Efficient anti-disturbance with collision-obstacle avoidance for under-actuated ships under signal quantization

•Collision-obstacle avoidance is achieved in formation of under-actuated ships.•Anti-disturbance compensation mechanism improves formation control accuracy.•State and input quantization with event-triggering enables efficient formation result. This paper presents a high-execution efficient anti-dist...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ocean engineering Ročník 343; s. 123123
Hlavní autoři: Wang, Hongyu, Ning, Jun, Hu, Xin, Liu, Lu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.01.2026
Témata:
ISSN:0029-8018
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•Collision-obstacle avoidance is achieved in formation of under-actuated ships.•Anti-disturbance compensation mechanism improves formation control accuracy.•State and input quantization with event-triggering enables efficient formation result. This paper presents a high-execution efficient anti-disturbance formation scheme with collision-obstacle avoidance for under-actuated ships with signal quantization. The formation scheme is built on an improved artificial potential field method and an event-triggered mechanism for underactuated unmanned surface vehicles (USVs), incorporating signal quantization and actuator fault tolerance simultaneously. Firstly, this scheme introduces an improved artificial potential field repulsive function to achieve collaborative collision avoidance and obstacle avoidance at the dynamic level. Secondly, the strategy uses an extended state observer (ESO) to estimate each USV’s quantized state and model uncertainty without needing quantizer parameters. A linear model to describe input quantization with actuator faults is also considered. Subsequently, an event-triggered collision avoidance control strategy is proposed to further reduce the communication burden. The proposed formation control strategy’s stability and effectiveness are rigorously proven via input-to-state stability theory and validated through simulations.
ISSN:0029-8018
DOI:10.1016/j.oceaneng.2025.123123