The Schwarz problem for analytic functions in torus-related domains
The Cauchy kernel is one of the two significant tools for solving the Riemann boundary value problem for analytic functions. For poly-domains, the Cauchy kernel is modified in such a way that it corresponds to a certain symmetry of the boundary values of holomorphic functions in poly-domains. This s...
Gespeichert in:
| Veröffentlicht in: | Applicable analysis Jg. 85; H. 9; S. 1079 - 1101 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis Group
01.09.2006
|
| Schlagworte: | |
| ISSN: | 0003-6811, 1563-504X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The Cauchy kernel is one of the two significant tools for solving the Riemann boundary value problem for analytic functions. For poly-domains, the Cauchy kernel is modified in such a way that it corresponds to a certain symmetry of the boundary values of holomorphic functions in poly-domains. This symmetry is lost if the classical counterpart of the one-dimensional form of the Cauchy kernel is applied. It is also decisive for the establishment of connection between the Riemann-Hilbert problem and the Riemann problem. Thus, not only the Schwarz problem for holomorphic functions in poly-domains is solved, but also the basis is established for solving some other problems. The boundary values of functions, holomorphic in poly-domains, are classified in the Wiener algebra. The general integral representation formulas for these functions, the solvability conditions and the solutions of the corresponding Schwarz problems are given explicitly. A necessary and sufficient condition for the boundary values of a holomorphic function for arbitrary poly-domains is given. At the end, well-posed formulations of the torus-related problems are considered.
†Dedicated to Professor Wei Lin on the occasion of his 70th birthday. |
|---|---|
| AbstractList | The Cauchy kernel is one of the two significant tools for solving the Riemann boundary value problem for analytic functions. For poly-domains, the Cauchy kernel is modified in such a way that it corresponds to a certain symmetry of the boundary values of holomorphic functions in poly-domains. This symmetry is lost if the classical counterpart of the one-dimensional form of the Cauchy kernel is applied. It is also decisive for the establishment of connection between the Riemann-Hilbert problem and the Riemann problem. Thus, not only the Schwarz problem for holomorphic functions in poly-domains is solved, but also the basis is established for solving some other problems. The boundary values of functions, holomorphic in poly-domains, are classified in the Wiener algebra. The general integral representation formulas for these functions, the solvability conditions and the solutions of the corresponding Schwarz problems are given explicitly. A necessary and sufficient condition for the boundary values of a holomorphic function for arbitrary poly-domains is given. At the end, well-posed formulations of the torus-related problems are considered.
†Dedicated to Professor Wei Lin on the occasion of his 70th birthday. |
| Author | Begehr, Heinrich Mohammed, Alip |
| Author_xml | – sequence: 1 givenname: Heinrich surname: Begehr fullname: Begehr, Heinrich email: begehr@math.fu-berlin.de organization: I. Math. Institut, Freie Universität Berlin – sequence: 2 givenname: Alip surname: Mohammed fullname: Mohammed, Alip organization: I. Math. Institut, Freie Universität Berlin |
| BookMark | eNqNkM9KAzEQh4NUsK0-gLe8wOpkd5NNwYsUtULBgxW8LbNJlkZ2k5Kk1Pr0btGTRfQ0h_l98-ebkJHzzhByyeCKgYRrACiEZCAAZMFZLk_ImHFRZBzK1xEZH_rZEGBnZBLjG8AQ4WJM5qu1oc9qvcPwQTfBN53paesDRYfdPllF261TyXoXqXU0-bCNWTAdJqOp9j1aF8_JaYtdNBffdUpe7u9W80W2fHp4nN8uM5ULlrJSGqObpqy4BFSlwJlBpXOuoaxguJVLNKXUqsRKiQaaRjRYoNDAMTdypospYV9zVfAxBtPWm2B7DPuaQX2wUB9ZGJjqB6NswsM_KaDt_kNaN_jocedDp-uE-86HNqBTNh5TdXpPA3nzJ1n8vvgTsDCIcA |
| CitedBy_id | crossref_primary_10_1007_s11785_017_0705_1 crossref_primary_10_1016_j_jmaa_2006_03_011 crossref_primary_10_1080_17476930903276233 crossref_primary_10_1016_j_jmaa_2008_01_053 crossref_primary_10_1524_anly_2010_0932 crossref_primary_10_1007_s11868_017_0212_1 |
| Cites_doi | 10.1007/BF01193741 10.1142/2162 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2006 |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2006 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/00036810600835128 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1563-504X |
| EndPage | 1101 |
| ExternalDocumentID | 10_1080_00036810600835128 183449 |
| GroupedDBID | --Z -~X .7F .QJ 0BK 0R~ 23M 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABUFD ABXUL ABXYU ACAGQ ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AIYEW AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AQRUH AQTUD AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW EBS EJD E~A E~B F5P GTTXZ H13 HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ~S~ 07G 1TA 6TJ AAIKQ AAKBW AAYXX ACGEE ACTCW AEUMN AFFNX AGCQS AGLEN AMVHM AMXXU BCCOT BPLKW C06 CITATION DWIFK HF~ H~9 IVXBP LJTGL NUSFT TAQ TFMCV UB9 UU8 V3K V4Q ZY4 |
| ID | FETCH-LOGICAL-c261t-48eedbb47580ac46a9eacd25d047015658ae48dc4a7c6b0bb6ba3a6d05a2e89d3 |
| IEDL.DBID | TFW |
| ISSN | 0003-6811 |
| IngestDate | Sat Nov 29 03:58:57 EST 2025 Tue Nov 18 22:28:02 EST 2025 Mon May 13 12:10:01 EDT 2019 Mon Oct 20 23:46:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c261t-48eedbb47580ac46a9eacd25d047015658ae48dc4a7c6b0bb6ba3a6d05a2e89d3 |
| PageCount | 23 |
| ParticipantIDs | crossref_citationtrail_10_1080_00036810600835128 informaworld_taylorfrancis_310_1080_00036810600835128 crossref_primary_10_1080_00036810600835128 |
| PublicationCentury | 2000 |
| PublicationDate | 9/1/2006 |
| PublicationDateYYYYMMDD | 2006-09-01 |
| PublicationDate_xml | – month: 09 year: 2006 text: 9/1/2006 day: 01 |
| PublicationDecade | 2000 |
| PublicationTitle | Applicable analysis |
| PublicationYear | 2006 |
| Publisher | Taylor & Francis Group |
| Publisher_xml | – name: Taylor & Francis Group |
| References | Begehr H (CIT0002) 1994 Kufner A (CIT0007) 1971 Kumar A (CIT0008) 1994; 62 Begehr H (CIT0003) 1996 Vladimirov VS (CIT0011) 1969; 72 Krantz SG (CIT0005) 1990 Rudin W (CIT0010) 1969 Begehr H (CIT0001) 1997; 88 Maz’ya VG (CIT0004) 1991 Krantz S (CIT0006) 1992 CIT0009 |
| References_xml | – volume: 88 volume-title: An introduction to Several Complex Variables and Partial Differential Equations year: 1997 ident: CIT0001 – volume-title: Function Theory in Polydiscs year: 1969 ident: CIT0010 – volume: 72 start-page: 203 year: 1969 ident: CIT0011 publication-title: Transactions of the American Mathematical Society – volume-title: Complex Analysis: The Geometric Viewpoint year: 1990 ident: CIT0005 – volume: 62 start-page: 531 year: 1994 ident: CIT0008 publication-title: Archiv der Mathematik doi: 10.1007/BF01193741 – volume-title: Complex Analytic Methods for Partial Differential Equations – An Introductory Text year: 1994 ident: CIT0002 doi: 10.1142/2162 – ident: CIT0009 – volume-title: Nonlinear Elliptic Boundary Value Problems and their Applications year: 1996 ident: CIT0003 – volume-title: Analysis IV. Encyclopedia of Mathematical Sciences year: 1991 ident: CIT0004 – volume-title: Fourier Series year: 1971 ident: CIT0007 – volume-title: Function Theory of Several Complex Variables year: 1992 ident: CIT0006 |
| SSID | ssj0012856 |
| Score | 1.6900431 |
| Snippet | The Cauchy kernel is one of the two significant tools for solving the Riemann boundary value problem for analytic functions. For poly-domains, the Cauchy... |
| SourceID | crossref informaworld |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1079 |
| SubjectTerms | Holomorphic functions Mathematics Subject Classifications: 32A26 Poly-domain Schwarz problem |
| Title | The Schwarz problem for analytic functions in torus-related domains |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00036810600835128 |
| Volume | 85 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1563-504X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012856 issn: 0003-6811 databaseCode: TFW dateStart: 19710401 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQxQADhQKivOSBCSkiDyexR1RRMUDFUES36GwnohKkqEkB8es5J27U8ugAc86OZZ_v7rPP3xFyJkOWiQi4wzKlEKAw4YDIhGO42iKBEYWuHwrfxIMBH43Enc3NKWxapcHQWU0UUdlqs7lBFvOMuIuKRIUjlqniBzSwaIHR7ZttOew_NHcIPq9qtxppB8W9-Z3mTz0seaUlztIFb9Nv_3Oc22TLhpn0staLHbKW5h3StiEntRu66JDN24a2tdglPVQa_Pj4BtMPakvNUBwkBUNdgjLUuMFKU-k4pwjXZ4VTvYbBTvXkGcZ5sUfu-1fD3rVjqyw4CtFT6TCOblJKhsDBBcUiEGiLtR9ql8XmnXXIIWVcKwaxiqQrZSQhgEi7IfgpFzrYJ618kqcHhLpcc5AgueQxUzqT3AdAzBTEnhdlvtcl7nyWE2UpyE0ljKfEa5hKv0xZl5w3TV5q_o1Vwu7i0iVldeiR1RVKvosn5XvZJeGKJsGvvzr8Y7sjslEf4pgstWPSKqez9ISsq9dyXExPKwX-BAiJ64A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAEHBgPEeObACamij7RNj2hiGmKbOAyxW5VHKyZBh9YOEL8ep-0qxmMHONdJo8SJ_TnOZ4Az4dI48DgzaCwlAhQaGDyIA0NztXkBehSqeCjc9ft9NhwGt2XALS3TKjWGjguiiPys1ptbB6NnKXEXOYsKQzCTOxB4wi7Diot2VnPnD9r31S2CzfLqrVrcQHlrdqv5UxdzdmmOtfSTvWnX_zvSLdgsPU1yWajGNixFSQPqpddJyj2dNmCjVzG3pjvQQr3Bjw-vfPJOymozBEdJuGYvQRmiLWGurGSUEETs09TIH8Rgp2r8xEdJugt37atBq2OUhRYMiQAqMyhDSykERexgckk9HuBxrGxXmdTXT61dxiPKlKTcl54whfAEd7inTJfbEQuUswe1ZJxE-0BMphgXXDDBfCpVLJjNOcImx7csL7atJpizaQ5lyUKui2E8hlZFVvplyppwXjV5Lig4Fgmbn9cuzPK4R1wUKfkuHmZvWRPcBU2cX3918Md2p7DWGfS6Yfe6f3MI60VMRyetHUEtm0yjY1iVL9konZzk2vwB_0Hvqg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgIAQHBgPEeObACami7dI2PaLBBGJMOwyxW5VHKyZBN60dIH49TttVG48d4FwnjRIn9pfYnwHOhEMj3-XMoJGUCFCob3A_8g3N1eb66FGoPFG47XU6rN_3u0VsTlKEVWoMHeVEEdlZrTf3SEXTiLiLjESFIZbJ_Ac8YJdhBd1mVyt4r_VYPiLYLCveqsUNlLemj5o_dTFnluZIS2fMTav6z4FuwWbhZ5LLXDG2YSmMa1AtfE5S7OikBhv3JW9rsgNN1Br8-PTGxx-kqDVDcJCEa-4SlCHaDmaqSgYxQbw-SYwsHQY7VcMXPoiTXXhoXfeaN0ZRZsGQCJ9SgzK0k0JQRA4ml9TlPh7GynaUST2daO0wHlKmJOWedIUphCt4g7vKdLgdMl819qASD-NwH4jJFOOCCyaYR6WKBLM5R9DU8CzLjWyrDuZ0lgNZcJDrUhjPgVVSlX6Zsjqcl01GOQHHImFzdumCNLv1iPISJd_Fg_Q9rYOzoEnj118d_LHdKax1r1pB-7Zzdwjr-YWOjlg7gko6noTHsCpf00EyPsl0-RMy8u5c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Schwarz+problem+for+analytic+functions+in+torus-related+domains&rft.jtitle=Applicable+analysis&rft.au=Begehr%2C+Heinrich&rft.au=Mohammed%2C+Alip&rft.date=2006-09-01&rft.issn=0003-6811&rft.eissn=1563-504X&rft.volume=85&rft.issue=9&rft.spage=1079&rft.epage=1101&rft_id=info:doi/10.1080%2F00036810600835128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00036810600835128 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6811&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6811&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6811&client=summon |