Enhancing hierarchical learning of real-time optimization and model predictive control for operational performance
In process control, the integration of Real-Time Optimization (RTO) and Model Predictive Control (MPC) enables the system to achieve optimal control over both long-term and short-term horizons, thereby enhancing operational efficiency and economic performance. However, this integration still faces s...
Uloženo v:
| Vydáno v: | Journal of process control Ročník 155; s. 103559 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.11.2025
|
| Témata: | |
| ISSN: | 0959-1524 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In process control, the integration of Real-Time Optimization (RTO) and Model Predictive Control (MPC) enables the system to achieve optimal control over both long-term and short-term horizons, thereby enhancing operational efficiency and economic performance. However, this integration still faces several challenges. In the two-layer structure, the upper layer RTO involves solving nonlinear programming problems with significant computational complexity, making it difficult to obtain feasible solutions in real-time within the limited optimization horizon. Simultaneously, the lower layer MPC must solve rolling optimization problems within a constrained time frame, placing higher demands on real-time performance. Additionally, uncertainties in the system affect both optimization and control performance. To address these issues, this paper proposes a noval hierarchical learning approach for RTO and MPC controller using reinforcement learning. This method learns the optimal strategies for RTO and MPC across different time scales, effectively mitigating the high computational costs associated with online computations. Through reward design and experience replay during the hierarchical learning process, efficient training of the upper and lower layer strategies is achieved. Offline training under various uncertainty scenarios, combined with online learning, effectively reduces performance degradation due to model uncertainties. The proposed approach demonstrates excellent performance in two representative chemical engineering case studies.
•A new hierarchical learning approach is designed to learn RTO and MPC strategies over different time scales. This method determines steady-state setpoints and lower-layer controllers, effectively eliminating the need for the repeated online calculations required in two-layer architectures.•The proposed method adopts a combination of offline training and online learning. It explicitly accounts for the impact of uncertainties on the two-layer structure, effectively enhancing the system’s adaptability to dynamic changes.•The proposed algorithm is validated in two representative chemical engineering case studies, demonstrating its potential for industrial process control applications. |
|---|---|
| AbstractList | In process control, the integration of Real-Time Optimization (RTO) and Model Predictive Control (MPC) enables the system to achieve optimal control over both long-term and short-term horizons, thereby enhancing operational efficiency and economic performance. However, this integration still faces several challenges. In the two-layer structure, the upper layer RTO involves solving nonlinear programming problems with significant computational complexity, making it difficult to obtain feasible solutions in real-time within the limited optimization horizon. Simultaneously, the lower layer MPC must solve rolling optimization problems within a constrained time frame, placing higher demands on real-time performance. Additionally, uncertainties in the system affect both optimization and control performance. To address these issues, this paper proposes a noval hierarchical learning approach for RTO and MPC controller using reinforcement learning. This method learns the optimal strategies for RTO and MPC across different time scales, effectively mitigating the high computational costs associated with online computations. Through reward design and experience replay during the hierarchical learning process, efficient training of the upper and lower layer strategies is achieved. Offline training under various uncertainty scenarios, combined with online learning, effectively reduces performance degradation due to model uncertainties. The proposed approach demonstrates excellent performance in two representative chemical engineering case studies.
•A new hierarchical learning approach is designed to learn RTO and MPC strategies over different time scales. This method determines steady-state setpoints and lower-layer controllers, effectively eliminating the need for the repeated online calculations required in two-layer architectures.•The proposed method adopts a combination of offline training and online learning. It explicitly accounts for the impact of uncertainties on the two-layer structure, effectively enhancing the system’s adaptability to dynamic changes.•The proposed algorithm is validated in two representative chemical engineering case studies, demonstrating its potential for industrial process control applications. |
| ArticleNumber | 103559 |
| Author | Ren, Rui Li, Shaoyuan |
| Author_xml | – sequence: 1 givenname: Rui surname: Ren fullname: Ren, Rui – sequence: 2 givenname: Shaoyuan surname: Li fullname: Li, Shaoyuan email: syli@sjtu.edu.cn |
| BookMark | eNqFkM1qwzAQhHVIoUnaVyh6Aaf6iVT51hLSHwj00p6FLK0aGVsysgm0T1-ZtOecZhl2Z4dvhRYxRUDojpINJVTet5t2yMmmOG0YYaKYXIh6gZakFnVFBdteo9U4toQQ_sDkEuV9PJpoQ_zCxwDZZHsM1nS4A5Pj7CaPM5iumkIPOA1Fwo-ZQorYRIf75KDDQwYX7BROgOfXOXXYp1y2S-C8WvLKWKy-vIIbdOVNN8Ltn67R5_P-Y_daHd5f3nZPh8oySadKyC1YVjOveONUY51nW0YNd5LJRoFqPKmVU0z6WjZUcOoFl-AVQNNIaxhfI3nOtTmNYwavhxx6k781JXqmpVv9T0vPtPSZVjl8PB9CaXcqVPRoA5TmLmSwk3YpXIr4Ba-4fuI |
| Cites_doi | 10.1016/j.compchemeng.2020.107077 10.1016/j.arcontrol.2008.03.003 10.1016/j.jprocont.2009.09.001 10.1007/s11081-019-09444-3 10.1016/j.compchemeng.2004.07.028 10.1016/j.compchemeng.2010.07.001 10.1016/j.compchemeng.2003.08.002 10.1016/j.compchemeng.2013.07.015 10.1016/j.compchemeng.2020.106886 10.1109/TAC.2020.3024161 10.1016/j.compchemeng.2019.05.029 10.1016/j.jprocont.2013.11.004 10.1146/annurev-control-090419-075625 10.1109/TAC.2007.908311 10.1016/j.automatica.2022.110598 10.1109/MSP.2017.2743240 10.1016/j.compchemeng.2024.108743 10.3390/pr11010123 10.1016/j.jprocont.2011.03.009 10.1007/s00170-021-07682-3 10.1016/j.jprocont.2023.04.003 10.3390/math7100890 10.1016/j.automatica.2014.10.128 10.1561/2600000023 10.1021/ie030563u 10.1021/acs.iecr.8b05327 10.1016/j.compchemeng.2018.03.021 10.1002/aic.690010422 10.1016/S1570-7946(09)70220-2 10.1109/TII.2020.2973721 10.1021/acs.iecr.0c01953 10.1109/TCST.2019.2949757 10.1016/j.automatica.2013.02.003 10.1021/acs.iecr.0c05678 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.jprocont.2025.103559 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| ExternalDocumentID | 10_1016_j_jprocont_2025_103559 S0959152425001878 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9DU 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ABNUV ABWVN ABXDB ACDAQ ACGFO ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ ZMT ZY4 ~G- ~HD AAYXX CITATION |
| ID | FETCH-LOGICAL-c261t-564ec292f83bd8bcdf2421a3d626b8e8bf098d826f96b1531f536ef8eebb6ca23 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001590032600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0959-1524 |
| IngestDate | Sat Nov 29 06:57:16 EST 2025 Sat Nov 29 17:01:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real-time optimization Model predictive control Process control Reinforcement learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-564ec292f83bd8bcdf2421a3d626b8e8bf098d826f96b1531f536ef8eebb6ca23 |
| ParticipantIDs | crossref_primary_10_1016_j_jprocont_2025_103559 elsevier_sciencedirect_doi_10_1016_j_jprocont_2025_103559 |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of process control |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Cui, Chai, Liu (b34) 2020; 16 Adetola, Guay (b9) 2010; 20 Schwenzer, Ay, Bergs, Abel (b3) 2021; 117 Faria, Capron, de Souza, Secchi (b33) 2023; 11 Bilous, Amundson (b38) 1955; 1 Zhang, Xie, Su, Liu (b23) 2024 Darby, Nikolaou, Jones, Nicholson (b1) 2011; 21 Wu, Tran, Rincon, Christofides (b25) 2019; 65 Di Cairano, Kolmanovsky (b5) 2018 Biegler (b14) 2009; vol. 27 MacKinnon, Swartz (b17) 2023; 126 Arulkumaran, Deisenroth, Brundage, Bharath (b35) 2017; 34 Valluru, Patwardhan (b16) 2019; 58 de Avila Ferreira, Shukla, Faulwasser, Jones, Bonvin (b21) 2018 Mayne (b2) 2014; 50 Zhang, Wu, Rincon, Christofides (b22) 2019; 7 Chowdhary (b18) 2020 Galan, de Prada, Gutierrez, Sarabia, Grossmann, Gonzalez (b15) 2019; 20 de Carvalho, Alvarez (b40) 2020; 59 Hewing, Wabersich, Menner, Zeilinger (b20) 2020; 3 Bhat, Saraf (b8) 2004; 43 DeHaan, Guay (b10) 2007; 52 Tosukhowong, Lee, Lee, Lu (b13) 2004; 29 Jiang, Bian, Gao (b19) 2020; 8 Aswani, Gonzalez, Sastry, Tomlin (b24) 2013; 49 Kulkarni, Narasimhan, Saeedi, Tenenbaum (b36) 2016; 29 Amrit, Rawlings, Biegler (b39) 2013; 58 Zanon, Gros (b30) 2020; 66 Krishnamoorthy, Foss, Skogestad (b12) 2018; 115 Tatjewski (b7) 2008; 32 Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, Wierstra (b37) 2015 Bao, Zhu, Qian (b29) 2021; 60 Gros, Zanon (b31) 2022; 146 Powell, Machalek, Quah (b32) 2020; 143 De Souza, Odloak, Zanin (b4) 2010; 34 Hewing, Kabzan, Zeilinger (b26) 2019; 28 Nian, Liu, Huang (b28) 2020; 139 Marchetti, Ferramosca, González (b11) 2014; 24 Shin, Badgwell, Liu, Lee (b27) 2019; 127 Skogestad (b6) 2004; 28 Skogestad (10.1016/j.jprocont.2025.103559_b6) 2004; 28 Aswani (10.1016/j.jprocont.2025.103559_b24) 2013; 49 Arulkumaran (10.1016/j.jprocont.2025.103559_b35) 2017; 34 Shin (10.1016/j.jprocont.2025.103559_b27) 2019; 127 Jiang (10.1016/j.jprocont.2025.103559_b19) 2020; 8 Adetola (10.1016/j.jprocont.2025.103559_b9) 2010; 20 Tosukhowong (10.1016/j.jprocont.2025.103559_b13) 2004; 29 Cui (10.1016/j.jprocont.2025.103559_b34) 2020; 16 Hewing (10.1016/j.jprocont.2025.103559_b20) 2020; 3 de Carvalho (10.1016/j.jprocont.2025.103559_b40) 2020; 59 Darby (10.1016/j.jprocont.2025.103559_b1) 2011; 21 Wu (10.1016/j.jprocont.2025.103559_b25) 2019; 65 Zanon (10.1016/j.jprocont.2025.103559_b30) 2020; 66 Kulkarni (10.1016/j.jprocont.2025.103559_b36) 2016; 29 Hewing (10.1016/j.jprocont.2025.103559_b26) 2019; 28 Bhat (10.1016/j.jprocont.2025.103559_b8) 2004; 43 Faria (10.1016/j.jprocont.2025.103559_b33) 2023; 11 Krishnamoorthy (10.1016/j.jprocont.2025.103559_b12) 2018; 115 Powell (10.1016/j.jprocont.2025.103559_b32) 2020; 143 Bilous (10.1016/j.jprocont.2025.103559_b38) 1955; 1 Marchetti (10.1016/j.jprocont.2025.103559_b11) 2014; 24 Chowdhary (10.1016/j.jprocont.2025.103559_b18) 2020 Lillicrap (10.1016/j.jprocont.2025.103559_b37) 2015 Tatjewski (10.1016/j.jprocont.2025.103559_b7) 2008; 32 Gros (10.1016/j.jprocont.2025.103559_b31) 2022; 146 Di Cairano (10.1016/j.jprocont.2025.103559_b5) 2018 Galan (10.1016/j.jprocont.2025.103559_b15) 2019; 20 de Avila Ferreira (10.1016/j.jprocont.2025.103559_b21) 2018 De Souza (10.1016/j.jprocont.2025.103559_b4) 2010; 34 Biegler (10.1016/j.jprocont.2025.103559_b14) 2009; vol. 27 Zhang (10.1016/j.jprocont.2025.103559_b23) 2024 Bao (10.1016/j.jprocont.2025.103559_b29) 2021; 60 Amrit (10.1016/j.jprocont.2025.103559_b39) 2013; 58 DeHaan (10.1016/j.jprocont.2025.103559_b10) 2007; 52 Nian (10.1016/j.jprocont.2025.103559_b28) 2020; 139 MacKinnon (10.1016/j.jprocont.2025.103559_b17) 2023; 126 Valluru (10.1016/j.jprocont.2025.103559_b16) 2019; 58 Schwenzer (10.1016/j.jprocont.2025.103559_b3) 2021; 117 Mayne (10.1016/j.jprocont.2025.103559_b2) 2014; 50 Zhang (10.1016/j.jprocont.2025.103559_b22) 2019; 7 |
| References_xml | – volume: 58 start-page: 7561 year: 2019 end-page: 7578 ident: b16 article-title: An integrated frequent RTO and adaptive nonlinear MPC scheme based on simultaneous Bayesian state and parameter estimation publication-title: Ind. Eng. Chem. Res. – volume: 34 start-page: 26 year: 2017 end-page: 38 ident: b35 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. – volume: 28 start-page: 219 year: 2004 end-page: 234 ident: b6 article-title: Control structure design for complete chemical plants publication-title: Comput. Chem. Eng. – volume: 65 year: 2019 ident: b25 article-title: Machine learning-based predictive control of nonlinear processes. Part I: theory publication-title: AIChE J. – volume: 139 year: 2020 ident: b28 article-title: A review on reinforcement learning: Introduction and applications in industrial process control publication-title: Comput. Chem. Eng. – volume: 8 start-page: 176 year: 2020 end-page: 284 ident: b19 article-title: Learning-based control: A tutorial and some recent results publication-title: Found. Trends® Syst. Control. – volume: 66 start-page: 3638 year: 2020 end-page: 3652 ident: b30 article-title: Safe reinforcement learning using robust MPC publication-title: IEEE Trans. Autom. Control – volume: 43 start-page: 4323 year: 2004 end-page: 4336 ident: b8 article-title: Steady-state identification, gross error detection, and data reconciliation for industrial process units publication-title: Ind. Eng. Chem. Res. – year: 2024 ident: b23 article-title: Data-driven auto-tuning strategy for RTO-MPC based on Bayesian optimization publication-title: Comput. Chem. Eng. – volume: 59 start-page: 15979 year: 2020 end-page: 15989 ident: b40 article-title: Simultaneous process design and control of the Williams–Otto reactor using infinite horizon model predictive control publication-title: Ind. Eng. Chem. Res. – start-page: 2392 year: 2018 end-page: 2409 ident: b5 article-title: Real-time optimization and model predictive control for aerospace and automotive applications publication-title: 2018 Annual American Control Conference – start-page: 465 year: 2018 end-page: 470 ident: b21 article-title: Real-time optimization of uncertain process systems via modifier adaptation and gaussian processes publication-title: 2018 European Control Conference – volume: 52 start-page: 2047 year: 2007 end-page: 2057 ident: b10 article-title: A real-time framework for model-predictive control of continuous-time nonlinear systems publication-title: IEEE Trans. Autom. Control – volume: 126 start-page: 12 year: 2023 end-page: 25 ident: b17 article-title: Robust closed-loop dynamic real-time optimization publication-title: J. Process Control – volume: 29 year: 2016 ident: b36 article-title: Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation publication-title: Adv. Neural Inf. Process. Syst. – volume: 16 start-page: 5905 year: 2020 end-page: 5913 ident: b34 article-title: Deep-neural-network-based economic model predictive control for ultrasupercritical power plant publication-title: IEEE Trans. Ind. Inform. – volume: 127 start-page: 282 year: 2019 end-page: 294 ident: b27 article-title: Reinforcement learning–overview of recent progress and implications for process control publication-title: Comput. Chem. Eng. – volume: 34 start-page: 1999 year: 2010 end-page: 2006 ident: b4 article-title: Real time optimization (RTO) with model predictive control (MPC) publication-title: Comput. Chem. Eng. – volume: 115 start-page: 34 year: 2018 end-page: 45 ident: b12 article-title: Steady-state real-time optimization using transient measurements publication-title: Comput. Chem. Eng. – volume: 11 start-page: 123 year: 2023 ident: b33 article-title: One-layer real-time optimization using reinforcement learning: A review with guidelines publication-title: Processes – volume: 29 start-page: 199 year: 2004 end-page: 208 ident: b13 article-title: An introduction to a dynamic plant-wide optimization strategy for an integrated plant publication-title: Comput. Chem. Eng. – volume: 28 start-page: 2736 year: 2019 end-page: 2743 ident: b26 article-title: Cautious model predictive control using gaussian process regression publication-title: IEEE Trans. Control Syst. Technol. – volume: 7 start-page: 890 year: 2019 ident: b22 article-title: Real-time optimization and control of nonlinear processes using machine learning publication-title: Mathematics – volume: 146 year: 2022 ident: b31 article-title: Learning for MPC with stability & safety guarantees publication-title: Automatica – volume: 20 start-page: 125 year: 2010 end-page: 133 ident: b9 article-title: Integration of real-time optimization and model predictive control publication-title: J. Process Control – volume: 24 start-page: 129 year: 2014 end-page: 145 ident: b11 article-title: Steady-state target optimization designs for integrating real-time optimization and model predictive control publication-title: J. Process Control – volume: 3 start-page: 269 year: 2020 end-page: 296 ident: b20 article-title: Learning-based model predictive control: Toward safe learning in control publication-title: Annu. Rev. Control. Robot. Auton. Syst. – volume: 21 start-page: 874 year: 2011 end-page: 884 ident: b1 article-title: RTO: An overview and assessment of current practice publication-title: J. Process Control – volume: 60 start-page: 5504 year: 2021 end-page: 5515 ident: b29 article-title: A deep reinforcement learning approach to improve the learning performance in process control publication-title: Ind. Eng. Chem. Res. – volume: 58 start-page: 334 year: 2013 end-page: 343 ident: b39 article-title: Optimizing process economics online using model predictive control publication-title: Comput. Chem. Eng. – volume: 50 start-page: 2967 year: 2014 end-page: 2986 ident: b2 article-title: Model predictive control: Recent developments and future promise publication-title: Automatica – year: 2015 ident: b37 article-title: Continuous control with deep reinforcement learning – volume: 32 start-page: 71 year: 2008 end-page: 85 ident: b7 article-title: Advanced control and on-line process optimization in multilayer structures publication-title: Annu. Rev. Control. – volume: 117 start-page: 1327 year: 2021 end-page: 1349 ident: b3 article-title: Review on model predictive control: An engineering perspective publication-title: Int. J. Adv. Manuf. Technol. – volume: 49 start-page: 1216 year: 2013 end-page: 1226 ident: b24 article-title: Provably safe and robust learning-based model predictive control publication-title: Automatica – volume: 20 start-page: 1161 year: 2019 end-page: 1190 ident: b15 article-title: Implementation of RTO in a large hydrogen network considering uncertainty publication-title: Optim. Eng. – year: 2020 ident: b18 article-title: Fundamentals of Artificial Intelligence – volume: 143 year: 2020 ident: b32 article-title: Real-time optimization using reinforcement learning publication-title: Comput. Chem. Eng. – volume: vol. 27 start-page: 1 year: 2009 end-page: 6 ident: b14 article-title: Technology advances for dynamic real-time optimization publication-title: Computer Aided Chemical Engineering – volume: 1 start-page: 513 year: 1955 end-page: 521 ident: b38 article-title: Chemical reactor stability and sensitivity publication-title: AIChE J. – volume: 143 year: 2020 ident: 10.1016/j.jprocont.2025.103559_b32 article-title: Real-time optimization using reinforcement learning publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.107077 – volume: 65 issue: 11 year: 2019 ident: 10.1016/j.jprocont.2025.103559_b25 article-title: Machine learning-based predictive control of nonlinear processes. Part I: theory publication-title: AIChE J. – year: 2015 ident: 10.1016/j.jprocont.2025.103559_b37 – volume: 32 start-page: 71 issue: 1 year: 2008 ident: 10.1016/j.jprocont.2025.103559_b7 article-title: Advanced control and on-line process optimization in multilayer structures publication-title: Annu. Rev. Control. doi: 10.1016/j.arcontrol.2008.03.003 – start-page: 2392 year: 2018 ident: 10.1016/j.jprocont.2025.103559_b5 article-title: Real-time optimization and model predictive control for aerospace and automotive applications – volume: 20 start-page: 125 issue: 2 year: 2010 ident: 10.1016/j.jprocont.2025.103559_b9 article-title: Integration of real-time optimization and model predictive control publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.09.001 – volume: 20 start-page: 1161 issue: 4 year: 2019 ident: 10.1016/j.jprocont.2025.103559_b15 article-title: Implementation of RTO in a large hydrogen network considering uncertainty publication-title: Optim. Eng. doi: 10.1007/s11081-019-09444-3 – volume: 29 start-page: 199 issue: 1 year: 2004 ident: 10.1016/j.jprocont.2025.103559_b13 article-title: An introduction to a dynamic plant-wide optimization strategy for an integrated plant publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.07.028 – volume: 34 start-page: 1999 issue: 12 year: 2010 ident: 10.1016/j.jprocont.2025.103559_b4 article-title: Real time optimization (RTO) with model predictive control (MPC) publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2010.07.001 – volume: 29 year: 2016 ident: 10.1016/j.jprocont.2025.103559_b36 article-title: Hierarchical deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation publication-title: Adv. Neural Inf. Process. Syst. – volume: 28 start-page: 219 issue: 1–2 year: 2004 ident: 10.1016/j.jprocont.2025.103559_b6 article-title: Control structure design for complete chemical plants publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2003.08.002 – volume: 58 start-page: 334 year: 2013 ident: 10.1016/j.jprocont.2025.103559_b39 article-title: Optimizing process economics online using model predictive control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.07.015 – start-page: 465 year: 2018 ident: 10.1016/j.jprocont.2025.103559_b21 article-title: Real-time optimization of uncertain process systems via modifier adaptation and gaussian processes – volume: 139 year: 2020 ident: 10.1016/j.jprocont.2025.103559_b28 article-title: A review on reinforcement learning: Introduction and applications in industrial process control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106886 – volume: 66 start-page: 3638 issue: 8 year: 2020 ident: 10.1016/j.jprocont.2025.103559_b30 article-title: Safe reinforcement learning using robust MPC publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2020.3024161 – volume: 127 start-page: 282 year: 2019 ident: 10.1016/j.jprocont.2025.103559_b27 article-title: Reinforcement learning–overview of recent progress and implications for process control publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2019.05.029 – volume: 24 start-page: 129 issue: 1 year: 2014 ident: 10.1016/j.jprocont.2025.103559_b11 article-title: Steady-state target optimization designs for integrating real-time optimization and model predictive control publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.11.004 – volume: 3 start-page: 269 year: 2020 ident: 10.1016/j.jprocont.2025.103559_b20 article-title: Learning-based model predictive control: Toward safe learning in control publication-title: Annu. Rev. Control. Robot. Auton. Syst. doi: 10.1146/annurev-control-090419-075625 – volume: 52 start-page: 2047 issue: 11 year: 2007 ident: 10.1016/j.jprocont.2025.103559_b10 article-title: A real-time framework for model-predictive control of continuous-time nonlinear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2007.908311 – volume: 146 year: 2022 ident: 10.1016/j.jprocont.2025.103559_b31 article-title: Learning for MPC with stability & safety guarantees publication-title: Automatica doi: 10.1016/j.automatica.2022.110598 – volume: 34 start-page: 26 issue: 6 year: 2017 ident: 10.1016/j.jprocont.2025.103559_b35 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – year: 2024 ident: 10.1016/j.jprocont.2025.103559_b23 article-title: Data-driven auto-tuning strategy for RTO-MPC based on Bayesian optimization publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2024.108743 – volume: 11 start-page: 123 issue: 1 year: 2023 ident: 10.1016/j.jprocont.2025.103559_b33 article-title: One-layer real-time optimization using reinforcement learning: A review with guidelines publication-title: Processes doi: 10.3390/pr11010123 – volume: 21 start-page: 874 issue: 6 year: 2011 ident: 10.1016/j.jprocont.2025.103559_b1 article-title: RTO: An overview and assessment of current practice publication-title: J. Process Control doi: 10.1016/j.jprocont.2011.03.009 – volume: 117 start-page: 1327 issue: 5 year: 2021 ident: 10.1016/j.jprocont.2025.103559_b3 article-title: Review on model predictive control: An engineering perspective publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-021-07682-3 – volume: 126 start-page: 12 year: 2023 ident: 10.1016/j.jprocont.2025.103559_b17 article-title: Robust closed-loop dynamic real-time optimization publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.04.003 – volume: 7 start-page: 890 issue: 10 year: 2019 ident: 10.1016/j.jprocont.2025.103559_b22 article-title: Real-time optimization and control of nonlinear processes using machine learning publication-title: Mathematics doi: 10.3390/math7100890 – volume: 50 start-page: 2967 issue: 12 year: 2014 ident: 10.1016/j.jprocont.2025.103559_b2 article-title: Model predictive control: Recent developments and future promise publication-title: Automatica doi: 10.1016/j.automatica.2014.10.128 – volume: 8 start-page: 176 issue: 3 year: 2020 ident: 10.1016/j.jprocont.2025.103559_b19 article-title: Learning-based control: A tutorial and some recent results publication-title: Found. Trends® Syst. Control. doi: 10.1561/2600000023 – volume: 43 start-page: 4323 issue: 15 year: 2004 ident: 10.1016/j.jprocont.2025.103559_b8 article-title: Steady-state identification, gross error detection, and data reconciliation for industrial process units publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie030563u – volume: 58 start-page: 7561 issue: 18 year: 2019 ident: 10.1016/j.jprocont.2025.103559_b16 article-title: An integrated frequent RTO and adaptive nonlinear MPC scheme based on simultaneous Bayesian state and parameter estimation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b05327 – volume: 115 start-page: 34 year: 2018 ident: 10.1016/j.jprocont.2025.103559_b12 article-title: Steady-state real-time optimization using transient measurements publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2018.03.021 – volume: 1 start-page: 513 issue: 4 year: 1955 ident: 10.1016/j.jprocont.2025.103559_b38 article-title: Chemical reactor stability and sensitivity publication-title: AIChE J. doi: 10.1002/aic.690010422 – volume: vol. 27 start-page: 1 year: 2009 ident: 10.1016/j.jprocont.2025.103559_b14 article-title: Technology advances for dynamic real-time optimization doi: 10.1016/S1570-7946(09)70220-2 – volume: 16 start-page: 5905 issue: 9 year: 2020 ident: 10.1016/j.jprocont.2025.103559_b34 article-title: Deep-neural-network-based economic model predictive control for ultrasupercritical power plant publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2020.2973721 – volume: 59 start-page: 15979 issue: 36 year: 2020 ident: 10.1016/j.jprocont.2025.103559_b40 article-title: Simultaneous process design and control of the Williams–Otto reactor using infinite horizon model predictive control publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c01953 – year: 2020 ident: 10.1016/j.jprocont.2025.103559_b18 – volume: 28 start-page: 2736 issue: 6 year: 2019 ident: 10.1016/j.jprocont.2025.103559_b26 article-title: Cautious model predictive control using gaussian process regression publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2019.2949757 – volume: 49 start-page: 1216 issue: 5 year: 2013 ident: 10.1016/j.jprocont.2025.103559_b24 article-title: Provably safe and robust learning-based model predictive control publication-title: Automatica doi: 10.1016/j.automatica.2013.02.003 – volume: 60 start-page: 5504 issue: 15 year: 2021 ident: 10.1016/j.jprocont.2025.103559_b29 article-title: A deep reinforcement learning approach to improve the learning performance in process control publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c05678 |
| SSID | ssj0003726 |
| Score | 2.4532065 |
| Snippet | In process control, the integration of Real-Time Optimization (RTO) and Model Predictive Control (MPC) enables the system to achieve optimal control over both... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 103559 |
| SubjectTerms | Model predictive control Process control Real-time optimization Reinforcement learning |
| Title | Enhancing hierarchical learning of real-time optimization and model predictive control for operational performance |
| URI | https://dx.doi.org/10.1016/j.jprocont.2025.103559 |
| Volume | 155 |
| WOSCitedRecordID | wos001590032600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0959-1524 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0003726 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcG7ACHsfEh2AD5sFuV0iZNYh_RVAQIoWkrUm9R_AWtIIlKi-C_59mx3XTqGBx2iaJIeXH8fnr--fl9IPQ95Yx0OI8CHgsa9ASlAeE5DRSPBKxXIex9THX9y_TqigyH9KcNG3sw7QTSoiBPT7T6r6qGZ6BsnTr7DnV7ofAA7kHpcAW1w_VNiu8Xt7qGRnHT0m2uzUGB1sOd84EAOwSieBforvKtEizGvU3FNOcIpjOOrhwgRsYS-lh2HY5YVnLinIfVPOPgLwS3qnMQnAR_tFMbul-zkQ8GMhEFv2_z8nlmwWr9EGFsE_IWHYrABnoLtjWOG9ax2wF2Q5ca7tqHMG6P9dhgWG39ifb8hcVK2X-sYD6u0IWsjTMnJ9NyslrOCloL05iC-V47Oe8PL_yKHaWmLZ__g0Ym-fIRLScxDWIy-Iw-2QnHJzUSvqAPsthCm65bB7bGewttNEpPbqOJhwluwgQ7mOBSYQ8T3IQJBphgAxM8hwm2SsaACdyACW7AZAddn_YHP84C238j4LCvngZx0pM8pKEiEROEcaF0_EAeCdgEMyIJUx1KBOxPFU0YrJxdFUeJVERKxhKeh9EuWi3KQu4hrJIuT1jIE13_LWc8T6OeyKUQTCZSqHwfHbsJzaq6zEr2ujL3EXXznlmyWJPADCD1j3e_vvtr39D6HPMHaHU6mclD9JE_TkcPkyOLpxfuF5c0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+hierarchical+learning+of+real-time+optimization+and+model+predictive+control+for+operational+performance&rft.jtitle=Journal+of+process+control&rft.au=Ren%2C+Rui&rft.au=Li%2C+Shaoyuan&rft.date=2025-11-01&rft.issn=0959-1524&rft.volume=155&rft.spage=103559&rft_id=info:doi/10.1016%2Fj.jprocont.2025.103559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2025_103559 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |