Inverse structural design with generative and probabilistic autoencoders and diffusion models

Traditional structural design is a forward trial-and-error process. Designers need to iterate through different design solutions and conduct structural analysis until the design meets the codes and standards. This study proposes and investigates a generative machine learning (ML) framework for inver...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 161; s. 112143
Hlavní autoři: Zhuang, Bozhou, Gallet, Adrien, Smyl, Danny
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.12.2025
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Traditional structural design is a forward trial-and-error process. Designers need to iterate through different design solutions and conduct structural analysis until the design meets the codes and standards. This study proposes and investigates a generative machine learning (ML) framework for inverse design of continuous beam systems. Three generative ML models, including conditional variational autoencoder (CVAE), conditional autoencoder with maximum likelihood estimation (CAE-MLE), and denoising diffusion models (DDMs) are trained and fine-tuned on the CBeamXP (Continuous Beam Cross-section Predictors) dataset with 1,000,000 beam sections to generate the cross sectional properties. Research results show that CAE-MLE achieves the highest generation accuracy and robustness, while CVAE offers more variability through latent space sampling. DDMs provide controllable generation variability via a stochasticity parameter in the inverse diffusion process. The proposed framework enables efficient generation of multiple design solutions and can potentially accelerate the conceptual design workflows in structural engineering. This work also demonstrated the feasibility toward artificial intelligence (AI)-assisted structural design using generative approaches and tabular datasets. •A generative design framework is developed for continuous beam systems.•Three generative ML models, CVAE, CAE-MLE, and DDMs, are trained and fine-tuned.•The generative design performance of different models is compared.•The design variability is investigated under specific design conditions.
AbstractList Traditional structural design is a forward trial-and-error process. Designers need to iterate through different design solutions and conduct structural analysis until the design meets the codes and standards. This study proposes and investigates a generative machine learning (ML) framework for inverse design of continuous beam systems. Three generative ML models, including conditional variational autoencoder (CVAE), conditional autoencoder with maximum likelihood estimation (CAE-MLE), and denoising diffusion models (DDMs) are trained and fine-tuned on the CBeamXP (Continuous Beam Cross-section Predictors) dataset with 1,000,000 beam sections to generate the cross sectional properties. Research results show that CAE-MLE achieves the highest generation accuracy and robustness, while CVAE offers more variability through latent space sampling. DDMs provide controllable generation variability via a stochasticity parameter in the inverse diffusion process. The proposed framework enables efficient generation of multiple design solutions and can potentially accelerate the conceptual design workflows in structural engineering. This work also demonstrated the feasibility toward artificial intelligence (AI)-assisted structural design using generative approaches and tabular datasets. •A generative design framework is developed for continuous beam systems.•Three generative ML models, CVAE, CAE-MLE, and DDMs, are trained and fine-tuned.•The generative design performance of different models is compared.•The design variability is investigated under specific design conditions.
ArticleNumber 112143
Author Smyl, Danny
Gallet, Adrien
Zhuang, Bozhou
Author_xml – sequence: 1
  givenname: Bozhou
  orcidid: 0000-0003-2123-8862
  surname: Zhuang
  fullname: Zhuang, Bozhou
  email: bzhuang31@gatech.edu
  organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, 756 W Peachtree St NW, Atlanta, 30308, GA, USA
– sequence: 2
  givenname: Adrien
  orcidid: 0000-0003-4939-9916
  surname: Gallet
  fullname: Gallet, Adrien
  email: adrien.gallet@unipart.com
  organization: Unipart Construction Technologies, Advanced Manufacturing Park, Brunel Way, Sheffield, S60 5WG, UK
– sequence: 3
  givenname: Danny
  orcidid: 0000-0002-6730-5277
  surname: Smyl
  fullname: Smyl, Danny
  email: danny.smyl@ce.gatech.edu
  organization: School of Civil and Environmental Engineering, Georgia Institute of Technology, 756 W Peachtree St NW, Atlanta, 30308, GA, USA
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMGOEyfegSoelSqxgSWy_JgUV6kT2U4Qf09KYc1qpDu6RzNnhRa-94DQDSU5JZTfHnLwezUMyuUFKaqc0oKWbIGWRFRFRkXNL9EqxgMhhDUlX6L3rZ8gRMAxhdGkMagOW4hu7_GnSx94Dx6CSm4CrLzFQ-i10q5zMTmD1Zh68Ka3M-FnbV3bjtH1Hh_nsItX6KJVXYTr37lGb48Pr5vnbPfytN3c7zJTcJoyCoyYmkLdcsaJ0bwqa8MaJlpGNWfKat40NRPG6JLpRtTaABBRVKLQljWKrRE_c03oYwzQyiG4owpfkhJ5EiMP8k-MPImRZzFz8e5cnI-FyUGQ0bj5JbAugEnS9u4_xDejinXK
Cites_doi 10.1109/CVPR46437.2021.01342
10.1111/mice.13236
10.1016/j.engstruct.2025.120662
10.1016/j.autcon.2025.106129
10.1609/aaai.v38i15.29647
10.1177/14759217241294042
10.1016/j.engappai.2024.109461
10.1061/JCCEE5.CPENG-6076
10.1016/j.engstruct.2022.115170
10.1098/rspa.2021.0526
10.1016/j.aei.2023.102190
10.1002/eqe.3862
10.1016/j.engstruct.2025.119652
10.1016/j.autcon.2022.104470
10.1016/j.autcon.2023.105187
10.1016/j.autcon.2025.106024
10.1088/1361-6420/ad3334
10.1016/j.autcon.2023.105243
10.1016/j.engstruct.2024.118068
10.1016/j.autcon.2023.105019
10.1016/j.autcon.2023.105223
10.1155/2013/271031
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.112143
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_112143
S0952197625021517
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c261t-1e30c71e7f6360cb6547c3839f31b63adb688739ccb43b897bcee092592bd38a3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566413000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 07:05:05 EST 2025
Sat Nov 15 16:53:22 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Structural design
Generative artificial intelligence
Tabular data
Continuous beams
Conditional autoencoders
Denoising diffusion models
Inverse problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-1e30c71e7f6360cb6547c3839f31b63adb688739ccb43b897bcee092592bd38a3
ORCID 0000-0003-2123-8862
0000-0003-4939-9916
0000-0002-6730-5277
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_112143
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_112143
PublicationCentury 2000
PublicationDate 2025-12-01
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ho, Jain, Abbeel (b10) 2020; 33
Zhao, Yanxuan, Zhang, Peng, Sun, Guopeng, Yang, Zhigong, Chen, Jianqiang, Wang, Yueqing, 2024b. Ccdpm: A continuous conditional diffusion probabilistic model for inverse design. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38, pp. 17033–17041.
Ko, Ennemoser, Yoo, Yan, Clayton (b13) 2023; 154
Park, Ergan, Feng (b22) 2024; 158
Kotelnikov, Baranchuk, Rubachev, Babenko (b14) 2023
Xia, Liao, Han, Zhang, Lu (b31) 2025; 172
Zhuang, Gencturk, Oberai, Ramaswamy, Meyer, Sinkov, Good (b37) 2024
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b8) 2014; 27
Wang, Qian, Zhao, Chen, He, Sun, Tian (b28) 2025; 139
Wang, Zhuang, Smyl, Zhou, Naser (b30) 2025; 328
Kingma, Welling (b12) 2013
Gallet, Liew, Hajirasouliha, Smyl (b5) 2024; 40
Liao, Zhang, Liu, Lu, Liu, Liu, Duan, Liu (b18) 2025; 339
European Committee for Standardisation (b2) 2015
Zhao, Liao, Huang, Lu (b33) 2023; 274
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b27) 2017; 30
(b23) 2015
Kingma, Ba (b11) 2014
Song, Meng, Ermon (b26) 2020
Gallet, Smyl (b7) 2024
Luo, Huang (b19) 2022; 142
Nauata, Chang, Cheng, Mori, Furukawa (b20) 2020
Zhuang, Zhu, Yang, Caldas (b38) 2025; 174
Gu, Huang, Liao, Lu (b9) 2024; 39
Qin, Guan, Liao, Gu, Zheng, Xue, Lu (b24) 2024; 95
Wang, Yu, Chen, Liao, Li, Hu, Tan, Lu (b29) 2025; 39
Leng, Gao, Zhou (b15) 2024; 98
Zhao, Fei, Huang, Feng, Liao, Lu (b32) 2023; 58
Zhao, Liao, Huang, Lu (b34) 2024; 158
Saka, Geem (b25) 2013; 2013
Gallet, Rigby, Tallman, Kong, Hajirasouliha, Liew, Liu, Chen, Hauptmann, Smyl (b6) 2022; 478
Gallet, Liew, Hajirasouliha, Smyl (b4) 2024; Vol. 68
Liao, Lu, Fei, Gu, Huang (b16) 2024; 157
Nauata, Nelson, Hosseini, Sepidehsadat, Chang, Kai-Hung, Chu, Hang, Cheng, Chin-Yi, Furukawa, Yasutaka, 2021. House-gan++: Generative adversarial layout refinement network towards intelligent computational agent for professional architects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13632–13641.
Zhou, Leng, Meng, Wu, Zhang (b36) 2024; 309
Agarap (b1) 2018
European Committee for Standardisation (b3) 2017
Liao, Wang, Fei, Huang, Xie, Lu (b17) 2023; 52
Zhuang (10.1016/j.engappai.2025.112143_b38) 2025; 174
Gallet (10.1016/j.engappai.2025.112143_b4) 2024; Vol. 68
Saka (10.1016/j.engappai.2025.112143_b25) 2013; 2013
European Committee for Standardisation (10.1016/j.engappai.2025.112143_b2) 2015
Leng (10.1016/j.engappai.2025.112143_b15) 2024; 98
Gallet (10.1016/j.engappai.2025.112143_b7) 2024
Gallet (10.1016/j.engappai.2025.112143_b5) 2024; 40
Vaswani (10.1016/j.engappai.2025.112143_b27) 2017; 30
Zhuang (10.1016/j.engappai.2025.112143_b37) 2024
Gu (10.1016/j.engappai.2025.112143_b9) 2024; 39
Liao (10.1016/j.engappai.2025.112143_b16) 2024; 157
Zhao (10.1016/j.engappai.2025.112143_b34) 2024; 158
(10.1016/j.engappai.2025.112143_b23) 2015
Liao (10.1016/j.engappai.2025.112143_b17) 2023; 52
Qin (10.1016/j.engappai.2025.112143_b24) 2024; 95
Goodfellow (10.1016/j.engappai.2025.112143_b8) 2014; 27
10.1016/j.engappai.2025.112143_b35
Nauata (10.1016/j.engappai.2025.112143_b20) 2020
Kingma (10.1016/j.engappai.2025.112143_b11) 2014
European Committee for Standardisation (10.1016/j.engappai.2025.112143_b3) 2017
Park (10.1016/j.engappai.2025.112143_b22) 2024; 158
Xia (10.1016/j.engappai.2025.112143_b31) 2025; 172
Wang (10.1016/j.engappai.2025.112143_b30) 2025; 328
Kingma (10.1016/j.engappai.2025.112143_b12) 2013
Liao (10.1016/j.engappai.2025.112143_b18) 2025; 339
Wang (10.1016/j.engappai.2025.112143_b28) 2025; 139
Song (10.1016/j.engappai.2025.112143_b26) 2020
Zhao (10.1016/j.engappai.2025.112143_b33) 2023; 274
Gallet (10.1016/j.engappai.2025.112143_b6) 2022; 478
Zhou (10.1016/j.engappai.2025.112143_b36) 2024; 309
Agarap (10.1016/j.engappai.2025.112143_b1) 2018
Luo (10.1016/j.engappai.2025.112143_b19) 2022; 142
Zhao (10.1016/j.engappai.2025.112143_b32) 2023; 58
Ho (10.1016/j.engappai.2025.112143_b10) 2020; 33
Wang (10.1016/j.engappai.2025.112143_b29) 2025; 39
Ko (10.1016/j.engappai.2025.112143_b13) 2023; 154
10.1016/j.engappai.2025.112143_b21
Kotelnikov (10.1016/j.engappai.2025.112143_b14) 2023
References_xml – volume: 39
  start-page: 3610
  year: 2024
  end-page: 3625
  ident: b9
  article-title: Intelligent design of shear wall layout based on diffusion models
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– reference: Nauata, Nelson, Hosseini, Sepidehsadat, Chang, Kai-Hung, Chu, Hang, Cheng, Chin-Yi, Furukawa, Yasutaka, 2021. House-gan++: Generative adversarial layout refinement network towards intelligent computational agent for professional architects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13632–13641.
– year: 2020
  ident: b26
  article-title: Denoising diffusion implicit models
– volume: 274
  year: 2023
  ident: b33
  article-title: Intelligent design of shear wall layout based on attention-enhanced generative adversarial network
  publication-title: Eng. Struct.
– volume: Vol. 68
  year: 2024
  ident: b4
  article-title: Influence zones of continuous beam systems
  publication-title: Structures
– volume: 52
  start-page: 3281
  year: 2023
  end-page: 3303
  ident: b17
  article-title: Base-isolation design of shear wall structures using physics-rule-co-guided self-supervised generative adversarial networks
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 95
  year: 2024
  ident: b24
  article-title: Intelligent design and optimization system for shear wall structures based on large language models and generative artificial intelligence
  publication-title: J. Build. Eng.
– volume: 154
  year: 2023
  ident: b13
  article-title: Architectural spatial layout planning using artificial intelligence
  publication-title: Autom. Constr.
– volume: 30
  year: 2017
  ident: b27
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 139
  year: 2025
  ident: b28
  article-title: A generative design method of airfoil based on conditional variational autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– year: 2013
  ident: b12
  article-title: Auto-encoding variational bayes
– reference: Zhao, Yanxuan, Zhang, Peng, Sun, Guopeng, Yang, Zhigong, Chen, Jianqiang, Wang, Yueqing, 2024b. Ccdpm: A continuous conditional diffusion probabilistic model for inverse design. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38, pp. 17033–17041.
– volume: 158
  year: 2024
  ident: b22
  article-title: Quality assessment of residential layout designs generated by relational Generative Adversarial Networks (GANs)
  publication-title: Autom. Constr.
– year: 2024
  ident: b7
  article-title: CBeamXP: Continuous beam cross-section predictors
– year: 2015
  ident: b2
  article-title: BS EN 1993-1-1:2005+A1:2014 Eurocode 3: Design of Steel Structures General Rules and Rules for Buildings
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 33
  ident: b25
  article-title: Mathematical and metaheuristic applications in design optimization of steel frame structures: an extensive review
  publication-title: Math. Probl. Eng.
– volume: 309
  year: 2024
  ident: b36
  article-title: StructDiffusion: End-to-end intelligent shear wall structure layout generation and analysis using diffusion model
  publication-title: Eng. Struct.
– volume: 40
  year: 2024
  ident: b5
  article-title: Machine learning for structural design models of continuous beam systems via influence zones
  publication-title: Inverse Problems
– volume: 174
  year: 2025
  ident: b38
  article-title: Machine learning for generative architectural design: Advancements, opportunities, and challenges
  publication-title: Autom. Constr.
– year: 2014
  ident: b11
  article-title: Adam: A method for stochastic optimization
– volume: 27
  year: 2014
  ident: b8
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 162
  year: 2020
  end-page: 177
  ident: b20
  article-title: House-gan: Relational generative adversarial networks for graph-constrained house layout generation
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16
– volume: 339
  year: 2025
  ident: b18
  article-title: Intelligent zoning design of concrete-faced rockfill dams using image-parameter fusion enhanced generative adversarial networks
  publication-title: Eng. Struct.
– volume: 157
  year: 2024
  ident: b16
  article-title: Generative AI design for building structures
  publication-title: Autom. Constr.
– start-page: 17564
  year: 2023
  end-page: 17579
  ident: b14
  article-title: Tabddpm: Modelling tabular data with diffusion models
  publication-title: International Conference on Machine Learning
– volume: 478
  year: 2022
  ident: b6
  article-title: Structural engineering from an inverse problems perspective
  publication-title: Proc. R. Soc. A
– year: 2015
  ident: b23
  article-title: Plotly: Collaborative data science
– volume: 39
  year: 2025
  ident: b29
  article-title: Expert experience–embedded evaluation and decision-making method for intelligent design of shear wall structures
  publication-title: J. Comput. Civ. Eng.
– year: 2024
  ident: b37
  article-title: Acoustic sensing and autoencoder approach for abnormal gas detection in a spent nuclear fuel canister mock-up
  publication-title: Struct. Heal. Monit.
– volume: 172
  year: 2025
  ident: b31
  article-title: Intelligent co-design of shear wall and beam layouts using a graph neural network
  publication-title: Autom. Constr.
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b10
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 58
  year: 2023
  ident: b32
  article-title: Design-condition-informed shear wall layout design based on graph neural networks
  publication-title: Adv. Eng. Inform.
– volume: 328
  year: 2025
  ident: b30
  article-title: Machine learning for design, optimization and assessment of steel-concrete composite structures: A review
  publication-title: Eng. Struct.
– volume: 158
  year: 2024
  ident: b34
  article-title: Beam layout design of shear wall structures based on graph neural networks
  publication-title: Autom. Constr.
– volume: 98
  year: 2024
  ident: b15
  article-title: ArchiDiffusion: A novel diffusion model connecting architectural layout generation from sketches to Shear Wall Design
  publication-title: J. Build. Eng.
– year: 2017
  ident: b3
  article-title: BS EN 10365:2017 Hot Rolled Steel Channels, I and H Sections – Dimensions and Masses
– year: 2018
  ident: b1
  article-title: Deep learning using rectified linear units (relu)
– volume: 142
  year: 2022
  ident: b19
  article-title: FloorplanGAN: Vector residential floorplan adversarial generation
  publication-title: Autom. Constr.
– ident: 10.1016/j.engappai.2025.112143_b21
  doi: 10.1109/CVPR46437.2021.01342
– volume: 95
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b24
  article-title: Intelligent design and optimization system for shear wall structures based on large language models and generative artificial intelligence
  publication-title: J. Build. Eng.
– year: 2017
  ident: 10.1016/j.engappai.2025.112143_b3
– volume: 39
  start-page: 3610
  issue: 23
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b9
  article-title: Intelligent design of shear wall layout based on diffusion models
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
  doi: 10.1111/mice.13236
– volume: 339
  year: 2025
  ident: 10.1016/j.engappai.2025.112143_b18
  article-title: Intelligent zoning design of concrete-faced rockfill dams using image-parameter fusion enhanced generative adversarial networks
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2025.120662
– volume: 174
  year: 2025
  ident: 10.1016/j.engappai.2025.112143_b38
  article-title: Machine learning for generative architectural design: Advancements, opportunities, and challenges
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2025.106129
– start-page: 162
  year: 2020
  ident: 10.1016/j.engappai.2025.112143_b20
  article-title: House-gan: Relational generative adversarial networks for graph-constrained house layout generation
– ident: 10.1016/j.engappai.2025.112143_b35
  doi: 10.1609/aaai.v38i15.29647
– volume: 30
  year: 2017
  ident: 10.1016/j.engappai.2025.112143_b27
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 27
  year: 2014
  ident: 10.1016/j.engappai.2025.112143_b8
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: 10.1016/j.engappai.2025.112143_b37
  article-title: Acoustic sensing and autoencoder approach for abnormal gas detection in a spent nuclear fuel canister mock-up
  publication-title: Struct. Heal. Monit.
  doi: 10.1177/14759217241294042
– volume: 139
  year: 2025
  ident: 10.1016/j.engappai.2025.112143_b28
  article-title: A generative design method of airfoil based on conditional variational autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.109461
– volume: 39
  issue: 1
  year: 2025
  ident: 10.1016/j.engappai.2025.112143_b29
  article-title: Expert experience–embedded evaluation and decision-making method for intelligent design of shear wall structures
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/JCCEE5.CPENG-6076
– volume: 274
  year: 2023
  ident: 10.1016/j.engappai.2025.112143_b33
  article-title: Intelligent design of shear wall layout based on attention-enhanced generative adversarial network
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115170
– volume: 478
  issue: 2257
  year: 2022
  ident: 10.1016/j.engappai.2025.112143_b6
  article-title: Structural engineering from an inverse problems perspective
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2021.0526
– volume: 58
  year: 2023
  ident: 10.1016/j.engappai.2025.112143_b32
  article-title: Design-condition-informed shear wall layout design based on graph neural networks
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2023.102190
– volume: 52
  start-page: 3281
  issue: 11
  year: 2023
  ident: 10.1016/j.engappai.2025.112143_b17
  article-title: Base-isolation design of shear wall structures using physics-rule-co-guided self-supervised generative adversarial networks
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.3862
– volume: 328
  year: 2025
  ident: 10.1016/j.engappai.2025.112143_b30
  article-title: Machine learning for design, optimization and assessment of steel-concrete composite structures: A review
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2025.119652
– volume: Vol. 68
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b4
  article-title: Influence zones of continuous beam systems
– volume: 98
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b15
  article-title: ArchiDiffusion: A novel diffusion model connecting architectural layout generation from sketches to Shear Wall Design
  publication-title: J. Build. Eng.
– volume: 142
  year: 2022
  ident: 10.1016/j.engappai.2025.112143_b19
  article-title: FloorplanGAN: Vector residential floorplan adversarial generation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104470
– year: 2020
  ident: 10.1016/j.engappai.2025.112143_b26
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.engappai.2025.112143_b10
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2014
  ident: 10.1016/j.engappai.2025.112143_b11
– year: 2015
  ident: 10.1016/j.engappai.2025.112143_b2
– year: 2018
  ident: 10.1016/j.engappai.2025.112143_b1
– volume: 157
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b16
  article-title: Generative AI design for building structures
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105187
– volume: 172
  year: 2025
  ident: 10.1016/j.engappai.2025.112143_b31
  article-title: Intelligent co-design of shear wall and beam layouts using a graph neural network
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2025.106024
– volume: 40
  issue: 5
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b5
  article-title: Machine learning for structural design models of continuous beam systems via influence zones
  publication-title: Inverse Problems
  doi: 10.1088/1361-6420/ad3334
– year: 2013
  ident: 10.1016/j.engappai.2025.112143_b12
– volume: 158
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b22
  article-title: Quality assessment of residential layout designs generated by relational Generative Adversarial Networks (GANs)
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105243
– volume: 309
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b36
  article-title: StructDiffusion: End-to-end intelligent shear wall structure layout generation and analysis using diffusion model
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.118068
– volume: 154
  year: 2023
  ident: 10.1016/j.engappai.2025.112143_b13
  article-title: Architectural spatial layout planning using artificial intelligence
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105019
– year: 2015
  ident: 10.1016/j.engappai.2025.112143_b23
– volume: 158
  year: 2024
  ident: 10.1016/j.engappai.2025.112143_b34
  article-title: Beam layout design of shear wall structures based on graph neural networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.105223
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.engappai.2025.112143_b25
  article-title: Mathematical and metaheuristic applications in design optimization of steel frame structures: an extensive review
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/271031
– start-page: 17564
  year: 2023
  ident: 10.1016/j.engappai.2025.112143_b14
  article-title: Tabddpm: Modelling tabular data with diffusion models
– year: 2024
  ident: 10.1016/j.engappai.2025.112143_b7
SSID ssj0003846
Score 2.4423385
Snippet Traditional structural design is a forward trial-and-error process. Designers need to iterate through different design solutions and conduct structural...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112143
SubjectTerms Conditional autoencoders
Continuous beams
Denoising diffusion models
Generative artificial intelligence
Inverse problem
Structural design
Tabular data
Title Inverse structural design with generative and probabilistic autoencoders and diffusion models
URI https://dx.doi.org/10.1016/j.engappai.2025.112143
Volume 161
WOSCitedRecordID wos001566413000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbaXQ69tDyKylM-cEPZJvESx0eKQNADqgRIe0FR7CQ8VGXRZrdC_HpmPM5jYSVaVVyiyFGcrOeLPZ795hvG9oyIYJX3tSdD43sw-wkvTgvhaSl9Y6QvjaBiE_L8PB6N1C_HVa1sOQFZlvHjo3p4V1NDGxgbU2f_wdxNp9AA52B0OILZ4fhXhkfljEmFwrGoDGtVNTJL06CY643VmbaEIdIIgA8aCbKVVW6dTceobInsZnsZ66fMMKBGJXOquUB-K2W43_0f3FILJpaDZCuCdEQ_2zD1zMWpf4yfbsezhgWElV1ICCFDAeZOCPa3S4h3c5cLVIQHL0gfTQZNS1eiMGToBYpqwDQzMumzv5rdKdBwP8jLG_hZ6d0AH4NJUAFJPb1Qzr7AzrFvcPPQs5EfWT-UByrusf7h2fHoZ7Nki5gyuuqX6aSSL37aYi-m45lcLrPPbkvBDwkKK-xDXq6yL257wd3kXUFTXcGjbltj1w4svAULJ7BwBAtvwcIBDXwOLLwLFnu5AQsnsHxlVyfHl0enniu44RnYSE-9IBe-kUEuC1SRMxoLUxsBLnQhAh2JNNMRrElCGaOHQsdKanCxfAU76FBnIk7FOuuV4zL_xrjSRZHKvBhGmRnmRqaZga58E0VSwaY02GDf6wFMHkhXJakJh_dJPeQJDnlCQ77BVD3OifMOyetLAB5v3Lv5H_dusU8tmrdZD-yR77Al82d6V012HZKeAUdDk98
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inverse+structural+design+with+generative+and+probabilistic+autoencoders+and+diffusion+models&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Zhuang%2C+Bozhou&rft.au=Gallet%2C+Adrien&rft.au=Smyl%2C+Danny&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=161&rft_id=info:doi/10.1016%2Fj.engappai.2025.112143&rft.externalDocID=S0952197625021517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon