Navigational path optimization methodology for wing-diesel hybrid ship based on improved Double Deep Q-Network

Wing-diesel hybrid ships can demonstrate quantifiable fuel efficiency gains by using wing-sails’ thrust to replace part of the fuel propulsion during navigation. But ships can be affected by factors such as wind, waves, currents and shore wall effects during navigation, thus necessitating precise pa...

Full description

Saved in:
Bibliographic Details
Published in:Ocean engineering Vol. 341; p. 122543
Main Authors: Wang, Cong, Huang, Lianzhong, Ma, Ranqi, Wang, Kai, Sheng, Jinlu, Ruan, Zhang, Zhang, Rui, Cao, JianLin
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2025
Subjects:
ISSN:0029-8018
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wing-diesel hybrid ships can demonstrate quantifiable fuel efficiency gains by using wing-sails’ thrust to replace part of the fuel propulsion during navigation. But ships can be affected by factors such as wind, waves, currents and shore wall effects during navigation, thus necessitating precise path planning methodologies to ensure both economic efficiency and operational safety. Therefore, this study develops an improved Double Deep Q Network (DDQN) algorithm for optimizing the navigation path planning of the wing-diesel hybrid ship. First, a ship fuel consumption prediction model based on XGBoost algorithm and a ship motion model are established. Then, the reward function is improved by incorporating fuel consumption, heading, distance, time, and collisions as rewards or penalties. Afterward, DDQN is introduced to learn the action-reward model, and the learning results are used to control the ship's movement. By pursuing higher reward values, the ship can autonomously find the optimal low-fuel consumption path. Experimental verification was conducted on the target voyage of the “New Aden” in the Arabian Sea. The results demonstrate that the proposed method effectively enhances the energy efficiency of wing-diesel hybrid ships, reducing fuel consumption and the Energy Efficiency Operational Indicator (EEOI) by approximately 6.35 % and 7.98 %, respectively. •A cooperative optimization method for the wind-assisted hybrid ship is proposed.•Improved Double Deep Q-Network is designed.•XGBoost algorithm is used for predicting ship fuel consumption.•Reward function is improved to optimize operational efficiency.•Interpolation method is adopted to align meteorological data with ship data.
AbstractList Wing-diesel hybrid ships can demonstrate quantifiable fuel efficiency gains by using wing-sails’ thrust to replace part of the fuel propulsion during navigation. But ships can be affected by factors such as wind, waves, currents and shore wall effects during navigation, thus necessitating precise path planning methodologies to ensure both economic efficiency and operational safety. Therefore, this study develops an improved Double Deep Q Network (DDQN) algorithm for optimizing the navigation path planning of the wing-diesel hybrid ship. First, a ship fuel consumption prediction model based on XGBoost algorithm and a ship motion model are established. Then, the reward function is improved by incorporating fuel consumption, heading, distance, time, and collisions as rewards or penalties. Afterward, DDQN is introduced to learn the action-reward model, and the learning results are used to control the ship's movement. By pursuing higher reward values, the ship can autonomously find the optimal low-fuel consumption path. Experimental verification was conducted on the target voyage of the “New Aden” in the Arabian Sea. The results demonstrate that the proposed method effectively enhances the energy efficiency of wing-diesel hybrid ships, reducing fuel consumption and the Energy Efficiency Operational Indicator (EEOI) by approximately 6.35 % and 7.98 %, respectively. •A cooperative optimization method for the wind-assisted hybrid ship is proposed.•Improved Double Deep Q-Network is designed.•XGBoost algorithm is used for predicting ship fuel consumption.•Reward function is improved to optimize operational efficiency.•Interpolation method is adopted to align meteorological data with ship data.
ArticleNumber 122543
Author Wang, Cong
Sheng, Jinlu
Ma, Ranqi
Cao, JianLin
Ruan, Zhang
Zhang, Rui
Wang, Kai
Huang, Lianzhong
Author_xml – sequence: 1
  givenname: Cong
  orcidid: 0009-0008-9965-4974
  surname: Wang
  fullname: Wang, Cong
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 2
  givenname: Lianzhong
  orcidid: 0009-0006-3886-4447
  surname: Huang
  fullname: Huang, Lianzhong
  email: huanglz@dlmu.edu.cn
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 3
  givenname: Ranqi
  surname: Ma
  fullname: Ma, Ranqi
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 4
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 5
  givenname: Jinlu
  surname: Sheng
  fullname: Sheng, Jinlu
  organization: School of Shipping and Naval Architecture, Chongqing Jiaotong University, 400074, China
– sequence: 6
  givenname: Zhang
  surname: Ruan
  fullname: Ruan, Zhang
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 7
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 8
  givenname: JianLin
  surname: Cao
  fullname: Cao, JianLin
  organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMV2EifsQC0vqSpCgrXlxyRxSezIDq3K15NSWLOaq5HO1dWZoYnzDhC6omRBCeXX24XXIB24esEIyxeUsTxLJ2hKCLtJSkLLczSLcUsI4ZykU-Q2cmdrOVjvZIt7OTTY94Pt7NfPD3cwNN741tcHXPmA99bVibEQocXNQQVrcGxsj5WMYPAI2K4Pfjfmlf9ULeAVQI9fkw0Mex8-LtBZJdsIl793jt4f7t-WT8n65fF5ebdONON0SHhmNFSap1XBeClzqVMjc8K1yTKVA1OpVEUqTclLWmiVFVVBoMq1MqB0TmU6R_zUq4OPMUAl-mA7GQ6CEnE0Jbbiz5Q4mhInUyN4ewJhXLezEETUFpwGYwPoQRhv_6v4BuM1fLw
Cites_doi 10.3390/jmse12112100
10.3390/jmse9040357
10.2112/SI97-022.1
10.1109/TCOMM.2019.2947918
10.1016/j.marpol.2016.10.007
10.1109/ACCESS.2019.2953326
10.1016/j.oceaneng.2019.106299
10.3390/en17153833
10.1080/20464177.2024.2434331
10.3390/jmse12091645
10.1016/j.oceaneng.2022.111010
10.3390/jmse11040789
10.1016/j.oceaneng.2023.115750
10.1016/j.energy.2025.135720
10.1016/j.oceaneng.2024.117669
10.1016/j.apor.2021.102759
10.1016/j.energy.2024.130318
10.1016/j.apenergy.2024.123132
10.1007/s00773-024-00993-6
10.1016/j.oceaneng.2024.117668
10.1016/j.oceaneng.2021.109603
10.1109/ACCESS.2023.3307480
10.1016/j.oceaneng.2019.01.026
10.3390/en18040897
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2025.122543
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2025_122543
S0029801825022267
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
~HD
29N
6TJ
9DU
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
R2-
SAC
SET
WUQ
ID FETCH-LOGICAL-c261t-64dcefc63f7268a5ac3da506cd44b5e2b3ab73ad86817cb47f70ef5cbdebc51a3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001595308000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Thu Nov 27 00:59:12 EST 2025
Wed Dec 10 14:25:57 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Double Deep Q Network algorithm
Fuel Consumption Prediction Model
Route planning
Reward Function
Wing-diesel hybrid ship
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-64dcefc63f7268a5ac3da506cd44b5e2b3ab73ad86817cb47f70ef5cbdebc51a3
ORCID 0009-0008-9965-4974
0009-0006-3886-4447
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2025_122543
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_122543
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kastrisios, Pilikou (bib19) 2017; 75
Guzelbulut, Sugimoto, Fujita, Suzuki (bib11) 2024; 29
Chen, Chen, MA (bib3) 2019; 189
Huang (bib15) 2023
Wang, Huang, Ma, Wang, Sheng, Ruan, Hua, Zhang (bib28) 2024; 302
Han, Liu, Sun, Yan (bib12) 2024; 302
(bib27) 2023
Yan, Yang, Wang, Mo, Wang (bib32) 2024; 368
(bib16) 2020
Kolodziejski, Sosnowski (bib20) 2025; 18
Yang, Liu, Li, Hu (bib33) 2025; 24
Zhao, Wang, Zhang, Wang (bib36) 2021; 11
Cui, Li, Suo, Yang (bib4) 2022; 48
Du, Chen, Li, Schönborn, Sun (bib5) 2022; 2
Guzelbulut, Badalotti, Suzuki (bib10) 2024; 312
Karatug, Tadros, Ventura, Soares (bib18) 2024; 292
Farazi, Zou, Ahamed, Barua (bib6) 2021; 11
Calic, Juric, Katalinic (bib1) 2024; 12
Wang, Chen, Huang, Wang, Ma, Wang (bib30) 2025; 322
Ma, Wang, Wang, Zhao, Jiang, Liu, Xing, Huang (bib22) 2023; 4
Zhou, Yu, Yu (bib38) 2023; 49
Nunez, Wakulicz, Kong, Gonzalez-Cantos, Fitch (bib24) 2024; 314
Heikkila, Rissanen, Ali-Vehmas (bib13) 2023; 4
Gao, Dong, Han (bib8) 2023; 11
Yang, Shi, Liu, Ye, Zhong, Xiang (bib34) 2022; 266
Wang, Guo, Zhao, Ma, Huang, Tian, Dong, Zhang, Liu, Wang (bib29) 2022; 266
Gao, Qin, Jing, Ni (bib7) 2020; 68
Wu, Wu, Bo, Yang (bib31) 2019; 97
Cao, Liu (bib2) 2022; 39
Guzelbulut, Badalotti, Fujita, Sugimoto, Suzuki (bib9) 2024; 12
Pan, Xie, He, Bao, Li (bib26) 2021; 237
Jiang, Cao, Cui, Yang, Tian (bib17) 2024; 17
Ozturk, Akdag, Ayabakan (bib25) 2022; 251
Zhou, Wu, Zhang (bib37) 2019; 7
Higo, Sakano, Nobe, Hashimoto (bib14) 2023; 287
Zhang, Huang, Peng, Ma, Wang, Tian, Song (bib35) 2023; 288
Li, Wu, Huang (bib21) 2021; 113
Ma, Bi, Hu, Zheng, Gan (bib23) 2019; 173
Gao (10.1016/j.oceaneng.2025.122543_bib8) 2023; 11
Nunez (10.1016/j.oceaneng.2025.122543_bib24) 2024; 314
Cui (10.1016/j.oceaneng.2025.122543_bib4) 2022; 48
Wu (10.1016/j.oceaneng.2025.122543_bib31) 2019; 97
Zhou (10.1016/j.oceaneng.2025.122543_bib38) 2023; 49
Han (10.1016/j.oceaneng.2025.122543_bib12) 2024; 302
Zhao (10.1016/j.oceaneng.2025.122543_bib36) 2021; 11
Kastrisios (10.1016/j.oceaneng.2025.122543_bib19) 2017; 75
Kolodziejski (10.1016/j.oceaneng.2025.122543_bib20) 2025; 18
(10.1016/j.oceaneng.2025.122543_bib27) 2023
Pan (10.1016/j.oceaneng.2025.122543_bib26) 2021; 237
Yan (10.1016/j.oceaneng.2025.122543_bib32) 2024; 368
Cao (10.1016/j.oceaneng.2025.122543_bib2) 2022; 39
Guzelbulut (10.1016/j.oceaneng.2025.122543_bib11) 2024; 29
Ma (10.1016/j.oceaneng.2025.122543_bib23) 2019; 173
(10.1016/j.oceaneng.2025.122543_bib16) 2020
Ozturk (10.1016/j.oceaneng.2025.122543_bib25) 2022; 251
Huang (10.1016/j.oceaneng.2025.122543_bib15) 2023
Wang (10.1016/j.oceaneng.2025.122543_bib29) 2022; 266
Zhou (10.1016/j.oceaneng.2025.122543_bib37) 2019; 7
Guzelbulut (10.1016/j.oceaneng.2025.122543_bib9) 2024; 12
Jiang (10.1016/j.oceaneng.2025.122543_bib17) 2024; 17
Farazi (10.1016/j.oceaneng.2025.122543_bib6) 2021; 11
Yang (10.1016/j.oceaneng.2025.122543_bib33) 2025; 24
Yang (10.1016/j.oceaneng.2025.122543_bib34) 2022; 266
Wang (10.1016/j.oceaneng.2025.122543_bib28) 2024; 302
Du (10.1016/j.oceaneng.2025.122543_bib5) 2022; 2
Wang (10.1016/j.oceaneng.2025.122543_bib30) 2025; 322
Ma (10.1016/j.oceaneng.2025.122543_bib22) 2023; 4
Karatug (10.1016/j.oceaneng.2025.122543_bib18) 2024; 292
Zhang (10.1016/j.oceaneng.2025.122543_bib35) 2023; 288
Heikkila (10.1016/j.oceaneng.2025.122543_bib13) 2023; 4
Higo (10.1016/j.oceaneng.2025.122543_bib14) 2023; 287
Li (10.1016/j.oceaneng.2025.122543_bib21) 2021; 113
Gao (10.1016/j.oceaneng.2025.122543_bib7) 2020; 68
Guzelbulut (10.1016/j.oceaneng.2025.122543_bib10) 2024; 312
Calic (10.1016/j.oceaneng.2025.122543_bib1) 2024; 12
Chen (10.1016/j.oceaneng.2025.122543_bib3) 2019; 189
References_xml – volume: 312
  year: 2024
  ident: bib10
  article-title: Optimization techniques for the design of crescent-shaped hard sails for wind-assisted ship propulsion
  publication-title: Ocean Eng.
– volume: 251
  year: 2022
  ident: bib25
  article-title: A review of path planning algorithms in maritime autonomous surface ships: navigation safety perspective
  publication-title: Ocean Eng.
– volume: 4
  year: 2023
  ident: bib13
  article-title: Coopetition, standardization and general-purpose technologies: a framework and an application
  publication-title: Telecommun. Policy
– volume: 11
  start-page: 357
  year: 2021
  ident: bib36
  article-title: Multicriteria ship route planning method based on improved particle swarm optimization-genetic algorithm
  publication-title: J. Mar. Sci. Eng.
– volume: 288
  year: 2023
  ident: bib35
  article-title: A novel method of desynchronized operating sails for ship wind-assisted propulsion system
  publication-title: Ocean Eng.
– volume: 292
  year: 2024
  ident: bib18
  article-title: Decision support system for ship energy efficiency management based on an optimization model
  publication-title: Energy
– volume: 68
  start-page: 569
  year: 2020
  end-page: 581
  ident: bib7
  article-title: Anti-intelligent UAV jamming strategy via deep Q-networks
  publication-title: IEEE Trans. Commun.
– volume: 322
  year: 2025
  ident: bib30
  article-title: A novel multivariable coupling optimization method of wind-assisted propulsion system for a large crude carrier
  publication-title: Energy
– volume: 302
  year: 2024
  ident: bib28
  article-title: A novel cooperative optimization method of course and speed for wing-diesel hybrid ship based on improved A∗ algorithm
  publication-title: Ocean Eng.
– volume: 302
  year: 2024
  ident: bib12
  article-title: A novel prediction model for ship fuel consumption considering shipping data privacy: an XGBoost-IGWO-LSTM-based personalized federated learning approach
  publication-title: Ocean Eng.
– volume: 314
  year: 2024
  ident: bib24
  article-title: Risk-aware stochastic ship routing using constrained continuous belief tree search
  publication-title: Ocean Eng.
– volume: 48
  start-page: 29
  year: 2022
  end-page: 37
  ident: bib4
  article-title: Collaborative optimization method of ship course and speed based on improved A∗ algorithm
  publication-title: J. Dalian Marit. Univ.
– volume: 2
  year: 2022
  ident: bib5
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part III-Sensor data and meteorological data
  publication-title: Commun. Transport. Res.
– volume: 75
  start-page: 29
  year: 2017
  end-page: 37
  ident: bib19
  article-title: Nautical cartography competences and their effect to the realisation of a worldwide Electronic Navigational Charts database, the performance of ECDIS and the fulfilment of IMO chart carriage requirements
  publication-title: Mar. Pol.
– volume: 266
  year: 2022
  ident: bib29
  article-title: An integrated collaborative decision-making method for optimizing energy consumption of sail-assisted ships towards low-carbon shipping
  publication-title: Ocean Eng.
– volume: 29
  start-page: 387
  year: 2024
  end-page: 403
  ident: bib11
  article-title: Investigation of the efficiency of wind-assisted systems using model-based design approach
  publication-title: J. Mar. Sci. Technol.
– volume: 189
  year: 2019
  ident: bib3
  article-title: A knowledge-free path planning approach for smart ships based on reinforcement learning
  publication-title: Ocean Eng.
– volume: 11
  start-page: 91275
  year: 2023
  end-page: 91292
  ident: bib8
  article-title: An optimized path planning method for container ships in Bohai Bay based on improved deep Q-learning
  publication-title: IEEE Access
– volume: 18
  start-page: 897
  year: 2025
  ident: bib20
  article-title: Review of wind-assisted propulsion systems in maritime transport
  publication-title: Energies
– volume: 12
  start-page: 1645
  year: 2024
  ident: bib9
  article-title: Artificial neural network-based route optimization of a wind-assisted ship
  publication-title: J. Mar. Sci. Eng.
– year: 2023
  ident: bib15
  article-title: A mathematical modeling and an optimization algorithm for marine ship route planning
  publication-title: J. Math.
– volume: 49
  start-page: 1645
  year: 2023
  end-page: 1655
  ident: bib38
  article-title: Research on T-DQN intelligent obstacle avoidance algorithm of unmanned surface vehicle
  publication-title: Acta Autom. Sin.
– volume: 173
  start-page: 687
  year: 2019
  end-page: 699
  ident: bib23
  article-title: Hard sail optimization and energy efficiency enhancement for sail-assisted vessel
  publication-title: Ocean Eng.
– volume: 237
  year: 2021
  ident: bib26
  article-title: An automatic route design algorithm for intelligent ships based on a novel environment modeling method
  publication-title: Ocean Eng.
– volume: 368
  year: 2024
  ident: bib32
  article-title: Improving ship energy efficiency: models, methods, and applications
  publication-title: Appl. Energy
– volume: 266
  year: 2022
  ident: bib34
  article-title: Global path planning algorithm based on double DQN for multi-tasks amphibious unmanned surface vehicle
  publication-title: Ocean Eng.
– year: 2020
  ident: bib16
  article-title: Fourth IMO GHG Study 2020: Final Report
– volume: 113
  year: 2021
  ident: bib21
  article-title: A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field
  publication-title: Appl. Ocean Res.
– volume: 12
  start-page: 2100
  year: 2024
  ident: bib1
  article-title: Impact of wind-assisted propulsion on fuel savings and propeller efficiency: a case study
  publication-title: J. Mar. Sci. Eng.
– volume: 287
  year: 2023
  ident: bib14
  article-title: Development of trajectory-tracking maneuvering system for automatic berthing/unberthing based on double deep Q-network and experimental validation with an actual large ferry
  publication-title: Ocean Eng.
– volume: 4
  start-page: 789
  year: 2023
  ident: bib22
  article-title: Evaluation method for energy saving of sail-assisted ship based on wind resource analysis of typical route
  publication-title: J. Mar. Sci. Eng.
– volume: 11
  year: 2021
  ident: bib6
  article-title: Deep reinforcement learning in transportation research: a review
  publication-title: Transp. Res. Interdiscip. Perspect.
– year: 2023
  ident: bib27
  article-title: Review of Maritime Transport 2023
– volume: 17
  start-page: 3833
  year: 2024
  ident: bib17
  article-title: Numerical study on auxiliary propulsion performance of foldable three-element Wingsail utilizing wind energy
  publication-title: Energies
– volume: 97
  start-page: 155
  year: 2019
  end-page: 161
  ident: bib31
  article-title: An automatic route selection method for shipping transportation based on heuristic algorithm
  publication-title: J. Coast Res.
– volume: 24
  start-page: 85
  year: 2025
  end-page: 97
  ident: bib33
  article-title: Minimum jerk motion planning for maritime autonomous surface ships based on Bezier curves
  publication-title: J. Marine Eng. Technol.
– volume: 7
  start-page: 165262
  year: 2019
  end-page: 165278
  ident: bib37
  article-title: Learn to navigate: cooperative path planning for unmanned surface vehicles using deep reinforcement learning
  publication-title: IEEE Access
– volume: 39
  start-page: 231
  year: 2022
  end-page: 237
  ident: bib2
  article-title: Research on path planning algorithm based on deep reinforcement learning
  publication-title: Comput. Appl. Software
– volume: 12
  start-page: 2100
  issue: 11
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib1
  article-title: Impact of wind-assisted propulsion on fuel savings and propeller efficiency: a case study
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse12112100
– volume: 11
  start-page: 357
  issue: 4
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122543_bib36
  article-title: Multicriteria ship route planning method based on improved particle swarm optimization-genetic algorithm
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse9040357
– volume: 48
  start-page: 29
  issue: 4
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122543_bib4
  article-title: Collaborative optimization method of ship course and speed based on improved A∗ algorithm
  publication-title: J. Dalian Marit. Univ.
– volume: 97
  start-page: 155
  year: 2019
  ident: 10.1016/j.oceaneng.2025.122543_bib31
  article-title: An automatic route selection method for shipping transportation based on heuristic algorithm
  publication-title: J. Coast Res.
  doi: 10.2112/SI97-022.1
– volume: 314
  issue: 1
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib24
  article-title: Risk-aware stochastic ship routing using constrained continuous belief tree search
  publication-title: Ocean Eng.
– volume: 39
  start-page: 231
  issue: 11
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122543_bib2
  article-title: Research on path planning algorithm based on deep reinforcement learning
  publication-title: Comput. Appl. Software
– volume: 68
  start-page: 569
  issue: 1
  year: 2020
  ident: 10.1016/j.oceaneng.2025.122543_bib7
  article-title: Anti-intelligent UAV jamming strategy via deep Q-networks
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2019.2947918
– volume: 75
  start-page: 29
  year: 2017
  ident: 10.1016/j.oceaneng.2025.122543_bib19
  article-title: Nautical cartography competences and their effect to the realisation of a worldwide Electronic Navigational Charts database, the performance of ECDIS and the fulfilment of IMO chart carriage requirements
  publication-title: Mar. Pol.
  doi: 10.1016/j.marpol.2016.10.007
– volume: 7
  start-page: 165262
  year: 2019
  ident: 10.1016/j.oceaneng.2025.122543_bib37
  article-title: Learn to navigate: cooperative path planning for unmanned surface vehicles using deep reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2953326
– year: 2020
  ident: 10.1016/j.oceaneng.2025.122543_bib16
– volume: 189
  year: 2019
  ident: 10.1016/j.oceaneng.2025.122543_bib3
  article-title: A knowledge-free path planning approach for smart ships based on reinforcement learning
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.106299
– volume: 17
  start-page: 3833
  issue: 15
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib17
  article-title: Numerical study on auxiliary propulsion performance of foldable three-element Wingsail utilizing wind energy
  publication-title: Energies
  doi: 10.3390/en17153833
– volume: 11
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122543_bib6
  article-title: Deep reinforcement learning in transportation research: a review
  publication-title: Transp. Res. Interdiscip. Perspect.
– volume: 24
  start-page: 85
  issue: 2
  year: 2025
  ident: 10.1016/j.oceaneng.2025.122543_bib33
  article-title: Minimum jerk motion planning for maritime autonomous surface ships based on Bezier curves
  publication-title: J. Marine Eng. Technol.
  doi: 10.1080/20464177.2024.2434331
– volume: 266
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122543_bib34
  article-title: Global path planning algorithm based on double DQN for multi-tasks amphibious unmanned surface vehicle
  publication-title: Ocean Eng.
– volume: 12
  start-page: 1645
  issue: 9
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib9
  article-title: Artificial neural network-based route optimization of a wind-assisted ship
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse12091645
– volume: 251
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122543_bib25
  article-title: A review of path planning algorithms in maritime autonomous surface ships: navigation safety perspective
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111010
– volume: 4
  start-page: 789
  issue: 11
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib22
  article-title: Evaluation method for energy saving of sail-assisted ship based on wind resource analysis of typical route
  publication-title: J. Mar. Sci. Eng.
  doi: 10.3390/jmse11040789
– year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib27
– volume: 4
  issue: 47
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib13
  article-title: Coopetition, standardization and general-purpose technologies: a framework and an application
  publication-title: Telecommun. Policy
– volume: 287
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib14
  article-title: Development of trajectory-tracking maneuvering system for automatic berthing/unberthing based on double deep Q-network and experimental validation with an actual large ferry
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115750
– volume: 322
  year: 2025
  ident: 10.1016/j.oceaneng.2025.122543_bib30
  article-title: A novel multivariable coupling optimization method of wind-assisted propulsion system for a large crude carrier
  publication-title: Energy
  doi: 10.1016/j.energy.2025.135720
– volume: 302
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib28
  article-title: A novel cooperative optimization method of course and speed for wing-diesel hybrid ship based on improved A∗ algorithm
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117669
– volume: 113
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122543_bib21
  article-title: A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102759
– volume: 292
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib18
  article-title: Decision support system for ship energy efficiency management based on an optimization model
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130318
– year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib15
  article-title: A mathematical modeling and an optimization algorithm for marine ship route planning
  publication-title: J. Math.
– volume: 312
  issue: 1
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib10
  article-title: Optimization techniques for the design of crescent-shaped hard sails for wind-assisted ship propulsion
  publication-title: Ocean Eng.
– volume: 368
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib32
  article-title: Improving ship energy efficiency: models, methods, and applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123132
– volume: 2
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122543_bib5
  article-title: Data fusion and machine learning for ship fuel efficiency modeling: Part III-Sensor data and meteorological data
  publication-title: Commun. Transport. Res.
– volume: 29
  start-page: 387
  issue: 2
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib11
  article-title: Investigation of the efficiency of wind-assisted systems using model-based design approach
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-024-00993-6
– volume: 302
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122543_bib12
  article-title: A novel prediction model for ship fuel consumption considering shipping data privacy: an XGBoost-IGWO-LSTM-based personalized federated learning approach
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117668
– volume: 288
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib35
  article-title: A novel method of desynchronized operating sails for ship wind-assisted propulsion system
  publication-title: Ocean Eng.
– volume: 237
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122543_bib26
  article-title: An automatic route design algorithm for intelligent ships based on a novel environment modeling method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109603
– volume: 11
  start-page: 91275
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib8
  article-title: An optimized path planning method for container ships in Bohai Bay based on improved deep Q-learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3307480
– volume: 49
  start-page: 1645
  issue: 8
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122543_bib38
  article-title: Research on T-DQN intelligent obstacle avoidance algorithm of unmanned surface vehicle
  publication-title: Acta Autom. Sin.
– volume: 173
  start-page: 687
  year: 2019
  ident: 10.1016/j.oceaneng.2025.122543_bib23
  article-title: Hard sail optimization and energy efficiency enhancement for sail-assisted vessel
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.01.026
– volume: 266
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122543_bib29
  article-title: An integrated collaborative decision-making method for optimizing energy consumption of sail-assisted ships towards low-carbon shipping
  publication-title: Ocean Eng.
– volume: 18
  start-page: 897
  issue: 4
  year: 2025
  ident: 10.1016/j.oceaneng.2025.122543_bib20
  article-title: Review of wind-assisted propulsion systems in maritime transport
  publication-title: Energies
  doi: 10.3390/en18040897
SSID ssj0006603
Score 2.433553
Snippet Wing-diesel hybrid ships can demonstrate quantifiable fuel efficiency gains by using wing-sails’ thrust to replace part of the fuel propulsion during...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 122543
SubjectTerms Double Deep Q Network algorithm
Fuel Consumption Prediction Model
Reward Function
Route planning
Wing-diesel hybrid ship
Title Navigational path optimization methodology for wing-diesel hybrid ship based on improved Double Deep Q-Network
URI https://dx.doi.org/10.1016/j.oceaneng.2025.122543
Volume 341
WOSCitedRecordID wos001595308000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006603
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywGQEBQQ5SUfuK2ybOJXcqxKUYGygCjS3iLbsdWtILu021L49czEeVilEiDEJYoc2ZFnvnjGk_nGhDyTmTGp51nCKucTzrxPDEtt4pDEWenU-FDEdV_NZvl8Xrxvf7SfNMcJqLrOz8-L1X9VNbSBspE6-xfq7geFBrgHpcMV1A7XP1L8TJ81ZTOaEB8eODxewrLwpeVbtkdGh8pLmGL4DWxXgqmE7vP48Dvyt8YhgQvMW4W_EhZN2AHuwddGmtUL51bjD8ks5I_Hzu07i2F9N1Q4HKL1YUXZWQ5te6dt4z4A9Mdh9ORt8Gd1_XVxcYA3ehGHKTJxIeWj588MyUqBS1Cgjczj9ZiFSli_rO0hzHA0WeJkYC4TfM0kzZDOP1izPsfwY1NdHsYGJw-cIKmuko1MiSIfkY3tV7vz173BlnLKukwg7BARyS9_2-U-TOSXHNwmt9oNBd0OQLhDrrh6k9yIykxukpuNYtra5HdJHSOEIkJojBAaIYQCQmiEEBoQQhEhtEEIhQ4dQmhACEWE0B4h98inl7sHO3tJe-xGYmE7vU4kr6zzVjKvMplroS18tGIqbcW5ES4zTBvFdJXLPFXWcOXV1HlhTeWMFalm98moXtbuAaGpLUQFm3AjLOeq8JqjhdHSZZXWZsq2yPNOkOUqVFcpu7TDo7ITfYmiL4Pot0jRybtsfcTg-5UAk9_0ffgPfR-R6wOqH5PR-vjUPSHX7Nl6cXL8tEXUT18klJ0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Navigational+path+optimization+methodology+for+wing-diesel+hybrid+ship+based+on+improved+Double+Deep+Q-Network&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Cong&rft.au=Huang%2C+Lianzhong&rft.au=Ma%2C+Ranqi&rft.au=Wang%2C+Kai&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=341&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.122543&rft.externalDocID=S0029801825022267
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon