recession than in the absence of surface tension. |
| ArticleNumber | 106436 |
| Author | Yu, Jijun Deng, Daiying Luo, Xiaoguang Han, Haitao Gao, Junjie |
| Author_xml | – sequence: 1 givenname: Junjie surname: Gao fullname: Gao, Junjie organization: China Academy of Aerospace Aerodynamics, Beijing, China – sequence: 2 givenname: Daiying surname: Deng fullname: Deng, Daiying organization: China Academy of Aerospace Aerodynamics, Beijing, China – sequence: 3 givenname: Xiaoguang surname: Luo fullname: Luo, Xiaoguang organization: China Academy of Aerospace Aerodynamics, Beijing, China – sequence: 4 givenname: Haitao surname: Han fullname: Han, Haitao organization: China Academy of Aerospace Aerodynamics, Beijing, China – sequence: 5 givenname: Jijun orcidid: 0000-0002-6238-8106 surname: Yu fullname: Yu, Jijun email: jijuny@163.com organization: China Academy of Aerospace Aerodynamics, Beijing, China |
| BookMark | eNqFUMtOwzAQ9KFItIVvwD-Qdh2neRyripdUqQfgbDn2Glw5cWSnoP49jlpx5bLPmdnVLMis9z0S8sBgxYCV6-NK-W4w7mT1Koe8SNOy4OWMzAGKTVY1HG7JIsYjpJ7nxZwM29bJ0fqeyl7TzrsRe-rkGQM1zv_QaLvTFWB8oEOqMcE0OuoNfbOH3KynSKfDPtppmyDBSkdP0fafdJBhtMqlOY5fXt-RGyNdxPtrXpKPp8f33Uu2Pzy_7rb7TOUlG7Oy0W1bbLAC4FgX0Mha54a3uoRaGa10qesKmM7rtgLFNoUCpRqu21pp5KziS1JddFXwMQY0Ygi2k-EsGIjJLHEUf2aJySxxMSsxtxcmpve-LQYRlcVeobYB1Si0t_9q_AJG6X1l |
| Cites_doi | 10.1080/00223131.2012.740944 10.1080/18811248.2001.9715136 10.1016/j.nucengdes.2014.02.023 10.1007/s40571-020-00313-w 10.1016/j.jcp.2010.02.011 10.1086/112164 10.1016/j.ijheatmasstransfer.2016.03.090 10.1299/mel.15-00367 10.1080/18811248.2003.9715342 10.1016/j.cma.2014.05.023 10.2514/6.2017-2361 10.2514/8.5240 10.1016/j.anucene.2014.06.011 10.1080/18811248.2001.9715045 10.2514/8.4852 10.1016/S0029-5493(98)00270-2 10.2514/8.8080 10.13182/NSE96-A24205 10.1016/j.nucengdes.2017.01.025 10.1016/j.cma.2012.03.013 10.1093/mnras/181.3.375 10.1007/s40571-021-00420-2 10.1016/j.cma.2010.12.001 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compfluid.2024.106436 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compfluid_2024_106436 S0045793024002676 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABAOU ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SST SSW SSZ T5K TN5 XPP ZMT ~G- 29F 6TJ 9DU AAQXK AATTM AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFFNX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET T9H VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c261t-69dbb45e7003e8409a8d2f3bd608cfdcd6d8701d28b70c154c0cc93db8cde3173 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324839900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7930 |
| IngestDate | Sat Nov 29 03:39:27 EST 2025 Sat Jan 25 15:58:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ablative regression SiO2f/SiO2 composite material Moving particle semi-implicit method (MPS) Melting Evaporation Molten layer flow |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-69dbb45e7003e8409a8d2f3bd608cfdcd6d8701d28b70c154c0cc93db8cde3173 |
| ORCID | 0000-0002-6238-8106 |
| ParticipantIDs | crossref_primary_10_1016_j_compfluid_2024_106436 elsevier_sciencedirect_doi_10_1016_j_compfluid_2024_106436 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-15 |
| PublicationDateYYYYMMDD | 2024-11-15 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & fluids |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Guo, Shi, Baihe (bib0005) 2019 Tanaka M.; Masunaga T. (2010). Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility., 229(11), 4279–4290. Shirakawa, Yamamoto, Horie, Tsunoyama (bib0031) 2003; 40 Li, Oka, Furuya (bib0024) 2014; 272 Bethe, Adams (bib0006) 1959; 26 Hidalgo (bib0007) 1960; 30 Li, Yamaji (bib0028) 2017; 314 Jiang, Liu (bib0004) 2003 Kawahara, Oka (bib0023) 2012; 49 Zien (bib0009) 1998 Adams (bib0003) 1959; 29 Li, Oka (bib0025) 2014; 73 Nomura, Koshizuka, Oka, Obata (bib0033) 2001; 38 Yamada, Imatani, Shibata (bib0016) 2022; 9 Chai, Erkan, Kondo, Okamoto, Wei (bib0026) 2015; 1 Mizuno, Shibata, Koshizuka (bib0017) 2021 Li, Liu, Duan, Chong, Yan (bib0027) 2016; 99 Jiang, Li, Yu (bib0037) 2008; 026 Lucy (bib0013) 1977; 82 Lee, Park, Kim (bib0021) 2011; 200 Kondo (bib0029) 2021; 8 . Shirakawa, Horie, Yamamoto, Tsunoyama (bib0034) 2001; 38 Yu, Deng, Luo (bib0001) 2021; 6 Chen, Xi, Sun (bib0020) 2014; 278 Gingold, Monaghan (bib0014) 1977; 181 Toyota, Akimoto, Kubo (bib0036) 2005 Koshizuka S.; Ikeda H.; Oka Y. (1999). Numerical analysis of fragmentation mechanisms in vapor explosions., 189(1-3), 423–433. Ai (bib0002) 2020 Zhang, Yu (bib0012) 2021 Kondo, Matsumoto, Sawada (bib0018) 2023 Yu J.J., Luo X.G., Deng D.Y., et al. Modeling the heat transfer and mass loss of Si3N4/SiO2 composite under arc-jet tunnel environments[R]. AIAA 2017-2361, 2017. Ikeda (bib0022) 1999 Shakibaeinia A.; Jin Y.C. (2012). MPS mesh-free particle method for multiphase flows, 229-232, 13–26. Zien, Wei (bib0010) 1999 Lubard S.. Two layer ablation at an axisymmetric stagnation point. Two Layer Ablation at An Axisymmetric Stagnation Point, 1968. Koshizuka, Oka (bib0015) 1996; 123 Kondo, Koshizuka, Suzuki, Takimoto (bib0035) 2007 Nomura (10.1016/j.compfluid.2024.106436_bib0033) 2001; 38 Hidalgo (10.1016/j.compfluid.2024.106436_bib0007) 1960; 30 Chen (10.1016/j.compfluid.2024.106436_bib0020) 2014; 278 Chai (10.1016/j.compfluid.2024.106436_bib0026) 2015; 1 Shirakawa (10.1016/j.compfluid.2024.106436_bib0031) 2003; 40 Li (10.1016/j.compfluid.2024.106436_bib0027) 2016; 99 Zhang (10.1016/j.compfluid.2024.106436_bib0012) 2021 Jiang (10.1016/j.compfluid.2024.106436_bib0004) 2003 Ikeda (10.1016/j.compfluid.2024.106436_bib0022) 1999 Ai (10.1016/j.compfluid.2024.106436_bib0002) 2020 10.1016/j.compfluid.2024.106436_bib0019 Yu (10.1016/j.compfluid.2024.106436_bib0001) 2021; 6 Lee (10.1016/j.compfluid.2024.106436_bib0021) 2011; 200 Yamada (10.1016/j.compfluid.2024.106436_bib0016) 2022; 9 10.1016/j.compfluid.2024.106436_bib0030 Zien (10.1016/j.compfluid.2024.106436_bib0009) 1998 10.1016/j.compfluid.2024.106436_bib0032 10.1016/j.compfluid.2024.106436_bib0011 Kondo (10.1016/j.compfluid.2024.106436_bib0035) 2007 Kawahara (10.1016/j.compfluid.2024.106436_bib0023) 2012; 49 Li (10.1016/j.compfluid.2024.106436_bib0028) 2017; 314 Li (10.1016/j.compfluid.2024.106436_bib0024) 2014; 272 Guo (10.1016/j.compfluid.2024.106436_bib0005) 2019 Jiang (10.1016/j.compfluid.2024.106436_bib0037) 2008; 026 Lucy (10.1016/j.compfluid.2024.106436_bib0013) 1977; 82 Adams (10.1016/j.compfluid.2024.106436_bib0003) 1959; 29 Kondo (10.1016/j.compfluid.2024.106436_bib0029) 2021; 8 Shirakawa (10.1016/j.compfluid.2024.106436_bib0034) 2001; 38 10.1016/j.compfluid.2024.106436_bib0008 Gingold (10.1016/j.compfluid.2024.106436_bib0014) 1977; 181 Toyota (10.1016/j.compfluid.2024.106436_bib0036) 2005 Li (10.1016/j.compfluid.2024.106436_bib0025) 2014; 73 Zien (10.1016/j.compfluid.2024.106436_bib0010) 1999 Kondo (10.1016/j.compfluid.2024.106436_bib0018) 2023 Mizuno (10.1016/j.compfluid.2024.106436_bib0017) 2021 Bethe (10.1016/j.compfluid.2024.106436_bib0006) 1959; 26 Koshizuka (10.1016/j.compfluid.2024.106436_bib0015) 1996; 123 |
| References_xml | – year: 1999 ident: bib0010 article-title: Heat transfer in the melt layer of a simple ablation model publication-title: Proceedings of the 37th aerospace sciences meeting and exhibit – volume: 026 start-page: 452 year: 2008 end-page: 455 ident: bib0037 article-title: The parameter identification of viscosity coefficient for SiO2 matrix composites publication-title: ACTA Aerodyn Sin – year: 2023 ident: bib0018 article-title: A scalable physically consistent particle method for high-viscous incompressible flows publication-title: Comput Part Mech – reference: Shakibaeinia A.; Jin Y.C. (2012). MPS mesh-free particle method for multiphase flows, 229-232, 13–26. – volume: 200 start-page: 1113 year: 2011 end-page: 1125 ident: bib0021 article-title: Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads publication-title: Comput Methods Appl Mech Eng – volume: 314 start-page: 207 year: 2017 end-page: 216 ident: bib0028 article-title: Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method publication-title: Nucl Eng Des – reference: Lubard S.. Two layer ablation at an axisymmetric stagnation point. Two Layer Ablation at An Axisymmetric Stagnation Point, 1968. – year: 2003 ident: bib0004 article-title: High speed airflow heat transfer and ablative heat protection – volume: 49 start-page: 1156 year: 2012 end-page: 1164 ident: bib0023 article-title: Ex-vessel molten core solidification behavior by moving particle semi-implicit method publication-title: J Nucl Sci Technol – start-page: A9-2 year: 2005 ident: bib0036 article-title: A particle method with variable spatial resolution for incompressible flows publication-title: Proceedings of the 19th Japan society of fluid mechanics – volume: 40 start-page: 125 year: 2003 end-page: 135 ident: bib0031 article-title: Analysis of subcooled boiling with the two-fluid particle interaction method publication-title: J Nucl Sci Technol – volume: 38 start-page: 1057 year: 2001 end-page: 1064 ident: bib0033 article-title: Numerical analysis of droplet breakup behavior using particle method publication-title: J Nucl Sci Technol – volume: 123 start-page: 421 year: 1996 end-page: 434 ident: bib0015 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl Sci Eng – volume: 6 start-page: 1 year: 2021 end-page: 18 ident: bib0001 article-title: Multi-scale phenomena in thermal protection materials experienced aero-heating and thermo-ablative modeling forward quantitative analysis publication-title: Phys Gases – volume: 82 start-page: 1013 year: 1977 end-page: 1024 ident: bib0013 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron J – volume: 1 year: 2015 ident: bib0026 article-title: Experimental research and numerical simulation of moving molten metal pool publication-title: Mech Eng Lett – volume: 26 start-page: 321 year: 1959 end-page: 328 ident: bib0006 article-title: A theory for the ablation of glassy materials publication-title: J Aerosp Sci – volume: 30 start-page: 806 year: 1960 end-page: 814 ident: bib0007 article-title: Ablation of glassy material around blunt bodies of revolution publication-title: ARS J – volume: 278 start-page: 254 year: 2014 end-page: 271 ident: bib0020 article-title: Improving stability of MPS method by a computational scheme based on conceptual particles publication-title: Comput Methods Appl Mech Eng – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: bib0014 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc – volume: 272 start-page: 109 year: 2014 end-page: 117 ident: bib0024 article-title: Experimental and numerical study of stratification and solidification/melting behaviors publication-title: Nucl Eng Des – volume: 9 start-page: 421 year: 2022 end-page: 441 ident: bib0016 article-title: Application of improved multiresolution technique for the MPS method to fluid lubrication publication-title: Comput Part Mech – reference: Koshizuka S.; Ikeda H.; Oka Y. (1999). Numerical analysis of fragmentation mechanisms in vapor explosions., 189(1-3), 423–433. – year: 1999 ident: bib0022 article-title: Numerical analysis of fragmentation processes in vapor explosions using particle method – volume: 99 start-page: 44 year: 2016 end-page: 52 ident: bib0027 article-title: Numerical investigation of erosion and heat transfer characteristics of molten jet impinging onto solid plate with MPS–LES method publication-title: Int J Heat Mass Transf – volume: 29 start-page: 625 year: 1959 end-page: 632 ident: bib0003 article-title: Recent advances in ablation publication-title: ARS J – reference: Tanaka M.; Masunaga T. (2010). Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility., 229(11), 4279–4290. – year: 2019 ident: bib0005 article-title: Theory and application of ablative heat protection for hypersonic vehicles – year: 2021 ident: bib0017 article-title: Statistical analysis of three-dimensional run-up heights using Gaussian process emulator of particle method publication-title: Comput Part Mech – reference: . – volume: 8 start-page: 69 year: 2021 end-page: 86 ident: bib0029 article-title: A physically consistent particle method for incompressible fluid flow calculation publication-title: Comput Part Mech – volume: 73 start-page: 46 year: 2014 end-page: 52 ident: bib0025 article-title: Numerical simulation of the SURC-2 and SURC-4 MCCI experiments by MPS method publication-title: Ann Nucl Energy – year: 2020 ident: bib0002 article-title: Computational aerodynamics of near space hypersonic vehicles – year: 2021 ident: bib0012 article-title: Thermal protection technology for hypersonic vehicles – volume: 38 start-page: 392 year: 2001 end-page: 402 ident: bib0034 article-title: Analysis of the void distribution in a circular tube with the two-fluid particle interacthion method publication-title: J Nucl Sci Technol – year: 1998 ident: bib0009 article-title: Effects of melt layer on steady aerodynamic ablation in hypersonic flow publication-title: Proceedings of the AIAA international space planes & hypersonic systems & technologies conference – reference: Yu J.J., Luo X.G., Deng D.Y., et al. Modeling the heat transfer and mass loss of Si3N4/SiO2 composite under arc-jet tunnel environments[R]. AIAA 2017-2361, 2017. – start-page: 93 year: 2007 end-page: 98 ident: bib0035 article-title: Surface tension model using inter-particle force in particle method publication-title: Proceedings of the ASME/JSME 2007 5th joint fluids engineering conference – volume: 49 start-page: 1156 issue: 12 year: 2012 ident: 10.1016/j.compfluid.2024.106436_bib0023 article-title: Ex-vessel molten core solidification behavior by moving particle semi-implicit method publication-title: J Nucl Sci Technol doi: 10.1080/00223131.2012.740944 – volume: 38 start-page: 1057 issue: 12 year: 2001 ident: 10.1016/j.compfluid.2024.106436_bib0033 article-title: Numerical analysis of droplet breakup behavior using particle method publication-title: J Nucl Sci Technol doi: 10.1080/18811248.2001.9715136 – volume: 272 start-page: 109 year: 2014 ident: 10.1016/j.compfluid.2024.106436_bib0024 article-title: Experimental and numerical study of stratification and solidification/melting behaviors publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2014.02.023 – volume: 8 start-page: 69 year: 2021 ident: 10.1016/j.compfluid.2024.106436_bib0029 article-title: A physically consistent particle method for incompressible fluid flow calculation publication-title: Comput Part Mech doi: 10.1007/s40571-020-00313-w – ident: 10.1016/j.compfluid.2024.106436_bib0019 doi: 10.1016/j.jcp.2010.02.011 – year: 2021 ident: 10.1016/j.compfluid.2024.106436_bib0017 article-title: Statistical analysis of three-dimensional run-up heights using Gaussian process emulator of particle method publication-title: Comput Part Mech – year: 1999 ident: 10.1016/j.compfluid.2024.106436_bib0022 – year: 2019 ident: 10.1016/j.compfluid.2024.106436_bib0005 – year: 1998 ident: 10.1016/j.compfluid.2024.106436_bib0009 article-title: Effects of melt layer on steady aerodynamic ablation in hypersonic flow – year: 1999 ident: 10.1016/j.compfluid.2024.106436_bib0010 article-title: Heat transfer in the melt layer of a simple ablation model – volume: 6 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.compfluid.2024.106436_bib0001 article-title: Multi-scale phenomena in thermal protection materials experienced aero-heating and thermo-ablative modeling forward quantitative analysis publication-title: Phys Gases – volume: 82 start-page: 1013 year: 1977 ident: 10.1016/j.compfluid.2024.106436_bib0013 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron J doi: 10.1086/112164 – volume: 99 start-page: 44 year: 2016 ident: 10.1016/j.compfluid.2024.106436_bib0027 article-title: Numerical investigation of erosion and heat transfer characteristics of molten jet impinging onto solid plate with MPS–LES method publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.03.090 – volume: 1 year: 2015 ident: 10.1016/j.compfluid.2024.106436_bib0026 article-title: Experimental research and numerical simulation of moving molten metal pool publication-title: Mech Eng Lett doi: 10.1299/mel.15-00367 – volume: 40 start-page: 125 issue: 3 year: 2003 ident: 10.1016/j.compfluid.2024.106436_bib0031 article-title: Analysis of subcooled boiling with the two-fluid particle interaction method publication-title: J Nucl Sci Technol doi: 10.1080/18811248.2003.9715342 – volume: 278 start-page: 254 year: 2014 ident: 10.1016/j.compfluid.2024.106436_bib0020 article-title: Improving stability of MPS method by a computational scheme based on conceptual particles publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.05.023 – ident: 10.1016/j.compfluid.2024.106436_bib0011 doi: 10.2514/6.2017-2361 – volume: 30 start-page: 806 issue: 9 year: 1960 ident: 10.1016/j.compfluid.2024.106436_bib0007 article-title: Ablation of glassy material around blunt bodies of revolution publication-title: ARS J doi: 10.2514/8.5240 – year: 2003 ident: 10.1016/j.compfluid.2024.106436_bib0004 – ident: 10.1016/j.compfluid.2024.106436_bib0008 – year: 2023 ident: 10.1016/j.compfluid.2024.106436_bib0018 article-title: A scalable physically consistent particle method for high-viscous incompressible flows publication-title: Comput Part Mech – volume: 73 start-page: 46 year: 2014 ident: 10.1016/j.compfluid.2024.106436_bib0025 article-title: Numerical simulation of the SURC-2 and SURC-4 MCCI experiments by MPS method publication-title: Ann Nucl Energy doi: 10.1016/j.anucene.2014.06.011 – volume: 38 start-page: 392 issue: 6 year: 2001 ident: 10.1016/j.compfluid.2024.106436_bib0034 article-title: Analysis of the void distribution in a circular tube with the two-fluid particle interacthion method publication-title: J Nucl Sci Technol doi: 10.1080/18811248.2001.9715045 – volume: 29 start-page: 625 issue: 9 year: 1959 ident: 10.1016/j.compfluid.2024.106436_bib0003 article-title: Recent advances in ablation publication-title: ARS J doi: 10.2514/8.4852 – ident: 10.1016/j.compfluid.2024.106436_bib0030 doi: 10.1016/S0029-5493(98)00270-2 – year: 2020 ident: 10.1016/j.compfluid.2024.106436_bib0002 – volume: 26 start-page: 321 year: 1959 ident: 10.1016/j.compfluid.2024.106436_bib0006 article-title: A theory for the ablation of glassy materials publication-title: J Aerosp Sci doi: 10.2514/8.8080 – volume: 123 start-page: 421 issue: 3 year: 1996 ident: 10.1016/j.compfluid.2024.106436_bib0015 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl Sci Eng doi: 10.13182/NSE96-A24205 – volume: 314 start-page: 207 year: 2017 ident: 10.1016/j.compfluid.2024.106436_bib0028 article-title: Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method publication-title: Nucl Eng Des doi: 10.1016/j.nucengdes.2017.01.025 – ident: 10.1016/j.compfluid.2024.106436_bib0032 doi: 10.1016/j.cma.2012.03.013 – start-page: A9-2 year: 2005 ident: 10.1016/j.compfluid.2024.106436_bib0036 article-title: A particle method with variable spatial resolution for incompressible flows – volume: 181 start-page: 375 issue: 3 year: 1977 ident: 10.1016/j.compfluid.2024.106436_bib0014 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/181.3.375 – start-page: 93 year: 2007 ident: 10.1016/j.compfluid.2024.106436_bib0035 article-title: Surface tension model using inter-particle force in particle method – volume: 026 start-page: 452 issue: 004 year: 2008 ident: 10.1016/j.compfluid.2024.106436_bib0037 article-title: The parameter identification of viscosity coefficient for SiO2 matrix composites publication-title: ACTA Aerodyn Sin – volume: 9 start-page: 421 year: 2022 ident: 10.1016/j.compfluid.2024.106436_bib0016 article-title: Application of improved multiresolution technique for the MPS method to fluid lubrication publication-title: Comput Part Mech doi: 10.1007/s40571-021-00420-2 – volume: 200 start-page: 1113 issue: 9-12 year: 2011 ident: 10.1016/j.compfluid.2024.106436_bib0021 article-title: Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2010.12.001 – year: 2021 ident: 10.1016/j.compfluid.2024.106436_bib0012 |
| SSID | ssj0004324 |
| Score | 2.4156015 |
| Snippet | •Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 106436 |
| SubjectTerms | Ablative regression Evaporation Melting Molten layer flow Moving particle semi-implicit method (MPS) SiO2f/SiO2 composite material |
| Title | Ablation and molten layer flow simulation for plate model of SiO2f/SiO2 composite material using particle method |
| URI | https://dx.doi.org/10.1016/j.compfluid.2024.106436 |
| Volume | 284 |
| WOSCitedRecordID | wos001324839900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database issn: 0045-7930 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004324 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKsotJUP3EYpGSeThduIlg4IFQ4FzS3yEqOM0iTqJKX8DP4xz1uSopFKD1w8kTWxk7xPz9_zW4zQGyZZxEiqMpbBNgkDxjwmYuqpOi7Kr5UGunzx98_x2VmyWqVfJ5PfLhfmqoyrKrm-Tpv_KmroA2Gr1Nk7iLsfFDrgGoQOLYgd2n8S_IKZ8DbtFrioSyDF05ICs57Ksv453RQX9sQuHWHYwHVuzsPR-SvFFyKVdxV-dbi5iulSMa6tfvRpp7cWGjutPX96THDdKREbjSlZdoXoWfspNW6erloXPZ6Oc6Ntjmnxyy2jKkCo0_9dFbT-0dGhf2k2bJe0aGk93rIgocrdM0mbTg2Hqk6mdchYNUyScKRIZ4oqRVt1vNluWCsRNfo1jtQcR8MdN6tq_7Xa9TGILrxtnfUDZWqgzAx0D-2SeJ6CotxdfDxZfRqSbQNiSnvbd7gRNLj1mbZTnhGNOX-MHln7Ay-MAJ-gSV49RQ9HVSmfocYhCAOCsEEQ1gjCCkF4QBAGBGGNIKwRhGuJNYLeqhb3-MEOP1jjBzv8YIOf5-jbh5Pz90vPHszhcTC4Wy9KBWPhPI9hScjVDgFNBJEBE5GfcCm4iAQsAzNBEhb7HEg69zlPA8ESLnIgrMELtFPVVf4S4RwsBkKjGfNDMO3n8ySRLBbRTEqm4uPZHvLdt8saU38lu0Vye-id-8aZpZGGHmaAoNtufnX3-V6jBwPI99FOe9nlB-g-v2qLzeWhhc8fJw2aCg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ablation+and+molten+layer+flow+simulation+for+plate+model+of+SiO2f%2FSiO2+composite+material+using+particle+method&rft.jtitle=Computers+%26+fluids&rft.au=Gao%2C+Junjie&rft.au=Deng%2C+Daiying&rft.au=Luo%2C+Xiaoguang&rft.au=Han%2C+Haitao&rft.date=2024-11-15&rft.issn=0045-7930&rft.volume=284&rft.spage=106436&rft_id=info:doi/10.1016%2Fj.compfluid.2024.106436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2024_106436 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon |