Ablation and molten layer flow simulation for plate model of SiO2f/SiO2 composite material using particle method

•Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface morphology of SiO₂f/SiO₂ composite materials. It addresses challenges associated with aerodynamic heating, extremely viscous flows, and phase changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids Jg. 284; S. 106436
Hauptverfasser: Gao, Junjie, Deng, Daiying, Luo, Xiaoguang, Han, Haitao, Yu, Jijun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.11.2024
Schlagworte:
ISSN:0045-7930
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface morphology of SiO₂f/SiO₂ composite materials. It addresses challenges associated with aerodynamic heating, extremely viscous flows, and phase changes between solid-liquid and liquid-gas states.•Introduction of a Novel Simulation Method: A novel simulation approach is introduced for SiO₂f/SiO₂ composites that accounts for heat transfer, melting, solidification, evaporation behavior, and viscosity variations with temperature.•Innovative Application of Conceptual Particles: The method employs conceptual particles to establish models for applying heat flux and airflow shear force. This ensures that these forces are accurately applied solely to the upper surface of models composed of solid, wall, and dummy particles.•Advancement over Previous Algorithms: In contrast to previous algorithms for silicon-based materials, this method solves the complete Navier-Stokes and continuity equations based on the MPS method. This advancement enables the consideration of unsteady effects, two- and three-dimensional simulations, and additional influencing factors such as gravity and surface tension.•Validation and Examination of Effects: The ablative regression of a plate model was validated against experimental results for SiO₂f/SiO₂ composites, demonstrating that the particle method accurately simulates the ablation process. In this paper, the moving particle semi-implicit method (MPS) is extended from calculating free mobility to simulating the extremely viscous and temperature-dependent molten layer flow of SiO2f/SiO2 composite material under aerodynamic heating conditions, which includes strong heating and shear of incoming flow. A method for applying heat flux and airflow shear, based on the conceptual particle approach, has been established. Heat transfer, melting, solidification, and evaporation behaviors are considered, with temperature-dependent viscosity variations also accounted for. The ablative regression of the plate model is verified using experimental results of the SiO2f/SiO2 composite material, and results from convergence analysis demonstrate the accuracy of the space step size selection. Surface morphology analysis through three-dimensional computation indicates that the extended particle method also accurately describes the surface morphology of SiO2f/SiO2 composite material under aerodynamic heating conditions. Thus, the extended particle method accurately simulates both the ablation process and the surface morphology of the SiO2f/SiO2 composite material. The influences of acceleration and surface tension are discussed. Ablative recession, when subject to acceleration, is smaller than that observed in its absence. When exposed to surface tension, the liquid layer tends to form a spherical shape, and the particles behave as a cohesive unit, resulting in smaller ablative recession than in the absence of surface tension.
AbstractList •Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface morphology of SiO₂f/SiO₂ composite materials. It addresses challenges associated with aerodynamic heating, extremely viscous flows, and phase changes between solid-liquid and liquid-gas states.•Introduction of a Novel Simulation Method: A novel simulation approach is introduced for SiO₂f/SiO₂ composites that accounts for heat transfer, melting, solidification, evaporation behavior, and viscosity variations with temperature.•Innovative Application of Conceptual Particles: The method employs conceptual particles to establish models for applying heat flux and airflow shear force. This ensures that these forces are accurately applied solely to the upper surface of models composed of solid, wall, and dummy particles.•Advancement over Previous Algorithms: In contrast to previous algorithms for silicon-based materials, this method solves the complete Navier-Stokes and continuity equations based on the MPS method. This advancement enables the consideration of unsteady effects, two- and three-dimensional simulations, and additional influencing factors such as gravity and surface tension.•Validation and Examination of Effects: The ablative regression of a plate model was validated against experimental results for SiO₂f/SiO₂ composites, demonstrating that the particle method accurately simulates the ablation process. In this paper, the moving particle semi-implicit method (MPS) is extended from calculating free mobility to simulating the extremely viscous and temperature-dependent molten layer flow of SiO2f/SiO2 composite material under aerodynamic heating conditions, which includes strong heating and shear of incoming flow. A method for applying heat flux and airflow shear, based on the conceptual particle approach, has been established. Heat transfer, melting, solidification, and evaporation behaviors are considered, with temperature-dependent viscosity variations also accounted for. The ablative regression of the plate model is verified using experimental results of the SiO2f/SiO2 composite material, and results from convergence analysis demonstrate the accuracy of the space step size selection. Surface morphology analysis through three-dimensional computation indicates that the extended particle method also accurately describes the surface morphology of SiO2f/SiO2 composite material under aerodynamic heating conditions. Thus, the extended particle method accurately simulates both the ablation process and the surface morphology of the SiO2f/SiO2 composite material. The influences of acceleration and surface tension are discussed. Ablative recession, when subject to acceleration, is smaller than that observed in its absence. When exposed to surface tension, the liquid layer tends to form a spherical shape, and the particles behave as a cohesive unit, resulting in smaller ablative recession than in the absence of surface tension.
ArticleNumber 106436
Author Yu, Jijun
Deng, Daiying
Luo, Xiaoguang
Han, Haitao
Gao, Junjie
Author_xml – sequence: 1
  givenname: Junjie
  surname: Gao
  fullname: Gao, Junjie
  organization: China Academy of Aerospace Aerodynamics, Beijing, China
– sequence: 2
  givenname: Daiying
  surname: Deng
  fullname: Deng, Daiying
  organization: China Academy of Aerospace Aerodynamics, Beijing, China
– sequence: 3
  givenname: Xiaoguang
  surname: Luo
  fullname: Luo, Xiaoguang
  organization: China Academy of Aerospace Aerodynamics, Beijing, China
– sequence: 4
  givenname: Haitao
  surname: Han
  fullname: Han, Haitao
  organization: China Academy of Aerospace Aerodynamics, Beijing, China
– sequence: 5
  givenname: Jijun
  orcidid: 0000-0002-6238-8106
  surname: Yu
  fullname: Yu, Jijun
  email: jijuny@163.com
  organization: China Academy of Aerospace Aerodynamics, Beijing, China
BookMark eNqFUMtOwzAQ9KFItIVvwD-Qdh2neRyripdUqQfgbDn2Glw5cWSnoP49jlpx5bLPmdnVLMis9z0S8sBgxYCV6-NK-W4w7mT1Koe8SNOy4OWMzAGKTVY1HG7JIsYjpJ7nxZwM29bJ0fqeyl7TzrsRe-rkGQM1zv_QaLvTFWB8oEOqMcE0OuoNfbOH3KynSKfDPtppmyDBSkdP0fafdJBhtMqlOY5fXt-RGyNdxPtrXpKPp8f33Uu2Pzy_7rb7TOUlG7Oy0W1bbLAC4FgX0Mha54a3uoRaGa10qesKmM7rtgLFNoUCpRqu21pp5KziS1JddFXwMQY0Ygi2k-EsGIjJLHEUf2aJySxxMSsxtxcmpve-LQYRlcVeobYB1Si0t_9q_AJG6X1l
Cites_doi 10.1080/00223131.2012.740944
10.1080/18811248.2001.9715136
10.1016/j.nucengdes.2014.02.023
10.1007/s40571-020-00313-w
10.1016/j.jcp.2010.02.011
10.1086/112164
10.1016/j.ijheatmasstransfer.2016.03.090
10.1299/mel.15-00367
10.1080/18811248.2003.9715342
10.1016/j.cma.2014.05.023
10.2514/6.2017-2361
10.2514/8.5240
10.1016/j.anucene.2014.06.011
10.1080/18811248.2001.9715045
10.2514/8.4852
10.1016/S0029-5493(98)00270-2
10.2514/8.8080
10.13182/NSE96-A24205
10.1016/j.nucengdes.2017.01.025
10.1016/j.cma.2012.03.013
10.1093/mnras/181.3.375
10.1007/s40571-021-00420-2
10.1016/j.cma.2010.12.001
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compfluid.2024.106436
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compfluid_2024_106436
S0045793024002676
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABAOU
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSW
SSZ
T5K
TN5
XPP
ZMT
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
T9H
VH1
WUQ
~HD
ID FETCH-LOGICAL-c261t-69dbb45e7003e8409a8d2f3bd608cfdcd6d8701d28b70c154c0cc93db8cde3173
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001324839900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7930
IngestDate Sat Nov 29 03:39:27 EST 2025
Sat Jan 25 15:58:38 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Ablative regression
SiO2f/SiO2 composite material
Moving particle semi-implicit method (MPS)
Melting
Evaporation
Molten layer flow
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-69dbb45e7003e8409a8d2f3bd608cfdcd6d8701d28b70c154c0cc93db8cde3173
ORCID 0000-0002-6238-8106
ParticipantIDs crossref_primary_10_1016_j_compfluid_2024_106436
elsevier_sciencedirect_doi_10_1016_j_compfluid_2024_106436
PublicationCentury 2000
PublicationDate 2024-11-15
PublicationDateYYYYMMDD 2024-11-15
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Computers & fluids
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guo, Shi, Baihe (bib0005) 2019
Tanaka M.; Masunaga T. (2010). Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility., 229(11), 4279–4290.
Shirakawa, Yamamoto, Horie, Tsunoyama (bib0031) 2003; 40
Li, Oka, Furuya (bib0024) 2014; 272
Bethe, Adams (bib0006) 1959; 26
Hidalgo (bib0007) 1960; 30
Li, Yamaji (bib0028) 2017; 314
Jiang, Liu (bib0004) 2003
Kawahara, Oka (bib0023) 2012; 49
Zien (bib0009) 1998
Adams (bib0003) 1959; 29
Li, Oka (bib0025) 2014; 73
Nomura, Koshizuka, Oka, Obata (bib0033) 2001; 38
Yamada, Imatani, Shibata (bib0016) 2022; 9
Chai, Erkan, Kondo, Okamoto, Wei (bib0026) 2015; 1
Mizuno, Shibata, Koshizuka (bib0017) 2021
Li, Liu, Duan, Chong, Yan (bib0027) 2016; 99
Jiang, Li, Yu (bib0037) 2008; 026
Lucy (bib0013) 1977; 82
Lee, Park, Kim (bib0021) 2011; 200
Kondo (bib0029) 2021; 8
.
Shirakawa, Horie, Yamamoto, Tsunoyama (bib0034) 2001; 38
Yu, Deng, Luo (bib0001) 2021; 6
Chen, Xi, Sun (bib0020) 2014; 278
Gingold, Monaghan (bib0014) 1977; 181
Toyota, Akimoto, Kubo (bib0036) 2005
Koshizuka S.; Ikeda H.; Oka Y. (1999). Numerical analysis of fragmentation mechanisms in vapor explosions., 189(1-3), 423–433.
Ai (bib0002) 2020
Zhang, Yu (bib0012) 2021
Kondo, Matsumoto, Sawada (bib0018) 2023
Yu J.J., Luo X.G., Deng D.Y., et al. Modeling the heat transfer and mass loss of Si3N4/SiO2 composite under arc-jet tunnel environments[R]. AIAA 2017-2361, 2017.
Ikeda (bib0022) 1999
Shakibaeinia A.; Jin Y.C. (2012). MPS mesh-free particle method for multiphase flows, 229-232, 13–26.
Zien, Wei (bib0010) 1999
Lubard S.. Two layer ablation at an axisymmetric stagnation point. Two Layer Ablation at An Axisymmetric Stagnation Point, 1968.
Koshizuka, Oka (bib0015) 1996; 123
Kondo, Koshizuka, Suzuki, Takimoto (bib0035) 2007
Nomura (10.1016/j.compfluid.2024.106436_bib0033) 2001; 38
Hidalgo (10.1016/j.compfluid.2024.106436_bib0007) 1960; 30
Chen (10.1016/j.compfluid.2024.106436_bib0020) 2014; 278
Chai (10.1016/j.compfluid.2024.106436_bib0026) 2015; 1
Shirakawa (10.1016/j.compfluid.2024.106436_bib0031) 2003; 40
Li (10.1016/j.compfluid.2024.106436_bib0027) 2016; 99
Zhang (10.1016/j.compfluid.2024.106436_bib0012) 2021
Jiang (10.1016/j.compfluid.2024.106436_bib0004) 2003
Ikeda (10.1016/j.compfluid.2024.106436_bib0022) 1999
Ai (10.1016/j.compfluid.2024.106436_bib0002) 2020
10.1016/j.compfluid.2024.106436_bib0019
Yu (10.1016/j.compfluid.2024.106436_bib0001) 2021; 6
Lee (10.1016/j.compfluid.2024.106436_bib0021) 2011; 200
Yamada (10.1016/j.compfluid.2024.106436_bib0016) 2022; 9
10.1016/j.compfluid.2024.106436_bib0030
Zien (10.1016/j.compfluid.2024.106436_bib0009) 1998
10.1016/j.compfluid.2024.106436_bib0032
10.1016/j.compfluid.2024.106436_bib0011
Kondo (10.1016/j.compfluid.2024.106436_bib0035) 2007
Kawahara (10.1016/j.compfluid.2024.106436_bib0023) 2012; 49
Li (10.1016/j.compfluid.2024.106436_bib0028) 2017; 314
Li (10.1016/j.compfluid.2024.106436_bib0024) 2014; 272
Guo (10.1016/j.compfluid.2024.106436_bib0005) 2019
Jiang (10.1016/j.compfluid.2024.106436_bib0037) 2008; 026
Lucy (10.1016/j.compfluid.2024.106436_bib0013) 1977; 82
Adams (10.1016/j.compfluid.2024.106436_bib0003) 1959; 29
Kondo (10.1016/j.compfluid.2024.106436_bib0029) 2021; 8
Shirakawa (10.1016/j.compfluid.2024.106436_bib0034) 2001; 38
10.1016/j.compfluid.2024.106436_bib0008
Gingold (10.1016/j.compfluid.2024.106436_bib0014) 1977; 181
Toyota (10.1016/j.compfluid.2024.106436_bib0036) 2005
Li (10.1016/j.compfluid.2024.106436_bib0025) 2014; 73
Zien (10.1016/j.compfluid.2024.106436_bib0010) 1999
Kondo (10.1016/j.compfluid.2024.106436_bib0018) 2023
Mizuno (10.1016/j.compfluid.2024.106436_bib0017) 2021
Bethe (10.1016/j.compfluid.2024.106436_bib0006) 1959; 26
Koshizuka (10.1016/j.compfluid.2024.106436_bib0015) 1996; 123
References_xml – year: 1999
  ident: bib0010
  article-title: Heat transfer in the melt layer of a simple ablation model
  publication-title: Proceedings of the 37th aerospace sciences meeting and exhibit
– volume: 026
  start-page: 452
  year: 2008
  end-page: 455
  ident: bib0037
  article-title: The parameter identification of viscosity coefficient for SiO2 matrix composites
  publication-title: ACTA Aerodyn Sin
– year: 2023
  ident: bib0018
  article-title: A scalable physically consistent particle method for high-viscous incompressible flows
  publication-title: Comput Part Mech
– reference: Shakibaeinia A.; Jin Y.C. (2012). MPS mesh-free particle method for multiphase flows, 229-232, 13–26.
– volume: 200
  start-page: 1113
  year: 2011
  end-page: 1125
  ident: bib0021
  article-title: Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads
  publication-title: Comput Methods Appl Mech Eng
– volume: 314
  start-page: 207
  year: 2017
  end-page: 216
  ident: bib0028
  article-title: Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method
  publication-title: Nucl Eng Des
– reference: Lubard S.. Two layer ablation at an axisymmetric stagnation point. Two Layer Ablation at An Axisymmetric Stagnation Point, 1968.
– year: 2003
  ident: bib0004
  article-title: High speed airflow heat transfer and ablative heat protection
– volume: 49
  start-page: 1156
  year: 2012
  end-page: 1164
  ident: bib0023
  article-title: Ex-vessel molten core solidification behavior by moving particle semi-implicit method
  publication-title: J Nucl Sci Technol
– start-page: A9-2
  year: 2005
  ident: bib0036
  article-title: A particle method with variable spatial resolution for incompressible flows
  publication-title: Proceedings of the 19th Japan society of fluid mechanics
– volume: 40
  start-page: 125
  year: 2003
  end-page: 135
  ident: bib0031
  article-title: Analysis of subcooled boiling with the two-fluid particle interaction method
  publication-title: J Nucl Sci Technol
– volume: 38
  start-page: 1057
  year: 2001
  end-page: 1064
  ident: bib0033
  article-title: Numerical analysis of droplet breakup behavior using particle method
  publication-title: J Nucl Sci Technol
– volume: 123
  start-page: 421
  year: 1996
  end-page: 434
  ident: bib0015
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl Sci Eng
– volume: 6
  start-page: 1
  year: 2021
  end-page: 18
  ident: bib0001
  article-title: Multi-scale phenomena in thermal protection materials experienced aero-heating and thermo-ablative modeling forward quantitative analysis
  publication-title: Phys Gases
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: bib0013
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron J
– volume: 1
  year: 2015
  ident: bib0026
  article-title: Experimental research and numerical simulation of moving molten metal pool
  publication-title: Mech Eng Lett
– volume: 26
  start-page: 321
  year: 1959
  end-page: 328
  ident: bib0006
  article-title: A theory for the ablation of glassy materials
  publication-title: J Aerosp Sci
– volume: 30
  start-page: 806
  year: 1960
  end-page: 814
  ident: bib0007
  article-title: Ablation of glassy material around blunt bodies of revolution
  publication-title: ARS J
– volume: 278
  start-page: 254
  year: 2014
  end-page: 271
  ident: bib0020
  article-title: Improving stability of MPS method by a computational scheme based on conceptual particles
  publication-title: Comput Methods Appl Mech Eng
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: bib0014
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
– volume: 272
  start-page: 109
  year: 2014
  end-page: 117
  ident: bib0024
  article-title: Experimental and numerical study of stratification and solidification/melting behaviors
  publication-title: Nucl Eng Des
– volume: 9
  start-page: 421
  year: 2022
  end-page: 441
  ident: bib0016
  article-title: Application of improved multiresolution technique for the MPS method to fluid lubrication
  publication-title: Comput Part Mech
– reference: Koshizuka S.; Ikeda H.; Oka Y. (1999). Numerical analysis of fragmentation mechanisms in vapor explosions., 189(1-3), 423–433.
– year: 1999
  ident: bib0022
  article-title: Numerical analysis of fragmentation processes in vapor explosions using particle method
– volume: 99
  start-page: 44
  year: 2016
  end-page: 52
  ident: bib0027
  article-title: Numerical investigation of erosion and heat transfer characteristics of molten jet impinging onto solid plate with MPS–LES method
  publication-title: Int J Heat Mass Transf
– volume: 29
  start-page: 625
  year: 1959
  end-page: 632
  ident: bib0003
  article-title: Recent advances in ablation
  publication-title: ARS J
– reference: Tanaka M.; Masunaga T. (2010). Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility., 229(11), 4279–4290.
– year: 2019
  ident: bib0005
  article-title: Theory and application of ablative heat protection for hypersonic vehicles
– year: 2021
  ident: bib0017
  article-title: Statistical analysis of three-dimensional run-up heights using Gaussian process emulator of particle method
  publication-title: Comput Part Mech
– reference: .
– volume: 8
  start-page: 69
  year: 2021
  end-page: 86
  ident: bib0029
  article-title: A physically consistent particle method for incompressible fluid flow calculation
  publication-title: Comput Part Mech
– volume: 73
  start-page: 46
  year: 2014
  end-page: 52
  ident: bib0025
  article-title: Numerical simulation of the SURC-2 and SURC-4 MCCI experiments by MPS method
  publication-title: Ann Nucl Energy
– year: 2020
  ident: bib0002
  article-title: Computational aerodynamics of near space hypersonic vehicles
– year: 2021
  ident: bib0012
  article-title: Thermal protection technology for hypersonic vehicles
– volume: 38
  start-page: 392
  year: 2001
  end-page: 402
  ident: bib0034
  article-title: Analysis of the void distribution in a circular tube with the two-fluid particle interacthion method
  publication-title: J Nucl Sci Technol
– year: 1998
  ident: bib0009
  article-title: Effects of melt layer on steady aerodynamic ablation in hypersonic flow
  publication-title: Proceedings of the AIAA international space planes & hypersonic systems & technologies conference
– reference: Yu J.J., Luo X.G., Deng D.Y., et al. Modeling the heat transfer and mass loss of Si3N4/SiO2 composite under arc-jet tunnel environments[R]. AIAA 2017-2361, 2017.
– start-page: 93
  year: 2007
  end-page: 98
  ident: bib0035
  article-title: Surface tension model using inter-particle force in particle method
  publication-title: Proceedings of the ASME/JSME 2007 5th joint fluids engineering conference
– volume: 49
  start-page: 1156
  issue: 12
  year: 2012
  ident: 10.1016/j.compfluid.2024.106436_bib0023
  article-title: Ex-vessel molten core solidification behavior by moving particle semi-implicit method
  publication-title: J Nucl Sci Technol
  doi: 10.1080/00223131.2012.740944
– volume: 38
  start-page: 1057
  issue: 12
  year: 2001
  ident: 10.1016/j.compfluid.2024.106436_bib0033
  article-title: Numerical analysis of droplet breakup behavior using particle method
  publication-title: J Nucl Sci Technol
  doi: 10.1080/18811248.2001.9715136
– volume: 272
  start-page: 109
  year: 2014
  ident: 10.1016/j.compfluid.2024.106436_bib0024
  article-title: Experimental and numerical study of stratification and solidification/melting behaviors
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2014.02.023
– volume: 8
  start-page: 69
  year: 2021
  ident: 10.1016/j.compfluid.2024.106436_bib0029
  article-title: A physically consistent particle method for incompressible fluid flow calculation
  publication-title: Comput Part Mech
  doi: 10.1007/s40571-020-00313-w
– ident: 10.1016/j.compfluid.2024.106436_bib0019
  doi: 10.1016/j.jcp.2010.02.011
– year: 2021
  ident: 10.1016/j.compfluid.2024.106436_bib0017
  article-title: Statistical analysis of three-dimensional run-up heights using Gaussian process emulator of particle method
  publication-title: Comput Part Mech
– year: 1999
  ident: 10.1016/j.compfluid.2024.106436_bib0022
– year: 2019
  ident: 10.1016/j.compfluid.2024.106436_bib0005
– year: 1998
  ident: 10.1016/j.compfluid.2024.106436_bib0009
  article-title: Effects of melt layer on steady aerodynamic ablation in hypersonic flow
– year: 1999
  ident: 10.1016/j.compfluid.2024.106436_bib0010
  article-title: Heat transfer in the melt layer of a simple ablation model
– volume: 6
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.compfluid.2024.106436_bib0001
  article-title: Multi-scale phenomena in thermal protection materials experienced aero-heating and thermo-ablative modeling forward quantitative analysis
  publication-title: Phys Gases
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.compfluid.2024.106436_bib0013
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron J
  doi: 10.1086/112164
– volume: 99
  start-page: 44
  year: 2016
  ident: 10.1016/j.compfluid.2024.106436_bib0027
  article-title: Numerical investigation of erosion and heat transfer characteristics of molten jet impinging onto solid plate with MPS–LES method
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.03.090
– volume: 1
  year: 2015
  ident: 10.1016/j.compfluid.2024.106436_bib0026
  article-title: Experimental research and numerical simulation of moving molten metal pool
  publication-title: Mech Eng Lett
  doi: 10.1299/mel.15-00367
– volume: 40
  start-page: 125
  issue: 3
  year: 2003
  ident: 10.1016/j.compfluid.2024.106436_bib0031
  article-title: Analysis of subcooled boiling with the two-fluid particle interaction method
  publication-title: J Nucl Sci Technol
  doi: 10.1080/18811248.2003.9715342
– volume: 278
  start-page: 254
  year: 2014
  ident: 10.1016/j.compfluid.2024.106436_bib0020
  article-title: Improving stability of MPS method by a computational scheme based on conceptual particles
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.05.023
– ident: 10.1016/j.compfluid.2024.106436_bib0011
  doi: 10.2514/6.2017-2361
– volume: 30
  start-page: 806
  issue: 9
  year: 1960
  ident: 10.1016/j.compfluid.2024.106436_bib0007
  article-title: Ablation of glassy material around blunt bodies of revolution
  publication-title: ARS J
  doi: 10.2514/8.5240
– year: 2003
  ident: 10.1016/j.compfluid.2024.106436_bib0004
– ident: 10.1016/j.compfluid.2024.106436_bib0008
– year: 2023
  ident: 10.1016/j.compfluid.2024.106436_bib0018
  article-title: A scalable physically consistent particle method for high-viscous incompressible flows
  publication-title: Comput Part Mech
– volume: 73
  start-page: 46
  year: 2014
  ident: 10.1016/j.compfluid.2024.106436_bib0025
  article-title: Numerical simulation of the SURC-2 and SURC-4 MCCI experiments by MPS method
  publication-title: Ann Nucl Energy
  doi: 10.1016/j.anucene.2014.06.011
– volume: 38
  start-page: 392
  issue: 6
  year: 2001
  ident: 10.1016/j.compfluid.2024.106436_bib0034
  article-title: Analysis of the void distribution in a circular tube with the two-fluid particle interacthion method
  publication-title: J Nucl Sci Technol
  doi: 10.1080/18811248.2001.9715045
– volume: 29
  start-page: 625
  issue: 9
  year: 1959
  ident: 10.1016/j.compfluid.2024.106436_bib0003
  article-title: Recent advances in ablation
  publication-title: ARS J
  doi: 10.2514/8.4852
– ident: 10.1016/j.compfluid.2024.106436_bib0030
  doi: 10.1016/S0029-5493(98)00270-2
– year: 2020
  ident: 10.1016/j.compfluid.2024.106436_bib0002
– volume: 26
  start-page: 321
  year: 1959
  ident: 10.1016/j.compfluid.2024.106436_bib0006
  article-title: A theory for the ablation of glassy materials
  publication-title: J Aerosp Sci
  doi: 10.2514/8.8080
– volume: 123
  start-page: 421
  issue: 3
  year: 1996
  ident: 10.1016/j.compfluid.2024.106436_bib0015
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl Sci Eng
  doi: 10.13182/NSE96-A24205
– volume: 314
  start-page: 207
  year: 2017
  ident: 10.1016/j.compfluid.2024.106436_bib0028
  article-title: Three-dimensional numerical study on the mechanism of anisotropic MCCI by improved MPS method
  publication-title: Nucl Eng Des
  doi: 10.1016/j.nucengdes.2017.01.025
– ident: 10.1016/j.compfluid.2024.106436_bib0032
  doi: 10.1016/j.cma.2012.03.013
– start-page: A9-2
  year: 2005
  ident: 10.1016/j.compfluid.2024.106436_bib0036
  article-title: A particle method with variable spatial resolution for incompressible flows
– volume: 181
  start-page: 375
  issue: 3
  year: 1977
  ident: 10.1016/j.compfluid.2024.106436_bib0014
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/181.3.375
– start-page: 93
  year: 2007
  ident: 10.1016/j.compfluid.2024.106436_bib0035
  article-title: Surface tension model using inter-particle force in particle method
– volume: 026
  start-page: 452
  issue: 004
  year: 2008
  ident: 10.1016/j.compfluid.2024.106436_bib0037
  article-title: The parameter identification of viscosity coefficient for SiO2 matrix composites
  publication-title: ACTA Aerodyn Sin
– volume: 9
  start-page: 421
  year: 2022
  ident: 10.1016/j.compfluid.2024.106436_bib0016
  article-title: Application of improved multiresolution technique for the MPS method to fluid lubrication
  publication-title: Comput Part Mech
  doi: 10.1007/s40571-021-00420-2
– volume: 200
  start-page: 1113
  issue: 9-12
  year: 2011
  ident: 10.1016/j.compfluid.2024.106436_bib0021
  article-title: Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.12.001
– year: 2021
  ident: 10.1016/j.compfluid.2024.106436_bib0012
SSID ssj0004324
Score 2.4156015
Snippet •Extension of MPS Method: This study extends the Moving Particle Semi-Implicit (MPS) method from simulating free flow to modeling ablation and surface...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 106436
SubjectTerms Ablative regression
Evaporation
Melting
Molten layer flow
Moving particle semi-implicit method (MPS)
SiO2f/SiO2 composite material
Title Ablation and molten layer flow simulation for plate model of SiO2f/SiO2 composite material using particle method
URI https://dx.doi.org/10.1016/j.compfluid.2024.106436
Volume 284
WOSCitedRecordID wos001324839900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 0045-7930
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004324
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEKsotJUP3EYpGSeThduIlg4IFQ4FzS3yEqOM0iTqJKX8DP4xz1uSopFKD1w8kTWxk7xPz9_zW4zQGyZZxEiqMpbBNgkDxjwmYuqpOi7Kr5UGunzx98_x2VmyWqVfJ5PfLhfmqoyrKrm-Tpv_KmroA2Gr1Nk7iLsfFDrgGoQOLYgd2n8S_IKZ8DbtFrioSyDF05ICs57Ksv453RQX9sQuHWHYwHVuzsPR-SvFFyKVdxV-dbi5iulSMa6tfvRpp7cWGjutPX96THDdKREbjSlZdoXoWfspNW6erloXPZ6Oc6Ntjmnxyy2jKkCo0_9dFbT-0dGhf2k2bJe0aGk93rIgocrdM0mbTg2Hqk6mdchYNUyScKRIZ4oqRVt1vNluWCsRNfo1jtQcR8MdN6tq_7Xa9TGILrxtnfUDZWqgzAx0D-2SeJ6CotxdfDxZfRqSbQNiSnvbd7gRNLj1mbZTnhGNOX-MHln7Ay-MAJ-gSV49RQ9HVSmfocYhCAOCsEEQ1gjCCkF4QBAGBGGNIKwRhGuJNYLeqhb3-MEOP1jjBzv8YIOf5-jbh5Pz90vPHszhcTC4Wy9KBWPhPI9hScjVDgFNBJEBE5GfcCm4iAQsAzNBEhb7HEg69zlPA8ESLnIgrMELtFPVVf4S4RwsBkKjGfNDMO3n8ySRLBbRTEqm4uPZHvLdt8saU38lu0Vye-id-8aZpZGGHmaAoNtufnX3-V6jBwPI99FOe9nlB-g-v2qLzeWhhc8fJw2aCg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ablation+and+molten+layer+flow+simulation+for+plate+model+of+SiO2f%2FSiO2+composite+material+using+particle+method&rft.jtitle=Computers+%26+fluids&rft.au=Gao%2C+Junjie&rft.au=Deng%2C+Daiying&rft.au=Luo%2C+Xiaoguang&rft.au=Han%2C+Haitao&rft.date=2024-11-15&rft.issn=0045-7930&rft.volume=284&rft.spage=106436&rft_id=info:doi/10.1016%2Fj.compfluid.2024.106436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compfluid_2024_106436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7930&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7930&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7930&client=summon